R&S® FSV Signal and Spectrum Analyzer Operating Manual

This manual describes the following R&S®FSV models with firmware version 2.0 and higher:

- R&S®FSV 3 (1307.9002K03)
- R&S®FSV 7 (1307.9002K07)
- R&S®FSV 13 (1307.9002K13)
- R&S®FSV 30 (1307.9002K30)
- R&S®FSV 40 (1307.9002K39)
- R&S®FSV 40 (1307.9002K40)

In addition to the base unit, the following options are described:

- R&S FSV-B9/10 (1310.9545.02/1310.9551.02)
- R&S FSV-B17 (1310.9568.02)
- R&S FSV-B21 (1310.9597.02)
- R&S FSV-B22 (1310.9600.02)
- R&S FSV-B24 (1310.9616.13)
- R&S FSV-K9 (1310.8203.02)
- R&S FSV-K14 (1310.8255.02)

The firmware of the instrument makes use of several valuable open source software packages. For information, see the "Open Source Acknowledgement" on the user documentation CD-ROM (included in delivery).

Rohde & Schwarz would like to thank the open source community for their valuable contribution to embedded computing.

© 2013 Rohde & Schwarz GmbH & Co. KG Mühldorfstr. 15, 81671 München, Germany

Phone: +49 89 41 29 - 0
Fax: +49 89 41 29 12 164
E-mail: info@rohde-schwarz.com
Internet: www.rohde-schwarz.com

Printed in Germany – Subject to change – Data without tolerance limits is not binding.

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG.

Trade names are trademarks of the owners.

The following abbreviations are used throughout this manual: R&S®FSV is abbreviated as R&S FSV. R&S®EX-I/Q-Box is abbreviated as R&S EX-I/Q-Box.

Contents

1	Preface	5
1.1	Documentation Overview	5
1.2	Conventions Used in the Documentation	7
1.3	How to Use the Help System	8
2	Advanced Measurement Examples	10
2.1	Test Setup	10
2.2	Measurement of Harmonics	11
2.3	Measuring the Spectra of Complex Signals	13
2.4	Measuring Signals in the Vicinity of Noise	17
2.5	Noise Measurements	22
2.6	Measurements on Modulated Signals	29
3	Instrument Functions	40
3.1	General Settings, Printout and Instrument Settings	43
3.2	Measurement Parameters	86
3.3	Measurement Functions	150
3.4	Measurement Modes	305
3.5	Instrument Functions - I/Q Analyzer	310
3.6	Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S F	
	B10)	
3.7	Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)	
3.8	Instrument Functions – External Mixer (Option R&S FSV-B21)	
3.9	Instrument Functions - Power Sensor (R&S FSV-K9)	400
3.10	Instrument Functions - Spectrogram Measurements	413
4	Remote Control	426
4.1	Remote Control - Basics	427
4.2	Remote Control – Commands	466
4.3	Remote Control – Programming Examples	845
5	Maintenance	888
5.1	Storing and Packing	888
5 2	List of Δvailable Power Cables	222

R&S® FSV Contents

6	Error Messages	.890
	List of Commands	.892
	Index	.909

Documentation Overview

1 Preface

1.1 Documentation Overview

The user documentation for the R&S FSV is divided as follows:

- Quick Start Guide
- Operating Manuals for base unit and options
- Service Manual
- Online Help
- Release Notes

Quick Start Guide

This manual is delivered with the instrument in printed form and in PDF format on the CD. It provides the information needed to set up and start working with the instrument. Basic operations and basic measurements are described. Also a brief introduction to remote control is given. The manual includes general information (e.g. Safety Instructions) and the following chapters:

Chapter 1	Introduction, General information
Chapter 2	Front and Rear Panel
Chapter 3	Preparing for Use
Chapter 4	Firmware Update and Installation of Firmware Options
Chapter 5	Basic Operations
Chapter 6	Basic Measurement Examples
Chapter 7	Brief Introduction to Remote Control
Appendix	LAN Interface

Operating Manuals

The Operating Manuals are a supplement to the Quick Start Guide. Operating Manuals are provided for the base unit and each additional (software) option.

The Operating Manual for the base unit provides basic information on operating the R&S FSV in general, and the "Spectrum" mode in particular. Furthermore, the software options that enhance the basic functionality for various measurement modes are described here. The set of measurement examples in the Quick Start Guide is expanded by more advanced measurement examples. In addition to the brief introduction to remote control in the Quick Start Guide, a description of the basic analyzer commands and programming examples is given. Information on maintenance, instrument interfaces and error messages is also provided.

In the individual option manuals, the specific instrument functions of the option are described in detail. For additional information on default settings and parameters, refer

Documentation Overview

to the data sheets. Basic information on operating the R&S FSV is not included in the option manuals.

The following Operating Manuals are available for the R&S FSV:

- R&S FSV base unit; in addition:
 - R&S FSV-K9 Power Sensor Support
 - R&S FSV-K14 Spectrogram Measurement
- R&S FSV-K7 Analog Demodulation and R&S FSV-K7S FM Stereo Measurements
- R&S FSV-K10 GSM/EDGE Measurement
- R&S FSV-K30 Noise Figure Measurement
- R&S FSV-K40 Phase Noise Measurement
- R&S FSV-K70 Vector Signal Analysis Operating Manual
 R&S FSV-K70 Vector Signal Analysis Getting Started (First measurements)
- R&S FSV-K72 3GPP FDD BTS Analysis
- R&S FSV-K73 3GPP FDD UE Analysis
- R&S FSV-K76/77 3GPP TD-SCDMA BTS/UE Measurement
- R&S FSV-K82/83 CDMA2000 BTS/MS Analysis
- R&S FSV-K84/85 1xEV-DO BTS/MS Analysis
- R&S FSV-K91 WLAN IEEE 802.11a/b/g/j/n
- R&S FSV-K93 WiMAX IEEE 802.16 OFDM/OFDMA Analysis
- R&S FSV-K100/K104 EUTRA / LTE Downlink Measurement Application
- R&S FSV-K101/K105 EUTRA / LTE Uplink Measurement Application

These manuals are available in PDF format on the CD delivered with the instrument. The printed manual can be ordered from Rohde & Schwarz GmbH & Co. KG.

Service Manual

This manual is available in PDF format on the CD delivered with the instrument. It describes how to check compliance with rated specifications, instrument function, repair, troubleshooting and fault elimination. It contains all information required for repairing the R&S FSV by replacing modules. The manual includes the following chapters:

Chapter 1	Performance Test
Chapter 2	Adjustment
Chapter 3	Repair
Chapter 4	Software Update / Installing Options
Chapter 5	Documents

Online Help

The online help contains context-specific help on operating the R&S FSV and all available options. It describes both manual and remote operation. The online help is installed on the R&S FSV by default, and is also available as an executable .chm file on the CD delivered with the instrument.

Conventions Used in the Documentation

Release Notes

The release notes describe the installation of the firmware, new and modified functions, eliminated problems, and last minute changes to the documentation. The corresponding firmware version is indicated on the title page of the release notes. The current release notes are provided in the Internet.

1.2 Conventions Used in the Documentation

1.2.1 Typographical Conventions

The following text markers are used throughout this documentation:

Convention	Description
"Graphical user interface elements on the screen, such log boxes, menus, options, buttons, and softkeys are enclosed by tion marks.	
KEYS	Key names are written in capital letters.
File names, commands, program code	File names, commands, coding samples and screen output are distinguished by their font.
Input	Input to be entered by the user is displayed in italics.
Links that you can click are displayed in blue font.	
"References"	References to other parts of the documentation are enclosed by quotation marks.

1.2.2 Conventions for Procedure Descriptions

When describing how to operate the instrument, several alternative methods may be available to perform the same task. In this case, the procedure using the touchscreen is described. Any elements that can be activated by touching can also be clicked using an additionally connected mouse. The alternative procedure using the keys on the instrument or the on-screen keyboard is only described if it deviates from the standard operating procedures.

The term "select" may refer to any of the described methods, i.e. using a finger on the touchscreen, a mouse pointer in the display, or a key on the instrument or on a keyboard.

How to Use the Help System

1.3 How to Use the Help System

Calling context-sensitive and general help

➤ To display the general help dialog box, press the HELP key on the front panel.

The help dialog box "View" tab is displayed. A topic containing information about the current menu or the currently opened dialog box and its function is displayed.

For standard Windows dialog boxes (e.g. File Properties, Print dialog etc.), no contextsensitive help is available.

► If the help is already displayed, press the softkey for which you want to display help. A topic containing information about the softkey and its function is displayed.

If a softkey opens a submenu and you press the softkey a second time, the submenu of the softkey is displayed.

Contents of the help dialog box

The help dialog box contains four tabs:

- "Contents" contains a table of help contents
- "View" contains a specific help topic
- "Index" contains index entries to search for help topics
- "Zoom" contains zoom functions for the help display

To change between these tabs, press the tab on the touchscreen.

Navigating in the table of contents

- To move through the displayed contents entries, use the UP ARROW and DOWN ARROW keys. Entries that contain further entries are marked with a plus sign.
- To display a help topic, press the ENTER key. The "View" tab with the corresponding help topic is displayed.
- To change to the next tab, press the tab on the touchscreen.

Navigating in the help topics

- To scroll through a page, use the rotary knob or the UP ARROW and DOWN ARROW keys.
- To jump to the linked topic, press the link text on the touchscreen.

Searching for a topic

1. Change to the "Index" tab.

How to Use the Help System

- 2. Enter the first characters of the topic you are interested in. The entries starting with these characters are displayed.
- 3. Change the focus by pressing the ENTER key.
- 4. Select the suitable keyword by using the UP ARROW or DOWN ARROW keys or the rotary knob.
- Press the ENTER key to display the help topic.
 The "View" tab with the corresponding help topic is displayed.

Changing the zoom

- 1. Change to the "Zoom" tab.
- 2. Set the zoom using the rotary knob. Four settings are available: 1-4. The smallest size is selected by number 1, the largest size is selected by number 4.

Closing the help window

▶ Press the ESC key or a function key on the front panel.

2 Advanced Measurement Examples

This chapter explains how to operate the R&S FSV using typical measurements as examples. Additional background information on the settings is given. For more detailed information on all available softkeys and the corresponding instrument functions, see chapter 3, "Instrument Functions", on page 40.

Examples of more basic character are provided in the R&S FSV Quick Start Guide, as an introduction. The following topics are included in the R&S FSV Quick Start Guide:

- Measuring a Sinusoidal Signal
 - Measuring the Level and Frequency Using Markers
 - Measuring the Signal Frequency Using the Frequency Counter
- Measuring Harmonics of Sinusoidal Signals
 - Measuring the Suppression of the First and Second Harmonic of an Input Signal
 - Measuring the Modulation Depth of an AM-Modulated Carrier (Span > 0)
 - Measuring of AM-Modulated Signals
- Measuring Signal Spectra with Multiple Signals
 - Separating Signals by Selecting the Resolution Bandwidth
- Measurements with Zero Span
 - Measuring the Power Characteristic of Burst Signals
 - Measuring the Signal-to-Noise Ratio of Burst Signals
 - Measurement of FM-Modulated Signals
- Storing and Loading Instrument Settings
 - Storing an Instrument Configuration (without Traces)
 - Storing Traces
 - Loading an Instrument Configuration (with Traces)
 - Configuring Automatic Loading

•	Test Setup	10
	Measurement of Harmonics	
•	Measuring the Spectra of Complex Signals	13
	Measuring Signals in the Vicinity of Noise	
	Noise Measurements	
•	Measurements on Modulated Signals	29

2.1 Test Setup

All of the following examples are based on the standard settings of the R&S FSV. These are set with the PRESET key. A complete listing of the standard settings can be found in chapter "Instrument Functions", section "Initializing the Configuration – PRESET Key".

In the following examples, a signal generator is used as a signal source. The RF output of the signal generator is connected to the RF input of R&S FSV.

Measurement of Harmonics

If a 64 MHz signal is required for the test setup, as an alternative to the signal generator, the internal 64 MHz reference generator can be used:

- 1. Switch on the internal reference generator.
 - a) Press the SETUP key.
 - b) Press the "More" key.
 - c) Press the "Service" softkey.
 - d) Press the "Input RF/Cal" softkey, until "Cal" is highlighted. The internal 64 MHz reference generator is now on. The R&S FSV's RF input is switched off.
- 2. Switch on the RF input again for normal operation of the R&S FSV. Two ways are possible:
 - a) Press the PRESET key.

or:

- b) Press the SETUP key.
- c) Press the "Service" softkey.
- d) Press the "Input RF/Cal" softkey, until "RF" is highlighted.

The internal signal path of the R&S FSV is switched back to the RF input in order to resume normal operation.

2.2 Measurement of Harmonics

Signal generator settings (e.g. R&S FSV SMU):

Frequency:	128 MHz
Level:	- 25 dBm

Procedure on the R&S FSV:

- 1. Set the R&S FSV to its default state by pressing the PRESET key.
- 2. Set the center frequency to 128 MHz and the span to 100 kHz.
- 3. Switch on the marker by pressing the MKR key. The marker is positioned on the trace maximum.
- 4. Set the measured signal frequency and the measured level as reference values.
 - a) Press the MKR FUNC key
 - b) Press the "Ref Fixed" softkey.
 - The position of the marker becomes the reference point. The reference point level is indicated by a horizontal line, the reference point frequency with a vertical line. At the same time, the delta marker 2 is switched on.

Measurement of Harmonics

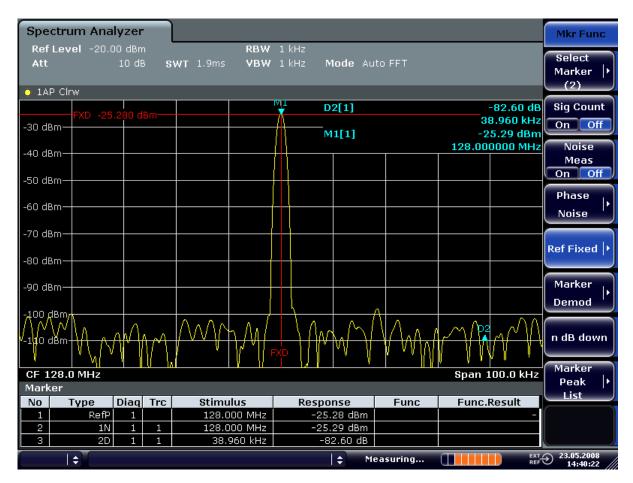


Fig. 2-1: Fundamental wave and the frequency and level reference point

- 5. Make the step size for the center frequency equal to the signal frequency
 - a) Press the FREQ key.
 - b) Press the "CF-Stepsize" softkey and press the "= Marker" softkey in the submenu.

The step size for the center frequency is now equal to the marker frequency.

- 6. Set the center frequency to the second harmonic of the signal.
 - a) Press the FREQ key.
 - b) Press the UPARROW key once.The center frequency is set to the second harmonic.
- 7. Place the delta marker on the second harmonic.
 - a) Press the MKR -> key.
 - b) Press the "Peak" softkey.

The delta marker moves to the maximum of the second harmonic. The displayed level result is relative to the reference point level (= fundamental wave level).

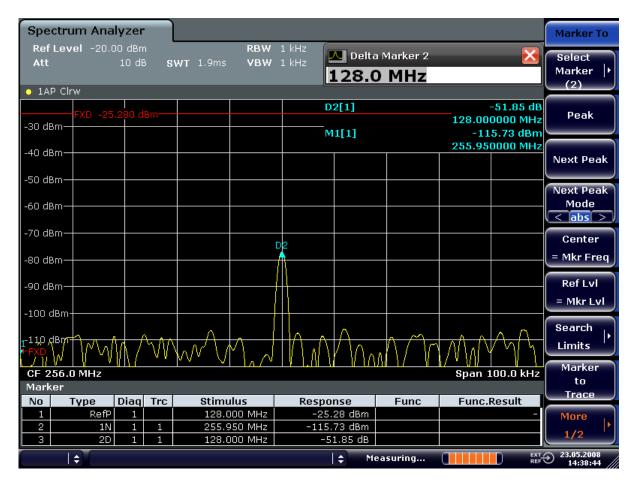


Fig. 2-2: Measuring the level difference between the fundamental wave (= reference point level) and the 2nd harmonic

The other harmonics are measured with steps 5 and 6, the center frequency being incremented or decremented in steps of 128 MHz using the UPARROW or DNARROW key.

2.3 Measuring the Spectra of Complex Signals

2.3.1 Separating Signals by Selecting an Appropriate Resolution Bandwidth

A basic feature of a signal analyzer is being able to separate the spectral components of a mixture of signals. The resolution at which the individual components can be separated is determined by the resolution bandwidth. Selecting a resolution bandwidth that is too large may make it impossible to distinguish between spectral components, i.e. they are displayed as a single component.

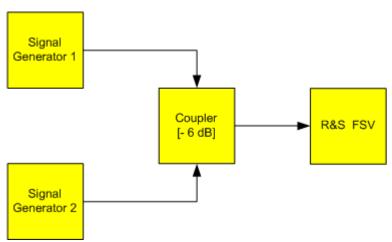
An RF sinusoidal signal is displayed by means of the passband characteristic of the resolution filter (RBW) that has been set. Its specified bandwidth is the 3 dB bandwidth of the filter.

Two signals with the same amplitude can be resolved if the resolution bandwidth is smaller than or equal to the frequency spacing of the signal. If the resolution bandwidth is equal to the frequency spacing, the spectrum display screen shows a level drop of 3 dB precisely in the center of the two signals. Decreasing the resolution bandwidth makes the level drop larger, which thus makes the individual signals clearer.

If there are large level differences between signals, the resolution is determined by selectivity as well as by the resolution bandwidth that has been selected. The measure of selectivity used for signal analyzers is the ratio of the 60 dB bandwidth to the 3 dB bandwidth (= shape factor).

For the R&S FSV, the shape factor for bandwidths is < 5, i.e. the 60 dB bandwidth of the 30 kHz filter is <150 kHz.

The higher spectral resolution with smaller bandwidths is won by longer sweep times for the same span. The sweep time has to allow the resolution filters to settle during a sweep at all signal levels and frequencies to be displayed.


2.3.2 Intermodulation Measurements

If several signals are applied to a transmission two-port device with nonlinear characteristic, intermodulation products appear at its output at the sums and differences of the signals. The nonlinear characteristic produces harmonics of the useful signals which intermodulate at the characteristic. The intermodulation products of lower order have a special effect since their level is largest and they are near the useful signals. The intermodulation product of third order causes the highest interference. It is the intermodulation product generated from one of the useful signals and the 2nd harmonic of the second useful signal in case of two-tone modulation.

For details see chapter 3.3.5.9, "Measuring the Third Order Intercept Point (TOI)", on page 274.

2.3.2.1 Measurement Example – Measuring the R&S FSV's Intrinsic Intermodulation

Test setup:

Signal generator settings (e.g. R&S FSV SMU):

	Level	Frequency
Signal generator 1	-4 dBm	999.7 MHz
Signal generator 2	-4 dBm	1000.3 MHz

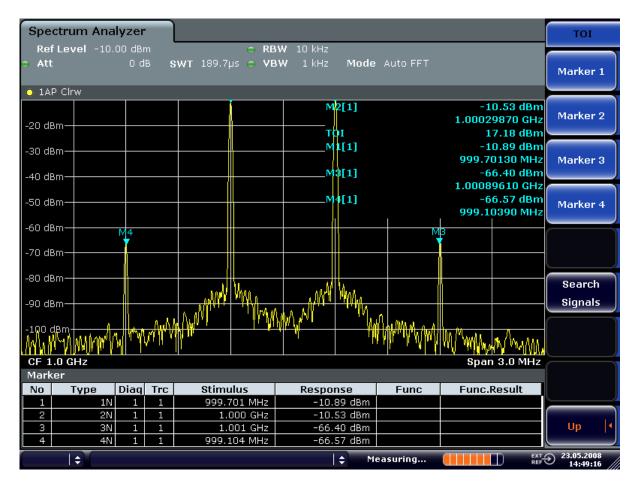
Setting up the measurement

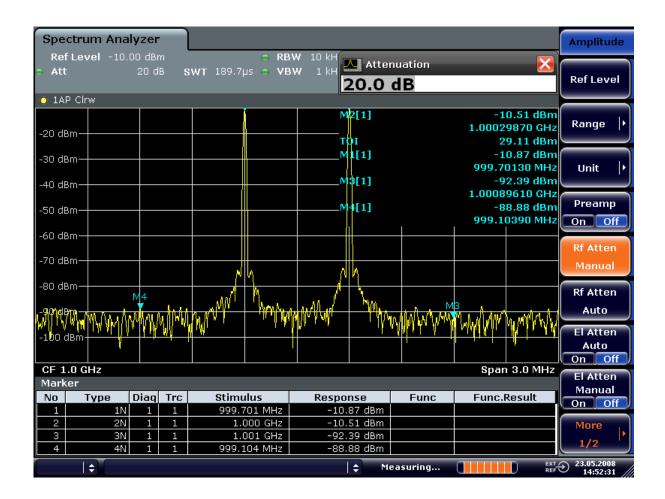
- Set the R&S FSV to its default settings by pressing the PRESET key.
 The R&S FSV is in its default state.
- 2. Set center frequency to 1 GHz and the frequency span to 3 MHz.
- 3. Set the reference level to -10 dBm and RF attenuation to 0 dB.
- Set the resolution bandwidth to 10 kHz.
 The noise is reduced, the trace is smoothed further and the intermodulation products can be clearly seen.
- 5. Set the VBW to "1 kHz".

Measuring intermodulation using the 3rd order intercept (TOI)measurement function

1. Press the MEAS key and then the "TOI" softkey.

The R&S FSV activates four markers to measure the intermodulation distance. Two markers are positioned on the useful signals and two on the intermodulation products. The 3rd order intercept is calculated from the level difference between the useful signals and the intermodulation products. It is then displayed on the screen:




Fig. 2-3: Result of intrinsic intermodulation measurement on the R&S FSV.

The 3rd order intercept (TOI) is displayed at the top right corner of the grid.

2. The level of a signal analyzer's intrinsic intermodulation products depends on the RF level of the useful signals at the input mixer. When the RF attenuation is added, the mixer level is reduced and the intermodulation distance is increased. With an additional RF attenuation of 10 dB, the levels of the intermodulation products are reduced by 20 dB. The noise level is, however, increased by 10 dB.

Increase the RF attenuation to 20 dB to reduce intermodulation products.

The R&S FSV's intrinsic intermodulation products disappear below the noise floor.

2.4 Measuring Signals in the Vicinity of Noise

The minimum signal level a signal analyzer can measure is limited by its intrinsic noise. Small signals can be swamped by noise and therefore cannot be measured. For signals that are just above the intrinsic noise, the accuracy of the level measurement is influenced by the intrinsic noise of the signal analyzer.

The displayed noise level of a signal analyzer depends on its noise figure, the selected RF attenuation, the selected reference level, the selected resolution and video bandwidth and the detector. The effect of the different parameters is explained in the following.

Impact of the RF attenuation setting

The sensitivity of a signal analyzer is directly influenced by the selected RF attenuation. The highest sensitivity is obtained at a RF attenuation of 0 dB. The attenuation can be set in 10 dB steps up to 70 dB. Each additional 10 dB step reduces the sensitivity by 10 dB, i.e. the displayed noise is increased by 10 dB.

Impact of the resolution bandwidth

The sensitivity of a signal analyzer also directly depends on the selected bandwidth. The highest sensitivity is obtained at the smallest bandwidth (1 Hz). If the bandwidth is increased, the reduction in sensitivity is proportional to the change in bandwidth. The R&S FSV has bandwidth settings in 1, 2, 3, 5 sequence. Increasing the bandwidth by a factor of 3 increases the displayed noise by approx. 5 dB (4.77 dB precisely). If the bandwidth is increased by a factor of 10, the displayed noise increases by a factor of 10, i.e. 10 dB.

Impact of the video bandwidth

The displayed noise of a signal analyzer is also influenced by the selected video bandwidth. If the video bandwidth is considerably smaller than the resolution bandwidth, noise spikes are suppressed, i.e. the trace becomes much smoother. The level of a sine wave signal is not influenced by the video bandwidth. A sine wave signal can therefore be freed from noise by using a video bandwidth that is small compared with the resolution bandwidth, and thus be measured more accurately.

Impact of the detector

Noise is evaluated differently by the different detectors. The noise display is therefore influenced by the choice of detector. Sine wave signals are weighted in the same way by all detectors, i.e. the level display for a sine wave RF signal does not depend on the selected detector, provided that the signal-to-noise ratio is high enough. The measurement accuracy for signals in the vicinity of intrinsic signal analyzer noise is also influenced by the detector which has been selected. For details on the detectors of the R&S FSV refer to chapter "Instrument Functions", section "Detector overview" or the Online Help.

2.4.1 Measurement Example – Measuring Level at Low S/N Ratios

The example shows the different factors influencing the S/N ratio.

Signal generator settings (e.g. R&S FSV SMU):

Frequency:	128 MHz
Level:	- 90 dBm

Procedure:

- 1. Set the R&S FSV to its default state by pressing the PRESET key. The R&S FSV is in its default state.
- 2. Set the center frequency to 128 MHz and the frequency span to 100 MHz:
 - a) Press the FREQ key and enter "128 MHz".

b) Press the SPAN key and enter "100 MHz".

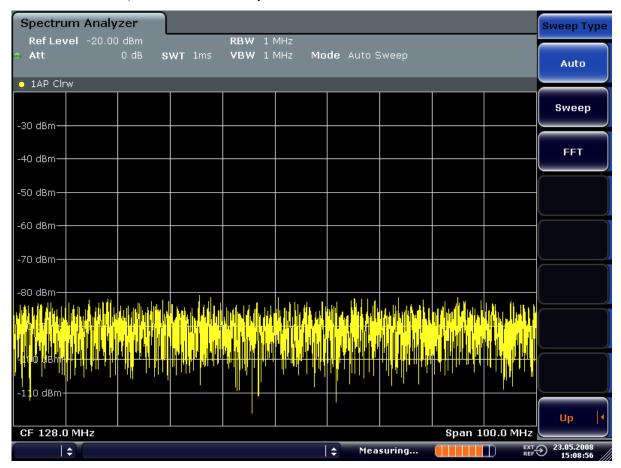


Fig. 2-4: Sine wave signal with low S/N ratio. The signal is measured with the auto peak detector and is completely hidden in the intrinsic noise of the R&S FSV.

- 3. To suppress noise spikes the trace can be averaged.
 - a) Press the TRACE key.
 - b) Press the "Trace Wizard" softkey.
 The Trace Wizard dialog box opens.

c) Select "Average" in the "Trace Mode" drop-down menu of the selected trace. The traces of consecutive sweeps are averaged. To perform averaging, the R&S FSV automatically switches on the sample detector. The RF signal, therefore, can be more clearly distinguished from noise.

Fig. 2-5: RF sine wave signal with low S/N ratio if the trace is averaged.

- 4. Instead of trace averaging, a video filter that is narrower than the resolution bandwidth can be selected:
 - a) Press the TRACE key.
 - b) Press the "Trace Wizard" softkey.The Trace Wizard dialog box opens.
 - c) Select "Clear Write" in the "Trace Mode" drop-down menu of the selected trace.
 - d) Press the BW key.

e) Press the "Video BW Manual" softkey and enter "10 kHz". The RF signal can be more clearly distinguished from noise.

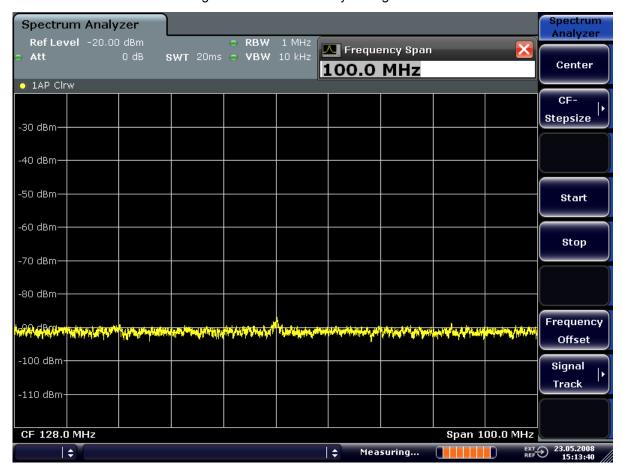


Fig. 2-6: RF sine wave signal with low S/N ratio if a smaller video bandwidth is selected.

5. By reducing the resolution bandwidth by a factor of 10, the noise is reduced by 10 dB:

a) In the "Bandwidth" menu press the "Res BW Manual" softkey and enter "100 kHz".

The displayed noise is reduced by approx. 10 dB. The signal, therefore, emerges from noise by about 10 dB. Compared to the previous setting, the video bandwidth has remained the same, i.e. it has increased relative to the smaller resolution bandwidth. The averaging effect of the video bandwidth is therefore reduced. The trace will be noisier.

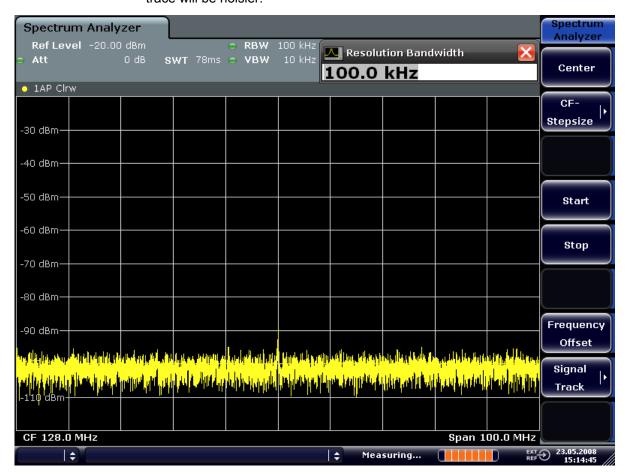


Fig. 2-7: Reference signal at a smaller resolution bandwidth

2.5 Noise Measurements

Noise measurements play an important role in signal analysis. Noise e.g. affects the sensitivity of radio communication systems and their components.

Noise power is specified either as the total power in the transmission channel or as the power referred to a bandwidth of 1 Hz. The sources of noise are, for example, amplifier noise or noise generated by oscillators used for the frequency conversion of useful signals in receivers or transmitters. The noise at the output of an amplifier is determined by its noise figure and gain.

The noise of an oscillator is determined by phase noise near the oscillator frequency and by thermal noise of the active elements far from the oscillator frequency. Phase noise can mask weak signals near the oscillator frequency and make them impossible to detect.

2.5.1 Measuring Noise Power Density

To measure noise power referred to a bandwidth of 1 Hz at a certain frequency, the R&S FSV provides marker function. This marker function calculates the noise power density from the measured marker level.

2.5.1.1 Measurement Example – Measuring the Intrinsic Noise Power Density of the R&S FSV at 1 GHz and Calculating the R&S FSV's Noise Figure

Test setup:

 \blacktriangleright Connect no signal to the RF input; terminate RF input with 50 Ω .

Procedure:

- Set the R&S FSV to its default state by pressing the PRESET key.
 The R&S FSV is in its default state.
- 2. Set the center frequency to 1.234 GHz and the span to 1 MHz.
 - a) Press the FREQ key and enter "1.234 GHz".
 - b) Press the SPAN key and enter "1 MHz".
- 3. Switch on the marker and set the marker frequency to 1.234 GHz by pressing the MKR key and entering "1.234 GHz".
- 4. Switch on the noise marker function by switching on the "Noise Meas" softkey.
 - a) Press the MKR FUNC key.
 - b) Switch the "Noise Meas" softkey to "On"The R&S FSV displays the noise power at 1 GHz in dBm (1Hz).

Note: Since noise is random, a sufficiently long measurement time has to be selected to obtain stable measurement results. This can be achieved by averaging the trace or by selecting a very small video bandwidth relative to the resolution bandwidth.

- 5. The measurement result is stabilized by averaging the trace.
 - a) Press the TRACE key.
 - b) Press the "Trace Wizard" softkey.The Trace Wizard dialog box opens.
 - c) Select "Average" in the "Trace Mode" drop-down menu of the selected trace.

The R&S FSV performs sliding averaging over 10 traces from consecutive sweeps. The measurement result becomes more stable.

Conversion to other reference bandwidths

The result of the noise measurement can be referred to other bandwidths by simple conversion. This is done by adding $10 \times \log (BW)$ to the measurement result, BW being the new reference bandwidth.

Example:

A noise power of -150 dBm (1 Hz) is to be referred to a bandwidth of 1 kHz.

$$P_{\text{11kHz}} = -150 + 10 \times \log (1000) = -150 + 30 = -120 \text{ dBm } (1 \text{ kHz})$$

Calculation method for noise power

If the noise marker is switched on, the R&S FSV automatically activates the sample detector. The video bandwidth is set to 1/10 of the selected resolution bandwidth (RBW).

To calculate the noise, the R&S FSV takes an average over 17 adjacent pixels (the pixel on which the marker is positioned and 8 pixels to the left, 8 pixels to the right of the marker). The measurement result is stabilized by video filtering and averaging over 17 pixels.

Since both video filtering and averaging over 17 trace points is performed in the log display mode, the result would be 2.51 dB too low (difference between logarithmic noise average and noise power). The R&S FSV, therefore, corrects the noise figure by 2.51 dB.

To standardize the measurement result to a bandwidth of 1 Hz, the result is also corrected by -10 \times log (RBW_{noise}), with RBW_{noise} being the power bandwidth of the selected resolution filter (RBW).

Detector selection

The noise power density is measured in the default setting with the sample detector and using averaging. Other detectors that can be used to perform a measurement giving true results are the average detector or the RMS detector. If the average detector is used, the linear video voltage is averaged and displayed as a pixel. If the RMS detector is used, the squared video voltage is averaged and displayed as a pixel. The averaging time depends on the selected sweep time (=SWT/501). An increase in the sweep time gives a longer averaging time per pixel and thus stabilizes the measurement result. The R&S FSV automatically corrects the measurement result of the noise marker display depending on the selected detector (+1.05 dB for the average detector, 0 dB for the RMS detector). It is assumed that the video bandwidth is set to at least three times the resolution bandwidth. While the average or RMS detector is being switched on, the R&S FSV sets the video bandwidth to a suitable value.

The Pos Peak, Neg Peak, Auto Peak and Quasi Peak detectors are not suitable for measuring noise power density.

Determining the noise figure

The noise figure of amplifiers or of the R&S FSV alone can be obtained from the noise power display. Based on the known thermal noise power of a 50 Ω resistor at room tem-

perature (-174 dBm (1Hz)) and the measured noise power P_{noise} the noise figure (NF) is obtained as follows:

$$NF = P_{noise} + 174 - g$$

where g = gain of DUT in dB

Example:

The measured internal noise power of the R&S FSV at an attenuation of 0 dB is found to be -143 dBm/1 Hz. The noise figure of the R&S FSV is obtained as follows

$$NF = -143 + 174 = 31 dB$$

If noise power is measured at the output of an amplifier, for example, the sum of the internal noise power and the noise power at the output of the DUT is measured. The noise power of the DUT can be obtained by subtracting the internal noise power from the total power (subtraction of linear noise powers). By means of the following diagram, the noise level of the DUT can be estimated from the level difference between the total and the internal noise level.

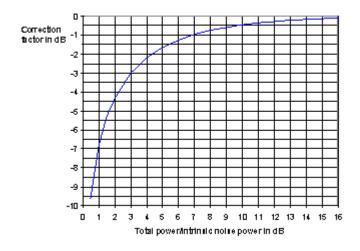


Fig. 2-8: Correction factor for measured noise power as a function of the ratio of total power to the intrinsic noise power of the signal analyzer

2.5.2 Measurement of Noise Power within a Transmission Channel

Noise in any bandwidth can be measured with the channel power measurement functions. Thus the noise power in a communication channel can be determined, for example. If the noise spectrum within the channel bandwidth is flat, the noise marker from the previous example can be used to determine the noise power in the channel by considering the channel bandwidth. If, however, phase noise and noise that normally increases towards the carrier is dominant in the channel to be measured, or if there are discrete

spurious signals in the channel, the channel power measurement method must be used to obtain correct measurement results.

2.5.2.1 Measurement Example – Measuring the Intrinsic Noise of the R&S FSV at 1 GHz in a 1.23 MHz Channel Bandwidth with the Channel Power Function

Test setup:

 \blacktriangleright Leave the RF input of the R&S FSV open-circuited or terminate it with 50 Ω.

Procedure:

- 1. Set the R&S FSV to its default state by pressing the PRESET key. The R&S FSV is in its default state.
- 2. Set the center frequency to 1 GHz and the span to 1 MHz.
- 3. To obtain maximum sensitivity, set RF attenuation on the R&S FSV to 0 dB.
- 4. Set the "Sweep Type" to "Sweep".
- 5. Switch on and configure the channel power measurement.
 - a) Press the MEAS key.
 - b) Press the "Ch Power/ACLR" softkey. The R&S FSV activates the channel or adjacent channel power measurement according to the currently set configuration.
 - c) Press the "CP/ACLR Settings" softkey.
 - d) Press the "Channel Settings" softkey.
 - e) Press the "Channel Bandwidth" softkey and enter 1.23 MHz.
 The R&S FSV displays the 1.23 MHz channel as two vertical lines which are symmetrical to the center frequency.

f) Press the "Adjust Settings" softkey. The settings for the frequency span, the bandwidth (RBW and VBW) and the detector are automatically set to the optimum values required for the measurement.

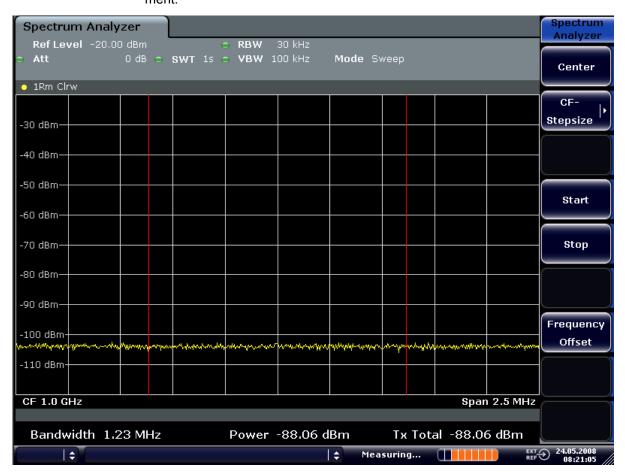
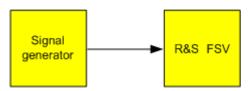


Fig. 2-9: Measurement of the R&S FSV's intrinsic noise power in a 1.23 MHz channel bandwidth.


6. Stabilize the measurement result by increasing the sweep time. In the "Ch Power ACLR" menu, press the "Sweep Time" softkey and enter 1 s. The trace becomes much smoother because of the RMS detector and the channel power measurement display is much more stable.

2.5.3 Measuring Phase Noise

The R&S FSV has an easy-to-use marker function for phase noise measurements. This marker function indicates the phase noise of an RF oscillator at any carrier in dBc in a bandwidth of 1 Hz.

2.5.3.1 Measurement Example – Measuring the Phase Noise of a Signal Generator at a Carrier Offset of 10 kHz

Test setup:

Signal generator settings (e.g. R&S FSV SMU):

Frequency:	100 MHz
Level:	0 dBm

Procedure:

- Set the R&S FSV to its default state by pressing the PRESET key. R&S FSV is in its default state.
- 2. Set the center frequency to 100 MHz and the span to 50 kHz.
 - a) Press the FREQ key and enter "100 MHz".
 - b) Press the SPAN key and enter "50 kHz".
- Set the R&S FSV's reference level to 0 dBm (=signal generator level) by pressing the AMPT key and enter "0 dBm".
- 4. Enable phase noise measurement.
 - a) Press the MKR FUNC key.
 - b) Press the "Phase Noise" softkey.
 - The R&S FSV activates phase noise measurement. Marker 1 (=main marker) and marker 2 (= delta marker) are positioned on the signal maximum. The position of the marker is the reference (level and frequency) for the phase noise measurement. A horizontal line represents the level of the reference point and a vertical line the frequency of the reference point. The dialog box for the delta marker is displayed so that the frequency offset at which the phase noise is to be measured can be entered directly.
- Set the frequency offset to 10 kHz for determining phase noise by entering "10 kHz".
 - The R&S FSV displays the phase noise at a frequency offset of 10 kHz. The magnitude of the phase noise in dBc/Hz is displayed in the delta marker output field at the top right of the screen (Phn2).
- 6. Stabilize the measurement result by activating trace averaging.

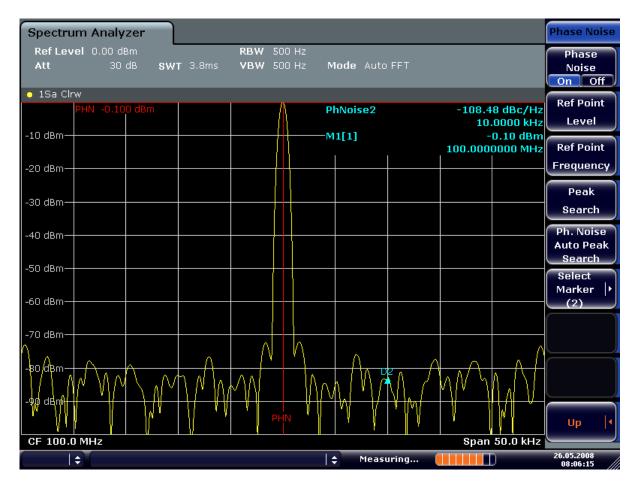


Fig. 2-10: Measuring phase noise with the phase-noise marker function

The frequency offset can be varied by moving the marker with the rotary knob or by entering a new frequency offset as a number.

2.6 Measurements on Modulated Signals

For measurements on AM and FM signals refer to the R&S FSV Quick Start Guide, "Basic Measurements Examples" chapter.

2.6.1 Measuring Channel Power and Adjacent Channel Power

Measuring channel power and adjacent channel power is one of the most important tasks in the field of digital transmission for a signal analyzer with the necessary test routines. While, theoretically, channel power could be measured at highest accuracy with a power meter, its low selectivity means that it is not suitable for measuring adjacent channel power as an absolute value or relative to the transmit channel power. The power in the adjacent channels can only be measured with a selective power meter.

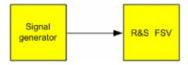
A signal analyzer cannot be classified as a true power meter, because it displays the IF envelope voltage. However, it is calibrated such as to correctly display the power of a

pure sine wave signal irrespective of the selected detector. This calibration cannot be applied for non-sinusoidal signals. Assuming that the digitally modulated signal has a Gaussian amplitude distribution, the signal power within the selected resolution bandwidth can be obtained using correction factors. These correction factors are normally used by the signal analyzer's internal power measurement routines in order to determine the signal power from IF envelope measurements. These factors apply if and only if the assumption of a Gaussian amplitude distribution is correct.

Apart from this common method, the R&S FSV also has a true power detector, i.e. an RMS detector. It correctly displays the power of the test signal within the selected resolution bandwidth irrespective of the amplitude distribution, without additional correction factors being required. The absolute measurement uncertainty of the FSV is < 1.5 dB and a relative measurement uncertainty of < 0.5 dB (each with a confidence level of 95 %).

There are two possible methods for measuring channel and adjacent channel power with a signal analyzer:

- IBW method (Integration Bandwidth Method)
 The signal analyzer measures with a resolution bandwidth that is less than the channel bandwidth and integrates the level values of the trace versus the channel bandwidth. This method is described in chapter 2.5.2.1, "Measurement Example Measuring the Intrinsic Noise of the R&S FSV at 1 GHz in a 1.23 MHz Channel Bandwidth with the Channel Power Function", on page 26.
- Using a channel filterFor a detailed description, refer to the following section.


Measurements using a channel filter

In this case, the signal analyzer makes zero span measurements using an IF filter that corresponds to the channel bandwidth. The power is measured at the output of the IF filter. Until now, this method has not been used for signal analyzers, because channel filters were not available and the resolution bandwidths, optimized for the sweep, did not have a sufficient selectivity. The method was reserved for special receivers optimized for a particular transmission method.

The R&S FSV has test routines for simple channel and adjacent channel power measurements. These routines give quick results without any complex or tedious setting procedures.

2.6.1.1 Measurement Example 1 – ACPR Measurement on an CDMA2000 Signal

Test setup:

Signal generator settings (e.g. R&S FSV SMU):

Frequency:	850 MHz
Level:	0 dBm
Modulation:	CDMA2000

Procedure:

- 1. Set the R&S FSV to its default state by pressing the PRESET key. The R&S FSV is in its default state.
- 2. Press the FREQ key and enter "850 MHz" as the center frequency.
- 3. Press the SPAN key and enter "4 MHz".
- 4. Set the reference level to +10 dBm by pressing the AMPT key and enter "10 dBm".
- 5. Configure the adjacent channel power for the CDMA2000 standard (more precisely: CDMA2000 1X).
 - a) Press the MEAS key.
 - b) Press the "Ch Power ACLR" softkey.
 - c) Press the "CP/ACLR Standard" softkey.
 - d) In the standards list, mark CDMA2000.

The R&S FSV sets the channel configuration according to the 2000 standard with 2 adjacent channels above and 2 below the transmit channel. The spectrum is displayed in the upper part of the screen, the numeric values of the results and the channel configuration in the lower part of the screen. The various channels are represented by vertical lines on the graph.

The frequency span, resolution bandwidth, video bandwidth and detector are selected automatically to give correct results. To obtain stable results – especially in the adjacent channels (30 kHz bandwidth) which are narrow in comparison with the transmission channel bandwidth (1.23 MHz) – the RMS detector is used.

- 6. Set the optimal reference level and RF attenuation for the applied signal level by pressing the "Adjust Ref Level" softkey.
- 7. Activate "Fast ACP" mode to increase the repeatability of results by pressing the "Fast ACP" softkey (for details see below).

The R&S FSV sets the optimal RF attenuation and the reference level based on the transmission channel power to obtain the maximum dynamic range. The figure 2-11 shows the result of the measurement.

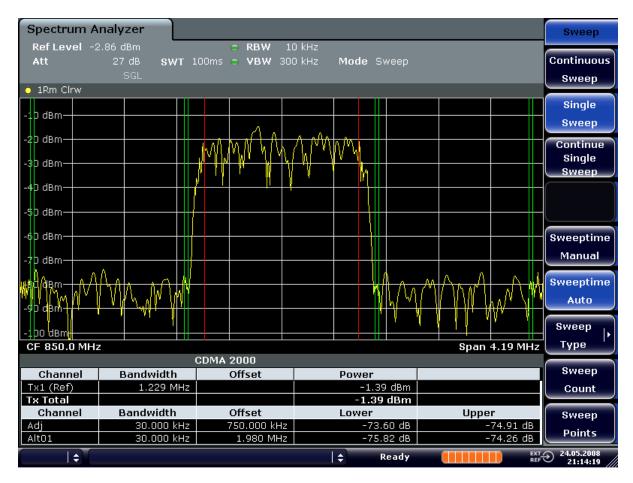
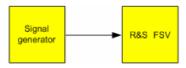



Fig. 2-11: Adjacent channel power measurement on a CDMA2000 1x signal

2.6.1.2 Measurement Example 2 – Measuring Adjacent Channel Power of a W-CDMA Uplink Signal

Test setup:

Signal generator settings (e.g. R&S FSV SMU):

Frequency:	1950 MHz
Level:	4 dBm
Modulation:	3 GPP W-CDMA Reverse Link

Procedure:

- 1. Set the R&S FSV to its default state by pressing the PRESET key. The R&S FSV is in its default state.
- Set the center frequency to 1950 MHz by pressing the FREQ key and entering "1950 MHz".
- 3. Switch on the ACLR measurement for W-CDMA.
 - a) Press the MEAS key.
 - b) Press the "Ch Power ACLR" softkey.
 - c) Press the "CP/ACLR Standard" softkey.
 - d) In the standards list, select W-CDMA 3GPP REV.
 - The R&S FSV sets the channel configuration to the 3GPP W-CDMA standard for mobiles with two adjacent channels above and below the transmit channel. The frequency span, the resolution and video bandwidth and the detector are automatically set to the correct values. The spectrum is displayed in the upper part of the screen and the channel power, the level ratios of the adjacent channel powers and the channel configuration in the lower part of the screen. The individual channels are displayed as vertical lines on the graph.
- 4. Set the optimum reference level and the RF attenuation for the applied signal level.

a) Press the "Adjust Ref Level" softkey.

The R&S FSV sets the optimum RF attenuation and the reference level for the power in the transmission channel to obtain the maximum dynamic range. The following figure shows the result of the measurement.

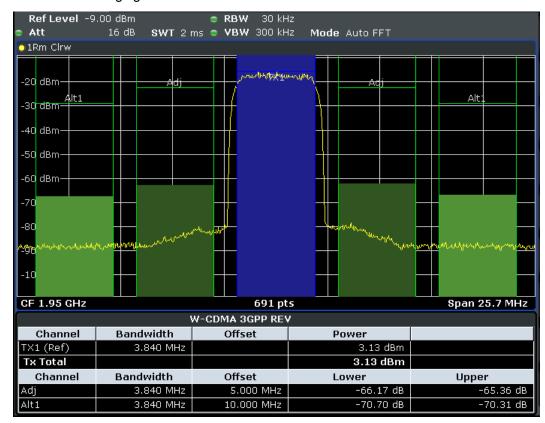


Fig. 2-12: Measuring the relative adjacent channel power on a W-CDMA uplink signal

- 5. Set up the adjacent channel power measurement with the fast ACLR mode.
 - a) Set "Fast ACLR" softkey to "On".
 - b) Press the "Adjust Ref Level" softkey.
 - The R&S FSV measures the power of the individual channels with zero span. A root raised cosine filter with the parameters α = 0.22 and chip rate 3.84 Mcps (= receive filter for 3GPP W-CDMA) is used as channel filter.

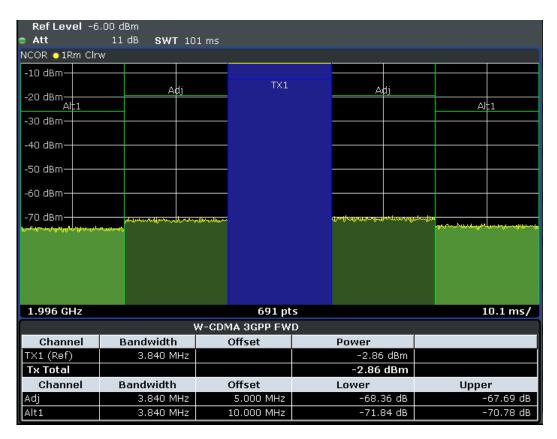


Fig. 2-13: Measuring the adjacent channel power of a W-CDMA signal with the fast ACLR mode

Optimum Level Setting for ACP Measurements on W-CDMA Signals

The dynamic range for ACPR measurements is limited by the thermal noise floor, the phase noise and the intermodulation (spectral regrowth) of the signal analyzer. The power values produced by the R&S FSV due to these factors accumulate linearly. They depend on the applied level at the input mixer. The three factors are shown in the figure below for the adjacent channel (5 MHz carrier offset).

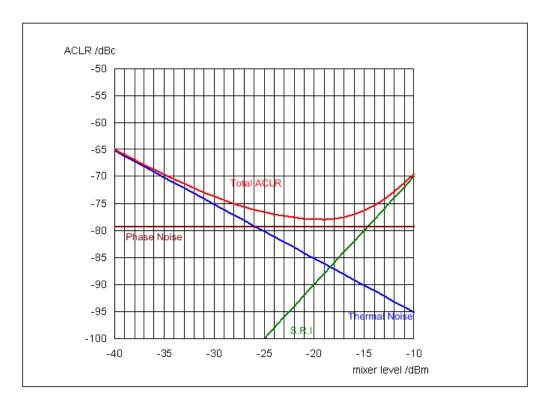


Fig. 2-14: The R&S FSV's dynamic range for adjacent channel power measurements on W-CDMA uplink signals is a function of the mixer level.

The level of the W-CDMA signal at the input mixer is shown on the horizontal axis, i.e. the measured signal level minus the selected RF attenuation. The individual components which contribute to the power in the adjacent channel and the resulting relative level (total ACPR) in the adjacent channel are displayed on the vertical axis. The optimum mixer level is -18 dBm. The relative adjacent channel power (ACPR) at an optimum mixer level is -77 dBc. Since, at a given signal level, the mixer level is set in 5 dB steps with the 5 dB RF attenuator, the optimum 10 dB range spreads from -17 dBm to -22 dBm. In this range, the obtainable dynamic range with noise correction is 77 dB.

To set the attenuation parameter manually, the following method is recommended:

➤ Set the RF attenuation so that the mixer level (= measured channel power – RF attenuation) is between -16 dBm and -22 dBm.

This method is automated with the "Adjust Ref Level" function. Especially in remote control mode, e.g. in production environments, it is best to correctly set the attenuation parameters prior to the measurement, as the time required for automatic setting can be saved.

To measure the R&S FSV's intrinsic dynamic range for W-CDMA adjacent channel power measurements, a filter which suppresses the adjacent channel power is required at the output of the transmitter. A SAW filter with a bandwidth of 4 MHz, for example, can be used.

Measurements on Modulated Signals

2.6.2 Amplitude Distribution Measurements

If modulation types are used that do not have a constant zero span envelope, the transmitter has to handle peak amplitudes that are greater than the average power. This includes all modulation types that involve amplitude modulation –QPSK for example. CDMA transmission modes in particular may have power peaks that are large compared to the average power.

For signals of this kind, the transmitter must provide large reserves for the peak power to prevent signal compression and thus an increase of the bit error rate at the receiver.

The peak power or the crest factor of a signal is therefore an important transmitter design criterion. The crest factor is defined as the peak power/mean power ratio or, logarithmically, as the peak level minus the average level of the signal.

To reduce power consumption and cut costs, transmitters are not designed for the largest power that could ever occur, but for a power that has a specified probability of being exceeded (e.g. 0.01 %).

To measure the amplitude distribution, the R&S FSV has simple measurement functions to determine both the APD = Amplitude Probability Distribution and CCDF = Complementary Cumulative Distribution Function.

In the APD display mode, the probability of occurrence of a certain level is plotted against the level.

In the CCDF display mode, the probability that the mean signal power will be exceeded is shown in percent.

2.6.2.1 Measurement Example – Measuring the APD and CCDF of White Noise Generated by the R&S FSV

- Set the R&S FSV to its default state by pressing the PRESET key.
 The R&S FSV is in its default state.
- 2. Configure the R&S FSV for APD measurement
 - a) Press the AMPT key and enter "-60 dBm".
 The R&S FSV's intrinsic noise is displayed at the top of the screen.
 - b) Press the MEAS key.
 - c) Press the "More" softkey.
 - d) Press the "APD" softkey.
 - The R&S FSV sets the frequency span to 0 Hz and measures the amplitude probability distribution (APD). The number of uncorrelated level measurements used for the measurement is 100000. The mean power and the peak power are displayed in dBm. The crest factor (peak power mean power) is output as well.

Measurements on Modulated Signals

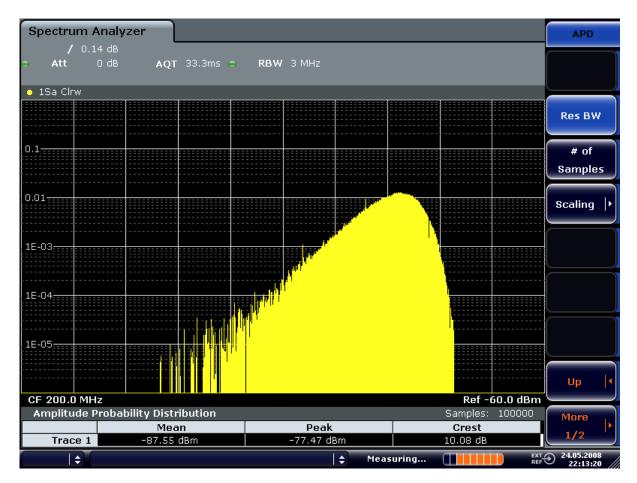


Fig. 2-15: Amplitude probability distribution of white noise

- 3. Switch to the CCDF display mode.
 - a) Press the "UP" key.
 - b) Press the "CCDF" softkey.The CCDF display mode is switched on.

Measurements on Modulated Signals

Fig. 2-16: CCDF of white noise

The CCDF trace indicates the probability that a level will exceed the mean power. The level above the mean power is plotted along the x-axis of the graph. The origin of the axis corresponds to the mean power level. The probability that a level will be exceeded is plotted along the y-axis.

3 Instrument Functions

This chapter describes the analyzer functions and all basic settings functions of the R&S FSV in detail.

For each key the available softkey menus and commands are described. The commands for the optional remote control (if any) are indicated for each softkey. The description is divided into the following topics:

- chapter 3.1, "General Settings, Printout and Instrument Settings", on page 43
 This section provides information on how to prepare measurements and process their results: setting the instrument, managing and retrieving data, returning to manual operation, and printout.
- chapter 3.2, "Measurement Parameters", on page 86
 This section describes how to reset the instrument, to set up specific measurements and to set the measurement parameters. Examples of basic operations are provided in the Quick Start Guide, chapter 5 "Basic Measurement Examples". Advanced examples are described in the Operating Manual on CD-ROM, chapter "Advanced Measurement Examples".
- chapter 3.3, "Measurement Functions", on page 150
 This section informs about how to select and configure the measurement functions.
 Examples of basic operations are provided in the Quick Start Guide, chapter 5 "Basic Measurement Examples". Advanced examples are described in the Operating Manual on CD-ROM, chapter "Advanced Measurement Examples".
- chapter 3.4, "Measurement Modes", on page 305
 This section describes the provided measurement modes, the change of measurement modes and the access to the menus of all active measurement modes.
- chapter 3.6, "Instrument Functions Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)", on page 336
 This section provides information on how to configure and use optional tracking generators (R&S FSVB9/B10).
- chapter 3.7, "Instrument Functions R&S Digital I/Q Interface (Option R&S FSV-B17)", on page 361
 This section provides information on how to configure and use the optional R&S Digital I/Q Interface for digital input and output (R&S FSVB17).
- chapter 3.8, "Instrument Functions External Mixer (Option R&S FSV-B21)", on page 379
- This section provides information on how to configure and use optional external mixers (R&S FSVB21).
- chapter 3.5, "Instrument Functions I/Q Analyzer", on page 310
 This section provides information on using the IQ Analyzer.
- chapter 3.9, "Instrument Functions Power Sensor (R&S FSV-K9)", on page 400
 This section describes how to configure and use an optional Power Sensor with an R&S FSV (option R&S FSV-K9).
- chapter 3.10, "Instrument Functions Spectrogram Measurements", on page 413
 This section describes how to perform Spectrogram measurements with an R&S FSV (option R&S FSV-K14).

A brief introduction on handling the instrument is given in "Basic Operations" in the Quick Start Guide. This also includes the description of the keys for basic operations like switching the instrument on and off or starting a measurement.

The front and the rear view of the instrument together with a table of all available keys and a short description are provided in the R&S FSV Quick Start Guide. "Preparing for Use" informs how to start working with the instrument for the first time.

3.1	General Settings, Printout and Instrument Settings	43
3.1.1	Instrument Setup and Interface Configuration – SETUP Key	43
3.1.2	Saving and Recalling Settings Files – SAVE/RCL Key	67
3.1.3	Manual Operation – Local Menu	81
3.1.4	Measurement Documentation – PRINT Key	82
3.1.5	User-Defined Menu – USER key	84
3.2	Measurement Parameters	86
3.2.1	Initializing the Configuration – PRESET Key	86
3.2.2	Selecting the Frequency and Span – FREQ Key	88
3.2.3	Setting the Frequency Span – SPAN Key	94
3.2.4	Setting the Level Display and Configuring the RF Input – AMPT Key	96
3.2.5	Defining Automatic Settings – AUTO SET Key	104
3.2.6	Setting the Bandwidths and Sweep Time – BW Key	108
3.2.7	Configuring the Sweep Mode – SWEEP Key	117
3.2.8	Setting Traces – TRACE Key	122
3.2.9	Triggering the Sweep – TRIG Key	139
3.3	Measurement Functions	150
3.3.1	Using Markers and Delta Markers – MKR Key	150
3.3.2	Performing Peak Searches with Markers – PEAK SEARCH Key	158
3.3.3	Performing Marker Functions – MKR FUNC Key	158
3.3.4	Changing Settings via Markers – MKR-> Key	172
3.3.5	Power Measurements – MEAS Key	181
3.3.6	Measurement Configuration – MEAS CONFIG Key	285
3.3.7	Using Limit Lines and Display Lines – LINES Key	285
3.3.8	Input/Output Configuration – INPUT/OUTPUT Key	297
3.3.9	Performing Measurements – RUN SINGLE/RUN CONT Keys	305
3.4	Measurement Modes	305
3.4.1	Measurement Mode Selection – MODE Key	305
3.4.2	Measurement Mode Menus – HOME Key	310

3.5	Instrument Functions - I/Q Analyzer	310
3.5.1	Softkeys and Parameters of the I/Q Analyzer Menu	312
3.5.2	Softkeys of the Amplitude Menu in I/Q Analyzer Mode	320
3.5.3	Softkeys of the Trigger Menu in I/Q Analyzer Mode	324
3.5.4	Softkeys of the Marker To Menu in I/Q Analyzer Mode	329
3.5.5	Softkeys of the Marker Function Menu in I/Q Analyzer Mode	329
3.5.6	Working with I/Q Data	333
3.6	Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSB10)	
3.6.1	Softkeys of the Tracking Generator Menu	337
3.6.2	Connecting External Tracking Generators	342
3.6.3	Configuring Tracking Generators	345
3.6.4	Tracking Generator Functions	352
3.6.5	Displayed Information and Errors	360
3.7	Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)	361
3.7.1	Typical Applications for the R&S Digital I/Q Interface	362
3.7.2	Digital Input	364
3.7.3	Digital Output	370
3.7.4	Softkeys and Parameters of the R&S Digital I/Q Interface	371
3.7.5	Interface Status Information	375
3.7.6	Description of the LVDS Connector	378
3.8	Instrument Functions – External Mixer (Option R&S FSV-B21)	379
3.8.1	General Information on External Mixers	380
3.8.2	Softkeys of the External Mixer (Option B21)	386
3.8.3	Introductory Example of Operation	397
3.9	Instrument Functions - Power Sensor (R&S FSV-K9)	400
3.9.1	Using Power Sensors	403
3.9.2	Zeroing the Power Sensor	404
3.9.3	Configuring an External Power Trigger	405
3.9.4	Softkeys of the Power Sensor Menu (R&S FSV-K9)	407
3.9.5	Power Sensor Configuration Dialog	409
3.9.6	Error Messages	413
3.10	Instrument Functions - Spectrogram Measurements	413
.10.1	General Information	414

General Settings, Printout and Instrument Settings

3.10.2	Softkeys of the Spectrogram Menu	417
3.10.3	Configuring Color Settings for Spectrograms	418
3.10.4	ASCII File Export Format for Spectrograms	423

3.1 General Settings, Printout and Instrument Settings

After putting the instrument into operation and becoming familiar with the handling of the instrument (for details see Quick Start Guide) the preparations for measurements can start. In this section the general settings of the instrument, the data management and the processing of measurement results are described. This includes the following topics and keys:

3.1.1	Instrument Setup and Interface Configuration – SETUP Key	43
3.1.1.1	Softkeys of the Setup Menu	44
3.1.1.2	Activating or Deactivating the LXI Class C Functionality	66
3.1.1.3	LXI Class C Functionality	67
3.1.2	Saving and Recalling Settings Files – SAVE/RCL Key	67
3.1.2.1	Softkeys of the SAVE/RCL Menu	68
3.1.2.2	File Selection Dialog Boxes	74
3.1.2.3	Importing and Exporting I/Q Data	76
3.1.3	Manual Operation – Local Menu	81
3.1.4	Measurement Documentation – PRINT Key	82
3.1.5	User-Defined Menu – USER key	84

3.1.1 Instrument Setup and Interface Configuration – SETUP Key

The SETUP key is used to set or display the default settings of the instrument: reference frequency, noise source, level correction values, date, time, LAN interface, firmware update and enabling of options, information about instrument configuration and service support functions. For further details refer also to the Quick Start Guide, chapter 2 "Preparing for Use".

To open the Setup menu

▶ Press the SETUP key.
The "Setup" menu is displayed.

Menu and softkey description

chapter 3.1.1.1, "Softkeys of the Setup Menu", on page 44

General Settings, Printout and Instrument Settings

Further information

chapter 3.1.1.3, "LXI Class C Functionality", on page 67

Tasks

 chapter 3.1.1.2, "Activating or Deactivating the LXI Class C Functionality", on page 66

3.1.1.1 Softkeys of the Setup Menu

The following table shows all softkeys available in the "Setup" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is delivered in the corresponding softkey description.

Reference Int/Ext	46
Handle missing Ext. Ref	46
L Show Error Flag	47
L Auto select Reference	47
Transducer	47
L Active (On/Off)	47
L Edit	48
L Edit Name	48
L Edit Unit	48
L Edit Value	48
L Insert Value	48
L Delete Value	49
L Interpolation Lin/Log	49
L Save Factor	49
L New	49
L Copy to	49
L Delete	49
L Ref Level Adjust (Man/Auto)	50
L Show Directory	50
Alignment	50
L Self Alignment	50
L Show Align Results	50
L Touch Screen Alignment	51
General Setup	51
L Configure Network	51
L Network Address	51
L Computer Name	51
L IP Address	51
L Subnet Mask	52
L DHCP (On/Off)	52
L [X]	52
L Info	
L Password	
L Description	52
L LAN Reset	53

L GPIB	53
L GPIB Address	53
L ID String Factory	53
L ID String User	53
L Compatibility Mode	53
L Mode Default	54
L Mode R&S FSP	
L Mode R&S FSU	
L GPIB Language	
L IF Gain (Norm/Puls)	
L Sweep Repeat (On/Off)	
L Coupling (FSx/HP)	
L REV String Factory	
L REV String User	
L Display Update (On/Off)	
L GPIB Terminator LFEOI/EOI	
L *IDN Format Leg./New	
L I/O Logging (On/Off)	
L Time+Date	
L Configure Monitor	
L Soft Frontpanel	
Display Setup	
L Tool Bar State (On/Off)	
L Screen Title (On/Off)	
L Time+Date (On/Off)	
L Time+Date Format (US/DE)	
L Print Logo (On/Off)	
L Annotation (On/Off)	
L Theme Selection	
L Screen Colors	
L Select Screen Color Set	
L Color (On/Off)	
L Select Object	
L Predefined Colors	
L User Defined Colors	
L Set to Default	
L Print Colors	
L Select Print Color Set	
L Color (On/Off)	
L Display Pwr Save (On/Off)	
System Info	
L Hardware Info	
L Versions+Options.	
L System Messages	
L Clear All Messages	
Firmware Update Option Licenses	
L Install Option	
L Install Option by XML	
Application Setup Recovery	

R&S® FSV

General Settings, Printout and Instrument Settings

Service	64
L Input Source	
L RF	
L Calibration Frequency RF	
L Calibration Frequency MW	
L Reset Password	
L Selftest	
L Selftest Results	66
L Password	
L Service Function	66

Reference Int/Ext

Switches between the internal and external reference signal source. The default setting is internal reference. It is important that the external reference signal is deactivated when switching from external to internal reference to avoid interactions. When an external reference is used, "EXT REF" is displayed in the status bar.

If the reference signal is missing after switching to an external reference, the message "NO REF" is displayed to indicate that no synchronization is performed.

The R&S FSV can use the internal reference source or an external reference source as frequency standard from which all internal oscillators are derived. A 10 MHz crystal oscillator is used as internal reference source. In the external reference setting, all internal oscillators of the R&S FSV are synchronized to the external reference frequency, which can be set from 1–20 MHz in 100 kHz steps. For details on connectors refer to the Quick Start Guide, chapter 1 "Front and Rear Panel".

Note: Optional internal reference sources.

Alternatively to the standard internal reference source, an optional OCXO reference (option R&S FSV-B4), or an ultra high precision reference (option R&S FSV-B14) are available. These options generate a very precise 10 MHz reference signal with an output level of \geq 0 dBm, which can also be used to synchronize other connected devices via the REF OUT connector.

If installed, and if no external signal is used, the OCXO signal is used as an internal reference. If an ultra high precision reference is installed, this reference signal is automatically used as the internal reference.

Remote command:

```
[SENSe:]ROSCillator:SOURce on page 794
SOURce:EXTernal<1|2>:ROSCillator: EXTernal:FREQuency on page 794
```

Handle missing Ext. Ref

If an external reference is selected but none is available, there are different ways the instrument can react. This command opens a submenu to select the preferred method of handling a missing external reference. By default, an error flag is displayed in the status bar of the display.

The submenu contains the following commands:

- "Show Error Flag" on page 47
- "Auto select Reference" on page 47

General Settings, Printout and Instrument Settings

Show Error Flag ← Handle missing Ext. Ref

If this option is selected, an error flag is displayed in the status bar of the display when an external reference is selected but none is available.

Remote command:

```
[SENSe:]ROSCillator:SOURce on page 794
```

Auto select Reference ← Handle missing Ext. Ref

If this option is selected, the instrument automatically switches back to the internal reference if no external reference is available. Note that you must re-activate the external reference if it becomes available again at a later time.

Remote command:

```
[SENSe:]ROSCillator:SOURce on page 794
```

Transducer

Opens the "Select Transducer" dialog box and a submenu to activate or deactivate defined transducer factors, to generate new transducer factors or to edit existing ones.

In the "Select Transducer" dialog box, a transducer factor can be edited, deleted or copied, if selected, using the corresponding softkeys. The default directory in which the transducer factors are saved is displayed (C:\R_S\INSTR\TRD; the extension of transducer factor files is *.TDF). Subdirectories can be added or deleted via the file manager. They are displayed or hidden using the arrow keys or the Show Directory softkey / "Hide Directory" button.

Two different directory views are possible: If the "Show all" option is activated, all transducer factors in the directory are displayed. If the "Show compatible" option is activated, only the compatible transducer factors in the directory are displayed.

The submenu contains the following commands:

- "Active (On/Off)" on page 47
- "Edit" on page 48 >
- "New" on page 49
- "Copy to" on page 49
- "Delete" on page 49
- "Ref Level Adjust (Man/Auto)" on page 50
- "Show Directory" on page 50

Remote command:

```
[SENSe:]CORRection:TRANsducer:SELect on page 792
```

Active (On/Off) ← Transducer

Activates or deactivates the selected transducer factor. A maximum of 8 transducer factors can be activated at the same time. Each time an additional transducer factor is activated, its unit compatibility is checked. If one factor has a different unit than dB, all the other activated factors must have the unit dB.

Remote command:

```
[SENSe:]CORRection:TRANsducer:SELect on page 792
[SENSe:]CORRection:TRANsducer[:STATe] on page 793
```

General Settings, Printout and Instrument Settings

Edit ← **Transducer**

Opens the "Edit Transducer" dialog box with the data of the selected factor, as well as a submenu. During editing, a transducer factor remains stored in the background until the factor is saved using the Save Factor softkey.

A transducer factor can contain up to 625 values. By defining up to 8 adjacent factors, a transducer system with up to 5000 values can be implemented.

The submenu contains the following commands:

- "Edit Name" on page 48
- "Edit Unit" on page 48
- "Edit Value" on page 48
- "Insert Value" on page 48
- "Delete Value" on page 49
- "Interpolation Lin/Log" on page 49
- "Save Factor" on page 49

Remote command:

[SENSe:]CORRection:TRANsducer:COMMent on page 791

Edit Name ← **Edit** ← **Transducer**

Sets the focus on the "Name" field to enter a file name. The extension is added automatically.

Remote command:

[SENSe:]CORRection:TRANsducer:SELect on page 792

Edit Unit ← Edit ← Transducer

Sets the focus on the "Unit" field to select the unit.

Note: If one factor has a different unit than "dB", all the other activated factors must have the unit "dB".

Remote command:

[SENSe:]CORRection:TRANsducer:UNIT on page 793

$\textbf{Edit Value} \leftarrow \textbf{Edit} \leftarrow \textbf{Transducer}$

Sets the focus to enter positions and values as frequency/level pairs. The entered data is also displayed graphically. Using the "Shift x" or "Shift y" button, all entered values can be shifted in x or y direction.

The valid transducer value range is: -200 dB < value < 200 dB

Remote command:

[SENSe:] CORRection: TRANsducer: DATA on page 791

Insert Value ← Edit ← Transducer

Inserts an empty line above the selected reference value to enter a new reference value. When entering a new reference value in the line, the ascending order of frequencies must be taken into consideration, however.

Each transducer factor may contain a maximum of 625 values. The valid transducer value range is: -200 dB < value < 200 dB

General Settings, Printout and Instrument Settings

Delete Value ← **Edit** ← **Transducer**

Deletes the selected reference value (complete line). The reference values that follow move one line up.

Interpolation Lin/Log ← Edit ← Transducer

Sets the scaling of the x-axis to linear or logarithmic.

Remote command:

[SENSe:]CORRection:TRANsducer:SCALing on page 792

Save Factor ← Edit ← Transducer

Saves the changed factor to a file on the internal flash disk. If a transducer factor with the same name already exists, a confirmation query is displayed. If the new factor is active, the new values are immediately applied.

In remote control, the save operation is performed automatically after the definition of the reference values.

New ← Transducer

Opens the "Edit Transducer" dialog box to enter data for a new factor.

This dialog box contains the same contents as the Edit softkey.

The submenu contains the following commands:

- "Edit Name" on page 48
- "Edit Unit" on page 48
- "Edit Value" on page 48
- "Insert Value" on page 48
- "Delete Value" on page 49
- "Interpolation Lin/Log" on page 49
- "Save Factor" on page 49

Copy to ← Transducer

Opens the "Edit Transducer" dialog box to copy the selected factor.

This dialog box contains the same contents as the "Edit" on page 48 softkey.

The submenu contains the following commands:

- "Edit Name" on page 48
- "Edit Unit" on page 48
- "Edit Value" on page 48
- "Insert Value" on page 48
- "Delete Value" on page 49
- "Interpolation Lin/Log" on page 49
- "Save Factor" on page 49

Delete ← **Transducer**

Deletes the selected factor after confirmation.

Remote command:

[SENSe:]CORRection:TRANsducer:DELete on page 792

General Settings, Printout and Instrument Settings

Ref Level Adjust (Man/Auto) ← Transducer

Activates or deactivates the automatic adjustment of the reference level to the selected transducer factor.

If a transducer factor is used (active), the trace is moved by a calculated shift. However, an upward shift reduces the dynamic range for the displayed values.

"Auto" Activates the automatic adjustment. The original dynamic range is

restored by also shifting the reference level by the maximum value of

the transducer factor.

"Man" Deactivates the automatic adjustment. Adjust the reference level via

the "Amplitude" menu.

Remote command:

[SENSe:]CORRection:TRANsducer:ADJust:RLEVel[:STATe] on page 791

Show Directory ← Transducer

Displays the subdirectory of the selected directory.

Alignment

Opens a submenu with the available functions for recording, displaying and activating the data for self alignment.

The correction data and characteristics required for the alignment are determined by comparison of the results at different settings with the known characteristics of the high-precision calibration signal source at 65.83 MHz. The correction data are stored as a file on flash disk and can be displayed using the "Show Align Results" on page 50 softkey.

The submenu contains the following commands:

- "Self Alignment" on page 50
- "Show Align Results" on page 50
- "Touch Screen Alignment" on page 51

Self Alignment ← Alignment

Starts the recording of correction data of the instrument. If the correction data acquisition has failed or if the correction values are deactivated, a corresponding message is displayed in the status field.

As long as the self alignment data is collected the procedure can be cancelled using the "Abort" button.

Remote command:

*CAL? on page 470

Show Align Results ← Alignment

Opens a dialog box that displays the correction data of the alignment:

- date and time of last correction data record
- overall results of correction data record
- list of found correction values according to function/module

The results are classified as follows:

General Settings, Printout and Instrument Settings

PASSED	calibration successful without any restrictions
СНЕСК	deviation of correction value larger than expected, correction could however be performed
FAILED	deviations of correction value too large, no correction was possible. The found correction data are not applicable.

Remote command:

CALibration: RESult? on page 758

Touch Screen Alignment ← Alignment

Displays a touch screen alignment dialog.

When the device is delivered, the touch screen is initially aligned. However, it may become necessary to adjust the alignment later, e.g. after an image update or after exchanging a hard disk. If you notice that touching a specific point on the screen does not achieve the correct response, you may try adjusting the alignment, as well.

Using a finger or any other pointing device, press the 4 markers on the screen.

The touch screen is aligned according to the executed pointing operations.

General Setup

Opens a submenu for all general settings such as IP address and LAN settings, date and time, remote control (optional) and measurement display.

Configure Network ← **General Setup**

Opens the "Network Connections" dialog box to change the LAN settings. For details refer to the Quick Start Guide, chapter 2 "Preparing for Use" and appendix B "LAN Interface".

Network Address ← General Setup

Opens a submenu to configure the internet protocol properties and the computer name.

Computer Name ← Network Address ← General Setup

Opens an edit dialog box to enter the computer name via the keypad. The naming conventions of Windows apply. If too many characters and/or numbers are entered, in the status line, an according message is displayed. For step-by-step instructions refer to the Quick Start Guide, appendix B "LAN Interface".

IP Address ← Network Address ← General Setup

Opens an edit dialog box to enter the IP address via the keypad. The TCP/IP protocol is preinstalled with the IP address 10.0.0.10. If the DHCP server is available ("DHCP On"), the dialog box entry is read-only.

The IP address consists of four number blocks separated by dots. Each block contains 3 numbers in maximum (e.g. 100.100.100.100), but also one or two numbers are allowed in a block (as an example see the preinstalled address). For step-by-step instructions refer to the Quick Start Guide, chapter 2 "Preparing for Use".

General Settings, Printout and Instrument Settings

Subnet Mask ← Network Address ← General Setup

Opens an edit dialog box to enter the subnet mask via the keypad. The TCP/IP protocol is preinstalled with the subnet mask 255.255.255.0. If the DHCP server is available ("DHCP On"), the dialog box entry is read-only.

The subnet mask consists of four number blocks separated by dots. Each block contains 3 numbers in maximum (e.g. 100.100.100.100), but also one or two numbers are allowed in a block (as an example see the preinstalled address). For step-by-step instructions refer to the Quick Start Guide, chapter 2 "Preparing for Use".

DHCP (On/Off) ← Network Address ← General Setup

Switches between DHCP server available (On) or not available (Off). If a DHCP server is available in the network, the IP address and subnet mask of the instrument are obtained automatically from the DHCP server. For further details refer to the Quick Start Guide, chapter 2 "Preparing for Use".

LXI ← General Setup

Opens the LXI submenu containing the following softkeys:

- "Info" on page 52
- "Password" on page 52
- "Description" on page 52
- "LAN Reset" on page 53

LXI functionality is available only for user accounts with administrator rights.

Info ← LXI ← General Setup

Shows the current parameters of LXI class C, including the current version, class and various computer parameters like the computer name or IP address.

While active, the dialog is not updated.

LXI functionality is available only for user accounts with administrator rights.

Remote command:

SYSTem: LXI: INFo? on page 807

Password ← LXI ← General Setup

Shows the currently set password. You can also change the current password using this softkey.

The password is required to change settings via the web browser (e.g. IP parameter). An empty password is not valid, i.e. you must enter a password.

By default, the password is LxiWeblfc.

LXI functionality is available only for user accounts with administrator rights.

Remote command:

SYSTem: LXI: PASSword on page 808

Description ← **LXI** ← **General Setup**

Opens a dialog box to view or change the LXI instrument description. This description is used on some of the LXI web sites.

By default, the description is "Signal Analyzer".

General Settings, Printout and Instrument Settings

LXI functionality is available only for user accounts with administrator rights.

Remote command:

SYSTem: LXI: MDEScription on page 808

LAN Reset ← LXI ← General Setup

Resets the LAN configuration to a state required by the LXI standard. For example, the TCP/IP mode is set to DHCP and Dynamic DNS and ICMP Ping are enabled. In addition, the R&S FSV sets the password and the instrument description to their initial states (see "Password" on page 52 and "Description" on page 52 softkeys).

Only user accounts with administrator rights can reset the LAN configuration.

Remote command:

SYSTem: LXI: LANReset on page 807

GPIB ← **General Setup**

Opens a submenu to set the parameters of the remote control interface.

GPIB Address ← **GPIB** ← **General Setup**

Opens an edit dialog box to enter the GPIB address. Values from 0 to 30 are allowed. The default address is 20.

Remote command:

SYSTem: COMMunicate: GPIB[:SELF]: ADDRess on page 801

ID String Factory ← GPIB ← General Setup

Selects the default response to the *IDN? query.

Remote command:

SYSTem: IDENtify: FACTory on page 805

ID String User ← GPIB ← General Setup

Opens an edit dialog box to enter a user-defined response to the *IDN? query. Max. 36 characters are allowed.

Remote command:

SYSTem: IDENtify[:STRing] on page 806

Compatibility Mode ← GPIB ← General Setup

Sets the R&S FSV in a state compatible to previous R&S devices, enabling the usage of existing external control applications. In particular, the number of measurement points and available bandwidths are adjusted to those of other devices.

Furthermore, some special GPIB settings are available in order to emulate HP models (see chapter 4.2.5, "GPIB Commands of HP Models 856xE, 8566A/B, 8568A/B and 8594E", on page 810):

- "GPIB Language" on page 54
- "IF Gain (Norm/Puls)" on page 55
- "Sweep Repeat (On/Off)" on page 55
- "Coupling (FSx/HP)" on page 55

"Default" Standard R&S FSV operation, see "Mode Default" on page 54
"R&S FSP" Compatible to R&S FSP, see "Mode R&S FSP" on page 54

General Settings, Printout and Instrument Settings

"R&S FSU" Compatible to R&S FSU, see "Mode R&S FSU" on page 54

Remote command:

SYSTem: COMPatible on page 803

Mode Default ← Compatibility Mode ← GPIB ← General Setup

Resets the number of measurement points and available bandwidths to default R&S FSV values.

Remote command:

SYST: COMP DEF, see SYSTem: COMPatible on page 803

$\textbf{Mode R\&S FSP} \leftarrow \textbf{Compatibility Mode} \leftarrow \textbf{GPIB} \leftarrow \textbf{General Setup}$

Sets the number of measurement points and available bandwidths as in R&S FSP devices.

Remote command:

SYST: COMP FSP, see SYSTem: COMPatible on page 803

$\textbf{Mode R\&S FSU} \leftarrow \textbf{Compatibility Mode} \leftarrow \textbf{GPIB} \leftarrow \textbf{General Setup}$

Sets the number of measurement points and available bandwidths as in R&S FSU devices.

Remote command:

SYST: COMP FSU, see SYSTem: COMPatible on page 803

GPIB Language ← Compatibility Mode ← GPIB ← General Setup

Opens a list of selectable remote-control languages:

Language	Comment
SCPI	
71100C	Compatible to 8566A/B
71200C	Compatible to 8566A/B
71209A	Compatible to 8566A/B
8560E	
8561E	
8562E	
8563E	
8564E	
8565E	
8566A	Command sets A and B are available. Command sets A and B differ in the rules regarding the command structure.
8566B	
8568A	Command sets A and B are available. Command sets A and B differ in the rules regarding the command structure.
8568A_DC	Uses DC input coupling by default if supported by the instrument

General Settings, Printout and Instrument Settings

Language	Comment
8568B	Command sets A and B are available. Command sets A and B differ in the rules regarding the command structure.
8568B_DC	Uses DC input coupling by default if supported by the instrument
8591E	Compatible to 8594E
8594E	Command sets A and B are available. Command sets A and B differ in the rules regarding the command structure.

For details on the GPIB languages, see chapter 4.2.5, "GPIB Commands of HP Models 856xE, 8566A/B, 8568A/B and 8594E", on page 810.

Remote command:

SYSTem: LANGuage on page 807

IF Gain (Norm/Puls) ← Compatibility Mode ← GPIB ← General Setup

Configures the internal IF gain settings in HP emulation mode due to the application needs. This setting is only taken into account for resolution bandwidth < 300 kHz.

NORM	Optimized for high dynamic range, overload limit is close to reference level.
PULS	Optimized for pulsed signals, overload limit up to 10 dB above reference level.

This softkey is only available if a HP language is selected via the "GPIB Language" softkey (see "GPIB Language" on page 54).

Remote command:

SYSTem: IFGain: MODE on page 806

Sweep Repeat (On/Off) ← Compatibility Mode ← GPIB ← General Setup

Controls a repeated sweep of the E1 and MKPK HI HP model commands (for details on the commands refer to "GPIB Language" on page 54). If the repeated sweep is OFF, the marker is set without sweeping before.

Note: In single sweep mode, switch off this softkey before you set the marker via the E1 and MKPK HI commands in order to avoid sweeping again.

This softkey is only available if a HP language is selected via the "GPIB Language" softkey (see "GPIB Language" on page 54).

Remote command:

SYSTem: RSW on page 809

Coupling (FSx/HP) \leftarrow Compatibility Mode \leftarrow GPIB \leftarrow General Setup

Controls the default coupling ratios in the HP emulation mode for:

- span and resolution bandwidth (Span/RBW) and
- resolution bandwidth and video bandwidth (RBW/VBW)

For FSP(=FSV), the standard parameter coupling of the instrument is used. As a result, in most cases a shorter sweeptime is used than in case of HP.

General Settings, Printout and Instrument Settings

This softkey is only available if a HP language is selected via the "GPIB Language" softkey (see "GPIB Language" on page 54).

Remote command:

SYSTem: HPCoupling on page 805

REV String Factory ← Compatibility Mode ← GPIB ← General Setup

Selects the default response to the REV? query for the revision number (HP emulation only, see chapter 4.2.5, "GPIB Commands of HP Models 856xE, 8566A/B, 8568A/B and 8594E", on page 810).

Remote command:

SYSTem: REVision: FACTory on page 809

REV String User ← Compatibility Mode ← GPIB ← General Setup

Opens an edit dialog box to enter a user-defined revision number in response to the REV? query (HP emulation only, see chapter 4.2.5, "GPIB Commands of HP Models 856xE, 8566A/B, 8568A/B and 8594E", on page 810). Max. 36 characters are allowed.

Remote command:

SYSTem: REVision [:STRing] on page 809

Display Update (On/Off) ← GPIB ← General Setup

Defines whether the instrument display is switched off when changing from manual operation to remote control. In remote control mode, this softkey is displayed in the local menu.

Remote command:

SYSTem: DISPlay: UPDate on page 803

GPIB Terminator LFEOI/EOI ← GPIB ← General Setup

Changes the GPIB receive terminator.

According to the standard, the terminator in ASCII is <LF> and/or <EOI>. For binary data transfers (e.g. trace data) from the control computer to the instrument, the binary code used for <LF> might be included in the binary data block, and therefore should not be interpreted as a terminator in this particular case. This can be avoided by changing the receive terminator to EOI.

Remote command:

SYSTem: COMMunicate: GPIB[:SELF]: RTERminator on page 801

*IDN Format Leg./New ← GPIB ← General Setup

Defines the response format to the *IDN? remote command (see *IDN? on page 470). This function is intended for re-use of existing control programs together with the R&S FSV.

"Leg" Legacy format, compatible to the R&S FSP/FSU/FSQ family

e.g. Rohde&Schwarz, FSV-7, 100005/007, 1.61

"New" R&S FSV format

e.g. Rohde&Schwarz, FSV-7, 1307.9002K07/100005, 1.61

Remote command:

SYSTem: FORMat: IDENt on page 805

General Settings, Printout and Instrument Settings

I/O Logging (On/Off) ← GPIB ← General Setup

Activates or deactivates the SCPI log function. All remote control commands received by the R&S FSV are recorded in the following log file:

C:\R S\Instr\scpilogging\ScpiLog.txt

Logging the commands may be extremely useful for debug purposes, e.g. in order to find misspelled keywords in control programs.

Remote command:

SYSTem: CLOGging on page 801

Time+Date ← General Setup

Opens an edit dialog box to enter time and date for the internal real time clock. For details refer to the Quick Start Guide, chapter 2 "Preparing for Use".

Remote command:

SYSTem: TIME on page 810 SYSTem: DATE on page 803

Configure Monitor ← **General Setup**

Determines and displays the configuration of a connected external monitor, if available. In the configuration dialog box, you can switch from the internal monitor (laptop icon) to the external monitor (monitor icon), or both (double monitor icon). For external, the R&S FSV display is disabled (turns dark). The screen content formerly displayed on the R&S FSV is displayed on the external screen.

For further details refer to the Quick Start Guide, chapter 2 "Preparing for Use".

Soft Frontpanel ← General Setup

Activates or deactivates the display of the instrument emulation.

deactivated	Only the measurement screen is displayed. This is the setting for working at the R&S FSV.
activated	In addition to the measurement screen, the whole front panel is displayed, i.e. the hardkeys and other hardware controls of the device are simulated on the screen. This is the setting for working at a computer with XP Remote Desktop or at an external monitor.

General Settings, Printout and Instrument Settings

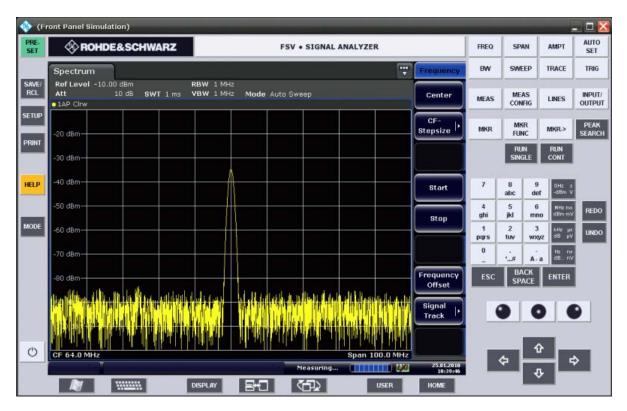


Fig. 3-1: Soft Frontpanel

Alternatively to this softkey, you can use the F6 key.

Remote command:

SYSTem: DISPlay: FPANel on page 803

Display Setup

Opens a submenu to define the display settings.

The following display settings are available:

- "Tool Bar State (On/Off)" on page 58
- "Screen Title (On/Off)" on page 59
- "Time+Date (On/Off)" on page 59
- "Time+Date Format (US/DE)" on page 59
- "Print Logo (On/Off)" on page 59
- "Annotation (On/Off)" on page 59
- "Theme Selection" on page 59
- "Screen Colors" on page 59
- "Print Colors" on page 61
- "Display Pwr Save (On/Off)" on page 62

Tool Bar State (On/Off) ← Display Setup

Displays or removes the tool bar above the diagram for standard file functions.

Remote command:

DISPlay:TBAR[STATe] on page 767

General Settings, Printout and Instrument Settings

Screen Title (On/Off) ← Display Setup

Activates/deactivates the display of a diagram title (if available) and opens an edit dialog box to enter a new title for the active diagram. Max. 20 characters are allowed.

Remote command:

```
DISPlay[:WINDow<n>]:TEXT[:DATA] on page 768
DISPlay[:WINDow<n>]:TIME on page 769
```

Time+Date (On/Off) ← Display Setup

Activates/deactivates the display of date and time beneath the diagram.

Remote command:

```
DISPlay[:WINDow<n>]:TIME on page 769
```

Time+Date Format (US/DE) ← Display Setup

Switches the time and date display on the screen between US and German (DE).

Remote command:

```
DISPlay[:WINDow<n>]:TIME:FORMat on page 769
```

Print Logo (On/Off) ← Display Setup

Activates/deactivates the display of the Rohde & Schwarz company logo in the upper left corner.

Remote command:

```
DISPlay: LOGO on page 766
```

Annotation (On/Off) ← Display Setup

Activates/deactivates the display of the frequency information in the diagram footer. For example to protect confidential data it can be useful to hide the frequency information.

Remote command:

```
DISPlay: ANNotation: FREQuency on page 765
```

Theme Selection ← Display Setup

Opens a selection list of available themes for the screen display. The theme defines the colors used for keys and screen elements, for example. The default theme is "BlueOcean".

Remote command:

```
DISPlay: THEMe: SELect on page 768
```

Screen Colors ← Display Setup

Opens a submenu to configure the screen colors. For details on screen colors refer to the Quick Start Guide, chapter 2 "Preparing for Use".

The submenu contains the following commands:

- "Select Screen Color Set" on page 60
- "Color (On/Off)" on page 60
- "Select Object" on page 60
- "Predefined Colors" on page 60
- "User Defined Colors" on page 60

General Settings, Printout and Instrument Settings

"Set to Default" on page 61

Remote command:

DISPlay: CMAP<item>: HSL on page 765

Select Screen Color Set ← Screen Colors ← Display Setup

Opens the "Select Screen Color Set" dialog box to select default or user defined color settings.

If one of the default settings is selected ("Default Colors 1"/"2"), the default settings for brightness, color tint and color saturation for all display screen elements are restored. The default color schemes provide optimum visibility of all picture elements at an angle of vision from above or below. Default setting is "Default Colors 1".

If "User Defined Colors" is selected, a user-defined color set can be defined. For step-by-step instruction refer to the Quick Start Guide, chapter 2 "Preparing for Use".

Remote command:

DISPlay: CMAP<item>: DEFault on page 765

Color (On/Off) ← Screen Colors ← Display Setup

Switches from color display to black-and-white display and back. The default setting is color display.

Select Object ← Screen Colors ← Display Setup

Opens the "Color Setup" dialog box to select the color settings for a selected object.

The "Selected Object" list is displayed to select the object. For setting the color the predefined colors are displayed.

Remote command:

```
DISPlay: CMAP<item>: HSL on page 765 HCOPy: CMAP<item>: HSL on page 772
```

Predefined Colors ← **Screen Colors** ← **Display Setup**

In the "Color Setup" dialog box, displays the "Predefined Colors" (alternatively to the "Predefined Colors" button). This softkey is only available if, in the "Select Color Set" dialog box, the "User Defined Colors" option is selected or the "Color Setup" dialog box is displayed. For further details refer to the Quick Start Guide, chapter 2 "Preparing for Use".

Remote command:

```
DISPlay:CMAP<item>:PDEFined on page 766 HCOPy:CMAP<item>:PDEFined on page 773
```

User Defined Colors ← **Screen Colors** ← **Display Setup**

In the "Color Setup" dialog box, displays the "User Defined Colors" (alternatively to the "User Defined Colors" button). This softkey is only available if, in the "Select Color Set" dialog box, the "User Defined Colors" option is selected or the "Color Setup" dialog box is displayed. For further details refer to the Quick Start Guide, chapter 2 "Preparing for Use".

Remote command:

```
DISPlay: CMAP<item>: HSL on page 765 HCOPy: CMAP<item>: HSL on page 772
```

General Settings, Printout and Instrument Settings

Set to Default ← Screen Colors ← Display Setup

Opens the "Set to Default" dialog box to select one of the factory default color settings.

Remote command:

DISPlay: CMAP<item>: DEFault on page 765 HCOPy: CMAP<item>: DEFault on page 772

Print Colors ← **Display Setup**

Opens a submenu to select the colors for the printout. To facilitate color selection, the selected color combination is displayed when the menu is entered. The previous colors are restored when the menu is exited. For details on screen colors refer to the Quick Start Guide, chapter 2 "Preparing for Use".

The submenu contains the following commands:

- "Select Print Color Set" on page 61
- "Color (On/Off)" on page 61
- "Select Object" on page 84
- "Predefined Colors" on page 84
- "User Defined Colors" on page 84
- "Set to Default" on page 84

Remote command:

HCOPy:CMAP<item>:HSL on page 772

Select Print Color Set ← Print Colors ← Display Setup

Opens the "Select Print Color Set" dialog box to select the color settings for printout.

Screen Colors (Print)	Selects the current screen colors for the printout. The background is always printed in white and the grid in black.
Screen Colors (Hardcopy)	Selects the current screen colors without any changes for a hardcopy. The output format is set via the "Device Setup" on page 83 softkey in the "Print" menu.
Optimized Colors	Selects an optimized color setting for the printout to improve the visibility of the colors (default setting). Trace 1 is blue, trace 2 black, trace 3 green, and the markers are turquoise. The background is always printed in white and the grid in black.
User Defined Colors	Enables the softkeys to define colors for the printout.

Remote command:

HCOPy:CMAP<item>:DEFault on page 772

Color (On/Off) ← Print Colors ← Display Setup

Switches from color printout to black-and-white printout and back. All colored areas are printed in white and all colored lines in black. This improves the contrast. The default setting is color printout, provided that the selected printer can produce color printouts.

Remote command:

HCOPy:DEVice:COLor on page 774

General Settings, Printout and Instrument Settings

Display Pwr Save (On/Off) ← Display Setup

Switches the power-save mode for the display (On/Off) and opens an edit dialog box to enter the time for the power-save function to respond. After the elapse of this time the display is completely switched off, i.e. including backlighting. This mode is recommended when the instrument is exclusively operated in remote control.

For details on the power-save mode for the display refer to the Quick Start Guide, chapter 2 "Preparing for Use".

Remote command:

```
DISPlay:PSAVe[:STATe] on page 767
DISPlay:PSAVe:HOLDoff on page 767
```

System Info

Opens a submenu to display detailed information on module data, device statistics and system messages.

The submenu contains the following commands:

- "Hardware Info" on page 62
- "Versions+Options" on page 62
- "System Messages" on page 63
- "Clear All Messages" on page 63

Hardware Info ← System Info

Opens a dialog box that displays hardware information, e.g. on the frontend and motherboard. Every listed component is described by its serial number, order number, model information, hardware code, and hardware revision.

Remote command:

DIAGnostic<n>:SERVice:HWINfo? on page 760

Versions+Options ← System Info

Opens a dialog box that displays a list of hardware and firmware information, including:

Label	Description
Device ID	Unique ID of the device
Instrument Firmware	Installed firmware version
BIOS	Installed BIOS version
CPLD	CPLD version
MB-FPGA	Motherboard FPGA version
Data Sheet Version	Data sheet version of the basic device
<option></option>	Installed hardware and firmware options

General Settings, Printout and Instrument Settings

For details on options refer to the Quick Start Guide, chapter 2 "Checking the Supplied Items".

Remote command:

```
*IDN? on page 470
*OPT? on page 471
```

SYSTem:DEVice:ID?/SYSTem:DID? on page 803 SYSTem:DEVice:ID?/SYSTem:DID? on page 803

System Messages ← System Info

Opens the "System Messages" dialog box that displays the generated system messages in the order of their occurrence. The most recent messages are placed at the top of the list. Messages that have occurred since the last display of system messages menu are marked with an asterisk '*'. The following information is available:

No	device-specific error code	
Message	brief description of the message	
Component	hardware messages: name of the affected module	
	software messages: name of the affected software	
Date/Time	date and time of the occurrence of the message	

If the number of error messages exceeds the capacity of the error buffer, "Message buffer overflow" is displayed. To delete messages see "Clear All Messages" on page 63 soft-key.

Remote command:

SYSTem: ERRor: LIST? on page 804

Clear All Messages ← System Info

Deletes all system messages. The softkey is only available if the "System Messages" dialog box is displayed.

Remote command:

SYSTem: ERRor: CLEar: ALL on page 804

Firmware Update

Opens the "Firmware Update" dialog box.

Enter the name of or browse for the firmware installation file and press the "Execute" button. For details on installation refer to the Quick Start Guide, chapter 3 "Firmware Update and Installation of Firmware Options".

Only user accounts with administrator rights can perform a firmware update.

Remote command:

SYSTem:FIRMware:UPDate on page 804

Option Licenses

Opens a submenu to install options. For details on options refer to the Quick Start Guide, chapter 3 "Firmware Update and Installation of Firmware Options".

The submenu contains the following commands:

General Settings, Printout and Instrument Settings

- "Install Option" on page 64
- "Install Option by XML" on page 64

Only user accounts with administrator rights are able to install options.

Install Option ← Option Licenses

Opens an edit dialog box to enter the license key for the option that you want to install.

If an option is about to expire, a message box is displayed to inform you. You can then use this softkey to enter a new license key.

If an option has already expired, a message box appears for you to confirm. In this case, all instrument functions are unavailable (including remote control) until the R&S FSV is rebooted. You must then use the "Install Option" softkey to enter the new license key.

For more information about the option in question refer to the System Info softkey in the "Setup" menu.

Only user accounts with administrator rights are able to install options.

Install Option by XML ← Option Licenses

Opens an edit dialog to install an additional option to the R&S FSV using an XML file. Enter or browse for the name of an XML file on the instrument that contains the option key and press "Select".

Only user accounts with administrator rights are able to install options.

Application Setup Recovery

Controls instrument behavior when switching between measurement applications, e.g. from "Spectrum" to "Analog Demod" and back.

If this softkey is activated, the current instrument settings are stored when you switch to a different application. When you switch back to the previous application, the corresponding instrument settings are restored. Thus, the settings of the individual applications are independent of each other.

If the softkey is deactivated (default), only a few parameters of the current instrument setting are passed between applications (e.g. center frequency, level settings).

Note that this setting is not deactivated during a preset operation, i.e. you must deactivate it manually, if necessary.

Remote command:

SYSTem: APPLication: SRECovery[:STATe] on page 800

Service

Opens a submenu that contains additional functions for maintenance and/or troubleshooting.

NOTICE! Risk of incorrect operation due to Service functions. The service functions are not necessary for normal measurement operation. However, incorrect use can affect correct operation and/or data integrity of the R&S FSV.

Therefore, many of the functions can only be used after entering a password. They are described in the instrument service manual.

The submenu contains the following commands:

- "Input Source" on page 65
- "Reset Password" on page 65

General Settings, Printout and Instrument Settings

- "Selftest" on page 65
- "Selftest Results" on page 66
- "Password" on page 66
- "Service Function" on page 66

Only user accounts with administrator rights are able to use service functions.

Input Source ← Service

Opens a submenu to select the input source for measurement.

The submenu contains the following options:

- "RF" on page 65
- "Calibration Frequency RF" on page 65
- "Calibration Frequency MW" on page 65

RF ← Input Source ← Service

Switches the input of the R&S FSV to the RF input connector (normal position). This is the default setting.

Remote command:

DIAGnostic<n>:SERVice:INPut[:SELect] on page 761

Calibration Frequency RF ← Input Source ← Service

Opens an edit dialog box to set the generator frequency for the internal calibration.

Remote command:

DIAGnostic<n>:SERVice:INPut:PULSed:CFRequency on page 760

Calibration Frequency MW ← Input Source ← Service

Opens an edit dialog box to set the calibration frequency for frequencies greater than 7 GHz (for R&S FSV 13 and 30 only).

Remote command:

DIAGnostic<n>:SERVice:INPut:PULSed:MCFRequency on page 761

Reset Password ← Service

Deactivates all set passwords.

Remote command:

SYSTem: PASSword: RESet on page 808

Selftest ← Service

Initiates the self test of the instrument modules to identify a defective module in case of failure. All modules are checked consecutively and the test result is displayed.

Remote command:

*TST? on page 473

General Settings, Printout and Instrument Settings

Selftest Results ← Service

Opens the "Selftest Result" dialog box that contains the test results. In case of failure a short description of the failed test, the defective module, the associated value range and the corresponding test results are indicated.

Remote command:

DIAGnostic<n>:SERVice:STESt:RESult? on page 763

Password ← Service

Opens an edit dialog box to enter the password. This ensures that the service functions are only used by authorized personnel.

Remote command:

SYSTem: PASSword[:CENable] on page 808

Service Function ← Service

Opens the "Service Function" dialog box to start special service functions. For further information refer to the service manual.


Remote command:

DIAGnostic<n>:SERVice:SFUNction on page 762

3.1.1.2 Activating or Deactivating the LXI Class C Functionality


As of firmware version 1.50, only user accounts with administrator rights are able to use LXI functionality.

1. In the Windows XP "Start" menu, select the "LXI" entry and press the ENTER key. An LXI configuration dialog box is displayed.

- 2. Press the "Rescan" button.
- Press the "Save" button.The instrument reboots and after the reboot LXI is active.
- 4. To deactivate the LXI Class C functionality perform step 1 and 2 again. An LXI configuration dialog box is displayed.

General Settings, Printout and Instrument Settings

5. Press the "Turn LXI Off" button.

3.1.1.3 LXI Class C Functionality

If the LXI Class C functionality is installed and enabled (default state is off; see chapter 3.1.1.1, "Softkeys of the Setup Menu", on page 44), the instrument can be accessed via any web browser (e.g. the Microsoft Internet Explorer) to perform the following tasks:

- · modifying network configurations
- modifying device configurations
- monitoring connections from the device to other devices

To change settings, in the web browser, open the "http://<instrument-hostname>" or "http://<instrument-ip-address>" page. The password to change LAN configurations is *LxiWeb*.

As of firmware version 1.50, only user accounts with administrator rights are able to use LXI functionality.

3.1.2 Saving and Recalling Settings Files – SAVE/RCL Key

The SAVE/RCL key is used to store and load instrument settings and measurement results, and to manage stored files.

The "Save/Recall" menu includes functions for storing instrument settings such as instrument configurations (measurement/display settings, etc) and measurement results on permanent storage media, or to load stored data back onto the instrument. The data is stored on the internal flash disk or, if selected, on a memory stick or network drive.

Functions for management of storage media include functions for listing, copying, deleting and renaming files.

To open the Save/Recall menu

▶ Press the SAVE/RCL key.

The "Save/Recall" menu is displayed.

General Settings, Printout and Instrument Settings

Menu and softkey description

chapter 3.1.2.1, "Softkeys of the SAVE/RCL Menu", on page 68

Further information

- chapter 3.1.2.2, "File Selection Dialog Boxes", on page 74
- chapter 3.1.2.3, "Importing and Exporting I/Q Data", on page 76

3.1.2.1 Softkeys of the SAVE/RCL Menu

The following table shows all softkeys available in the "Save/Recall" menu.

Save	69
L Save File / Recall File	69
L Select Path	69
L Select File	69
L Edit File Name	69
L Edit Comment	69
L Select Items	69
L Select Items	69
L Enable all Items	70
L Disable all Items	70
L Delete File	70
Recall	
Startup Recall	70
L Startup Recall (On/Off)	71
L Select Dataset	
ScreenShot	
Export	71
L ASCII Trace Export	71
L Decim Sep	71
L IQ Export	
Import	
L IQ Import	72
File Manager	72
L Edit Path	72
L New Folder	72
L Copy	73
L Rename	
L Cut.	73
L Paste	73
L Delete	
L Sort Mode	73
L Name	73
L Date	
L Extension	
L Size	
L File Lists (1/2)	
L Current File List (1/2)	

General Settings, Printout and Instrument Settings

L	Network Drive	.74
	L Map Network Drive	
	L Disconnect Network Drive	

Save

Opens the "Save" dialog box to define which measurement settings and results to store. To navigate in the dialog box and define/enter data, use the corresponding softkeys.

For details see also chapter 3.1.2.2, "File Selection Dialog Boxes", on page 74.

Save File / Recall File ← Save

Saves the settings file with the defined file name ("Save" dialog box), or recalls the selected settings file ("Recall" dialog box).

You can assign stored settings files to user-definable softkeys in the "User" menu for easy access, see chapter 3.1.5, "User-Defined Menu – USER key", on page 84.

Remote command:

```
MMEMory:STORe<n>:STATe on page 788
MMEMory:STORe<n>:STATe:NEXT on page 788
MMEMory:LOAD:STATe on page 783
```

Select Path ← Save

Opens the directory list to select the drive and folder for the settings file to be stored or loaded. The default path is $C: \r s\$

Select File ← Save

Sets the focus on the "Files" list.

Remote command:

MMEMory: CATalog? on page 778

Edit File Name ← Save

Sets the focus on the "File Name" field.

Edit Comment ← Save

Sets the focus on the "Comment" field to enter a comment for the settings file. Max. 60 characters are allowed.

Select Items ← Save

Displays the submenu for selecting the items to be stored or loaded.

Select Items ← Select Items ← Save

Sets the focus on the items list. Which items are available depends on the installed options.

In the "Save" dialog box, all items that can be saved are displayed.

General Settings, Printout and Instrument Settings

In the "Recall" dialog box, the items saved in the selected file are displayed.

Remote command:

```
MMEMory:Select[:ITEM]:HWSettings on page 786
MMEMory:Select[:ITEM]:LINes:ALL on page 787
MMEMory:Select[:ITEM]:TRACe[:ACTive] on page 788
MMEMory:Select[:ITEM]:TRANsducer:ALL on page 788
```

Enable all Items ← Select Items ← Save

Selects all items for saving or loading.

Remote command:

```
MMEMory: SELect [:ITEM]: ALL on page 786
```

Disable all Items ← Select Items ← Save

Selects none of the items for saving or loading.

Remote command:

```
MMEMory: SELect [:ITEM]: NONE on page 787
```

Delete File ← Save

Deletes the selected settings file.

Remote command:

```
MMEMory: CLEar: STATe 1, on page 780
```

Recall

Opens the "Recall" dialog box to load a settings file. To navigate in the dialog box, use the corresponding softkeys.

For details see also chapter 3.1.2.2, "File Selection Dialog Boxes", on page 74.

Path	Directory from which the settings file is loaded. The default path for user settings files is C:\r_s\instr\user
Files	List of stored settings files
File Name	Name of settings file
Comment	Comment of the settings file
[Items]	Items saved in the settings file

Note: After you use the "Recall" function, the history of previous actions is deleted, i.e. any actions performed previously cannot be undone or redone using the UNDO/REDO keys.

Remote command:

```
MMEMory: LOAD: STATe on page 783
```

Startup Recall

Opens a submenu to activate or deactivate and set up the startup recall function.

General Settings, Printout and Instrument Settings

Startup Recall (On/Off) ← Startup Recall

Activates or deactivates the startup recall function. If activated, the settings stored in the file selected via the Select Dataset softkey are loaded when booting or for preset. If deactivated, the default settings are loaded.

Remote command:

MMEMory: LOAD: AUTO on page 782

Select Dataset ← Startup Recall

Opens the "Startup Recall" dialog box to select the settings file for the startup recall function.

ScreenShot

Saves the current measurement screen as a file (screenshot). This function can also be performed via the "Screenshot" icon in the toolbar, if available.

Remote command:

HCOPy[:IMMediate<1|2>] on page 775

Export

Opens a submenu to configure data export.

ASCII Trace Export ← **Export**

Opens the "ASCII Trace Export Name" dialog box and saves the active trace in ASCII format to the specified file and directory.

The file consists of the header containing important scaling parameters and a data section containing the trace data. For details on an ASCII file see chapter 3.2.8.7, "ASCII File Export Format", on page 138.

This format can be processed by spreadsheet calculation programs, e.g. MS-Excel. It is necessary to define ';' as a separator for the data import. Different language versions of evaluation programs may require a different handling of the decimal point. It is therefore possible to select between separators '.' (decimal point) and ',' (comma) using the "Decim Sep" softkey (see "Decim Sep" on page 71).

If the spectrogram display is selected when you perform this function, the entire histogram buffer with all frames is exported to a file. The data corresponding to a particular frame begins with information about the frame number and the time that frame was recorded. For large history buffers the export operation may take some time. For details see chapter 3.10.4, "ASCII File Export Format for Spectrograms", on page 423.

Remote command:

```
FORMat: DEXPort: DSEParator on page 609
MMEMory: STORe<n>: TRACe on page 624
MMEMory: STORe: SGRam on page 623
```

Decim Sep ← **Export**

Selects the decimal separator with floating-point numerals for the ASCII Trace export to support evaluation programs (e.g. MS-Excel) in different languages. The values '.' (decimal point) and ',' (comma) can be set.

Remote command:

FORMat: DEXPort: DSEParator on page 609

General Settings, Printout and Instrument Settings

IQ Export ← Export

Opens a file selection dialog box to select an export file to which the IQ data will be stored. This function is only available in single sweep mode.

For details see chapter 3.1.2.3, "Importing and Exporting I/Q Data", on page 76.

Remote command:

```
MMEMory:STORe:IQ:STATe on page 622
MMEMory:STORe:IQ:COMM on page 623
```

Import

Provides functions to import data.

IQ Import ← Import

Opens a file selection dialog box to select an import file that contains IQ data. This function is only available in single sweep mode.

For details see chapter 3.1.2.3, "Importing and Exporting I/Q Data", on page 76.

Remote command:

```
MMEMory:LOAD:IQ:STATe on page 622
```

File Manager

Opens the "File Manager" dialog box and a submenu to manage mass storage media and files. In the upper left corner, the current drive is displayed. Below the folders and subfolders of the current directory are displayed.

For details on navigation see also chapter 3.1.2.2, "File Selection Dialog Boxes", on page 74.

The following tasks can be performed:

- · copying files from flash disk to other media
- copying files into another directory
- renaming and deleting files

Edit Path ← **File Manager**

Opens the directory list to select the drive and folder for the file to be stored or loaded. The default path is C:\r s\instr\user.

Remote command:

```
MMEMory: MSIS on page 784
MMEMory: CDIRectory on page 780
```

New Folder ← **File Manager**

Creates a new folder and opens an edit dialog box to enter name and path (absolute or relative to the current directory) of the new folder.

Remote command:

MMEMory: MDIRectory on page 783

General Settings, Printout and Instrument Settings

Copy ← **File Manager**

Copies the selected item to the clipboard. The item can be copied later using the Paste softkey.

Remote command:

MMEMory: COPY on page 781

Rename ← File Manager

Opens an edit dialog box to enter a new file or folder name.

Remote command:

MMEMory: MOVE on page 784

Cut ← File Manager

Copies the selected file to the clipboard. If the file is later copied to a different directory using the Paste softkey, it is deleted in the current directory.

Paste ← File Manager

Copies a file from the clipboard to the currently selected directory.

Delete ← File Manager

Deletes the selected item after confirmation.

Remote command:

MMEMory: DELete on page 782
MMEMory: RDIRectory on page 786

Sort Mode ← File Manager

Opens a submenu to select the sorting mode for the displayed files. The entry for the next higher directory level ("..") and the folders are always located at the top of the list.

Name ← Sort Mode ← File Manager

Sorts the displayed files in alphabetical order of the file names.

Date ← **Sort Mode** ← **File Manager**

Sorts the displayed files in respect to the date.

Extension ← **Sort Mode** ← **File Manager**

Sorts the displayed files in respect to the extension.

Size ← Sort Mode ← File Manager

Sorts the displayed files in respect to the size.

File Lists (1/2) ← File Manager

Splits the screen to copy files from one directory to the other. The focus between the two panes is switched using the FIELD RIGHT and FIELD LEFT keys.

Current File List (1/2) ← File Manager

Changes the focus to the selected file list.

General Settings, Printout and Instrument Settings

Network Drive ← File Manager

Opens the "Map Network Drive" dialog box and submenu.

Map Network Drive ← **Network Drive** ← **File Manager**

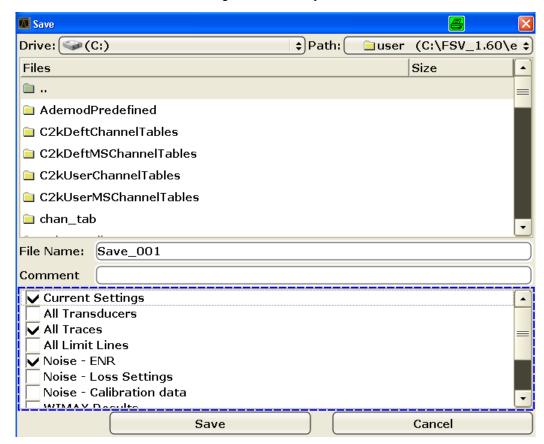
Sets the focus on the "Drive" list.

Remote command:

MMEMory: NETWork: MAP on page 785

MMEMory: NETWork: USEDdrives? on page 786
MMEMory: NETWork: UNUSeddrives? on page 785

Disconnect Network Drive ← **Network Drive** ← **File Manager**


Opens the "Disconnect Network Drive" dialog box. In the "Drive" list, select the drive you want to disconnect and confirm with "OK".

Remote command:

MMEMory: NETWork: DISConnect on page 785

3.1.2.2 File Selection Dialog Boxes

The "Save" and "Recall" dialog boxes are used to save and recall settings and data files. The "File Manager" allows you to copy, delete or rename data files on the R&S FSV. These and other file selection dialog boxes are very similar.

General Settings, Printout and Instrument Settings

Drive

The data is stored on the internal flash disk or, if selected, on a memory stick or network drive. The mass media are assigned to the volume names as follows:

Drive	Designation Comment	
С	operating system, firmware and stored instrument settings	for customer data
Α	USB floppy drive	if connected
D	USB memory stick or USB CD-ROM	if connected
EZ	additional USB mass storage devices or mounted LAN volumes	if connected

Path

The current path contains the drive and the complete file path to the currently selected folder.

To set the focus on the "Path" list, press the Select Path/ Edit Path softkey.

Files

This list contains the files and folders contained in the currently selected path.

To set the focus on the "Files" list, press the Select File softkey.

File Name

The "File Name" field contains the name of the data file without the path or extension.

To set the focus on "File Name" field, press the Edit File Name softkey.

In the "Save" dialog box, the field already contains a suggestion for a new name: the file name used in the last saving process is used, extended by an index. For example, if the name last used was test_004, the new name test_005 is suggested, but only if this name is not in use. You can change the suggested name as you like.

By default, the name of a settings file consists of a base name followed by an underscore and three numbers, e.g. limit_lines_005. In the example, the base name is limit_lines. The base name can contain characters, numbers and underscores. The file extension dfl is added automatically.

Comment

The comment is optional and may contain a description for the data file.

To set the focus on the "Comment" field, press the Edit Comment softkey.

Items

When saving data files you can select which data and settings are stored; when recalling such files, this field indicates which items were included during storage. In the "File Manager", this field is not available.

General Settings, Printout and Instrument Settings

Which items are available depends on the installed options. The following items may be included:

Item	Description
Current Settings	Current measurement settings
All Transducers	Transducer factors for all active transducers.
All Traces	All active traces; R&S FSV-K30 only: also calibration data
All Limit Lines	All limit lines (Note: information on which limit lines are active is stored with the "Current Settings")
Spectrograms	Spectrogram trace data (only available if spectrogram display is currently active, R&S FSV-K14 only)
Noise - ENR	Data in "ENR Settings" dialog box (R&S FSV-K30 only)
Noise - Loss Settings	Data in "Loss Settings" dialog box (R&S FSV-K30 only)
Noise - Calibration data	Results from calibration measurement (R&S FSV-K30 only)
K40 Results	All current phase noise trace results (R&S FSV-K40 only)
WLAN Results	Stores the trace and table results for WLAN measurements(R&S FSV-K91 only)
WLAN IQ Data	Stores the measured I/Q data (R&S FSV-K91 only)
WLAN User Limits	Stores any limit values modified in the table of results for WLAN measurements (R&S FSV-K91 only)
WiMAX Results	Stores the trace and table results for WiMAX measurements(R&S FSV-K93 only)

3.1.2.3 Importing and Exporting I/Q Data

In addition to instrument settings and displayed traces, also captured I/Q data can be exported to a file on the R&S FSV. The stored data can then be imported again at a later time, also by different applications, for further processing. For example, you can capture I/Q data using the I/Q Analyzer (see chapter 3.5, "Instrument Functions - I/Q Analyzer", on page 310) and then perform vector signal analysis on that data using the R&S FSV-K70 option, if available.

As opposed to storing trace data, which may be averaged or restricted to peak values, I/Q data is stored as it was captured, without further processing. The data is stored as complex values in 32-bit floating-point format. The I/Q data is stored in a packed format with the file extension .iq.tar.

The IQ Import and IQ Export functions are available from the "Save/Recall" menu, which is displayed when you press the SAVE/RCL key on the front panel.

They can also be performed remotely using the following commands:

MMEMory:STORe:IQ:STATe on page 622
MMEMory:LOAD:IQ:STATe on page 622

General Settings, Printout and Instrument Settings

iq-tar File Format Specification

I/Q data is stored in a compressed format with the file extension .iq.tar.

An .iq.tar file contains I/Q data in binary format together with meta information that describes the nature and the source of data, e.g. the sample rate. The objective of the .iq.tar file format is to separate I/Q data from the meta information while still having both inside one file. In addition, the file format allows you to preview the I/Q data in a web browser, and allows you to include user-specific data.

Contained files

An iq-tar file must contain the following files:

- I/Q parameter XML file, e.g. xyz.xml
 Contains meta information about the I/Q data (e.g. sample rate). The filename can
 - be defined freely, but there must be only one single I/Q parameter XML file inside an iq-tar file.
- I/Q data binary file, e.g. xyz.complex.float32
 Contains the binary I/Q data of all channels. There must be only one single I/Q data binary file inside an iq-tar file.

Optionally, an iq-tar file can contain the following file:

I/Q preview XSLT file, e.g. open_IqTar_xml_file_in_web_browser.xslt
 Contains a stylesheet to display the I/Q parameter XML file and a preview of the I/Q data in a web browser.

I/Q Parameter XML File Specification

The content of the I/Q parameter XML file must comply with the XML schema RsIqTar.xsd available at: http://www.rohde-schwarz.com/file/RsIqTar.xsd.

In particular, the order of the XML elements must be respected, i.e. iq-tar uses an "ordered XML schema". For your own implementation of the iq-tar file format make sure to validate your XML file against the given schema.

The following example shows an I/Q parameter XML file. The XML elements and attributes are explained in the following sections.

Sample I/Q parameter XML file: xyz.xml

General Settings, Printout and Instrument Settings

```
<Format>complex</Format>
  <DataType>float32</DataType>
  <ScalingFactor unit="V">1</ScalingFactor>
  <NumberOfChannels>1</NumberOfChannels>
<DataFilename>xyz.complex.float32</DataFilename>
  <UserData>
    <UserData>
    <UserData>
    <PreviewData>...</PreviewData>
</RS_IQ_TAR_FileFormat>
```

Element	Description	
RS_IQ_TAR_FileFormat	The root element of the XML file. It must contain the attribute fileFormatVersion that contains the number of the file format definition. Currently, fileFormatVersion "2" is used.	
Name	Optional: describes the device or application that created the file.	
Comment	Optional: contains text that further describes the contents of the file.	
DateTime	Contains the date and time of the creation of the file. Its type is xs:dateTime (see RsIqTar.xsd).	
Samples	Contains the number of samples of the I/Q data. For multi-channel signals all channels have the same number of samples. One sample can be: • A complex number represented as a pair of I and Q values • A complex number represented as a pair of magnitude and phase values • A real number represented as a single real value See also Format element.	
Clock	Contains the clock frequency in Hz, i.e. the sample rate of the I/Q data. A signal generator typically outputs the I/Q data at a rate that equals the clock frequency. If the I/Q data was captured with a signal analyzer, the signal analyzer used the clock frequency as the sample rate. The attribute unit must be set to "Hz".	
Format	Specifies how the binary data is saved in the I/Q data binary file (see DataFilename element). Every sample must be in the same format. The format can be one of the following: Complex: Complex number in cartesian format, i.e. I and Q values interleaved. I and Q are unitless Real: Real number (unitless) Polar: Complex number in polar format, i.e. magnitude (unitless) and phase (rad) values interleaved. Requires DataType = float32 or float64	
DataType	Specifies the binary format used for samples in the I/Q data binary file (see DataFilename element and "I/Q Data Binary File" on page 80). The following data types are allowed: int8: 8 bit signed integer data int16: 16 bit signed integer data int32: 32 bit signed integer data float32: 32 bit floating point data (IEEE 754) float64: 64 bit floating point data (IEEE 754)	

General Settings, Printout and Instrument Settings

Element	Description
ScalingFactor	Optional: describes how the binary data can be transformed into values in the unit Volt. The binary I/Q data itself has no unit. To get an I/Q sample in the unit Volt the saved samples have to be multiplied by the value of the ScalingFactor. For polar data only the magnitude value has to be multiplied. For multi-channel signals the ScalingFactor must be applied to all channels.
	The ScalingFactor must be > 0. If the ScalingFactor element is not defined, a value of 1 V is assumed.
NumberOfChannels	Optional: specifies the number of channels, e.g. of a MIMO signal, contained in the I/Q data binary file. For multi-channels, the I/Q samples of the channels are expected to be interleaved within the I/Q data file (see "I/Q Data Binary File" on page 80). If the NumberOfChannels element is not defined, one channel is assumed.
DataFilename	Contains the filename of the I/Q data binary file that is part of the iq-tar file.
	It is recommended that the filename uses the following convention: <xyz>.<format>.<channels>ch.<type></type></channels></format></xyz>
	<xyz> = a valid Windows file name</xyz>
	<pre> <format> = complex, polar or real (see Format element) <channels> = Number of channels (see NumberOfChannels element)</channels></format></pre>
	• <type> = float32, float64, int8, int16, int32 or int64 (see DataType element)</type>
	Examples:
	xyz.complex.1ch.float32xyz.polar.1ch.float64
	xyz.real.1ch.int16xyz.complex.16ch.int8
UserData	Optional: contains user, application or device-specific XML data which is not part of the iq -tar specification. This element can be used to store additional information, e.g. the hardware configuration. It is recommended that you add user data as XML content.
PreviewData	Optional: contains further XML elements that provide a preview of the I/Q data.
	The preview data is determined by the routine that saves an iq-tar file (e.g. R&S FSV). For the definition of this element refer to the RsIqTar.xsd schema. Note that the preview can be only displayed by current web browsers that have JavaScript enabled and if the XSLT stylesheet
	open_IqTar_xml_file_in_web_browser.xslt is available.

Example: ScalingFactor

Data stored as ${\tt int16}$ and a desired full scale voltage of 1 V

ScalingFactor = 1 V / maximum int16 value = 1 V / 2^{15} = 3.0517578125e-5 V

	Numerical value	Numerical value x ScalingFactor
Minimum (negative) int16 value	- 2 ¹⁵ = - 32768	-1 V
Maximum (positive) int16 value	2 ¹⁵ -1= 32767	0.999969482421875 V

Example: PreviewData in XML

General Settings, Printout and Instrument Settings

```
<Min>
          <ArrayOfFloat length="256">
           <float>-95</float>
           <float>-94</float>
            <float>-93</float>
          </ArrayOfFloat>
        </Min>
        <Max>
          <ArrayOfFloat length="256">
            <float>0</float>
            <float>-41</float>
            <float>0</float>
          </ArravOfFloat>
        </Max>
      </PowerVsTime>
      <Spectrum>
        <Min>
          <ArrayOfFloat length="256">
           <float>-107</float>
            <float>-96</float>
            <float>-94</float>
          </ArrayOfFloat>
        </Min>
        <Max>
          <ArrayOfFloat length="256">
            <float>-25</float>
            <float>1</float>
            <float>1</float>
          </ArrayOfFloat>
        </Max>
      </Spectrum>
    </Channel>
  </ArrayOfChannel>
</PreviewData>
```

I/Q Data Binary File

The I/Q data is saved in binary format according to the format and data type specified in the XML file (see Format element and DataType element). To allow reading and writing of streamed I/Q data all data is interleaved, i.e. complex values are interleaved pairs of I and Q values and multi-channel signals contain interleaved (complex) samples for channel 1, channel 2, channel 3 etc.

Example: NumberOfChannels - Element ordering for complex cartesian data

Complex data: I[channel no][time index], Q[channel no][time index]

General Settings, Printout and Instrument Settings

```
I[0][0], Q[0][0],
                            // Channel 0, Complex sample 0
I[1][0], Q[1][0],
                            // Channel 1, Complex sample 0
I[2][0], Q[2][0],
                            // Channel 2, Complex sample 0
I[0][1], Q[0][1],
                           // Channel 0, Complex sample 1
                           // Channel 1, Complex sample 1
I[1][1], Q[1][1],
I[2][1], Q[2][1],
                           // Channel 2, Complex sample 1
I[0][2], Q[0][2],
                           // Channel 0, Complex sample 2
                           // Channel 1, Complex sample 2
I[1][2], Q[1][2],
I[2][2], Q[2][2],
                           // Channel 2, Complex sample 2
I[0][3], Q[0][3],
                           // Channel 0, Complex sample 3
I[1][3], Q[1][3],
                          // Channel 1, Complex sample 3
I[2][3], Q[2][3],
                           // Channel 2, Complex sample 3
```

3.1.3 Manual Operation - Local Menu

When switched on, the instrument is always in the manual measurement mode and can be operated via the front panel. As soon as the instrument receives a remote command, it is switched to the remote control mode.

In remote control mode, all keys of the instrument except the PRESET key are disabled, see chapter 3.1.1, "Instrument Setup and Interface Configuration – SETUP Key", on page 43. The "LOCAL" softkey and the Display Update (On/Off) softkey are displayed. Depending on the setting of the Display Update (On/Off) softkey, the diagrams, traces and display fields are displayed or hidden. For further details on the Display Update (On/Off) softkey refer to chapter 3.1.1, "Instrument Setup and Interface Configuration – SETUP Key", on page 43.

For details on remote control refer to chapter 5 "Remote Control – Basics".

The change to manual operation consists of:

- Enabling the Front Panel Keys
 Returning to manual mode enables all inactive keys. The main softkey menu of the
 current mode is displayed.
- Displaying the measurement diagrams again.
 The diagrams, traces and display fields are displayed again.
- Generating the "OPERATION COMPLETE" message
 If, at the time of pressing the "LOCAL" softkey, the synchronization mechanism via
 *OPC, *OPC? or *WAI is active, the currently running measurement procedure is
 aborted and synchronization is achieved by setting the corresponding bits in the registers of the status reporting system.
- Setting Bit 6 (User Request) of the Event Status Register
 With a corresponding configuration of the status reporting system, this bit immediately causes the generation of a service request (SRQ) to inform the control software that

General Settings, Printout and Instrument Settings

the user wishes to return to front panel control. For example this can be used to interrupt the control program and to correct instrument settings manually. This bit is set each time the "LOCAL" softkey is pressed.

To return to manual operation

Press the "LOCAL" softkey.

The instrument switches from remote to manual operation, but only if the local lockout function has not been activated in the remote control mode.

3.1.4 Measurement Documentation – PRINT Key

The PRINT key is used to select and configure the printer and to customize the screen printout. For detailed information on printer selection and installation refer to the R&S FSV Quick Start Guide.

To open the Print menu

► Press the PRINT key.

The "Print" menu is displayed.

Softkeys of the Print Menu

The following table shows all softkeys available in the "Print" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is delivered in the corresponding softkey description.

Print Screen	82
Device Setup.	83
Device (1/2)	
Colors	83
L Select Print Color Set	84
L Color (On/Off)	
L Select Object	
L Predefined Colors	
L User Defined Colors	
L Set to Default	84
Comment	
Install Printer	

Print Screen

Starts to printout all test results displayed on the screen: diagrams, traces, markers, marker lists, limit lines etc. Comments, title, date, and time are included at the bottom margin of the printout. All displayed items belonging to the instrument software (softkeys, tables, dialog boxes) are not printed out.

General Settings, Printout and Instrument Settings

The output is defined via the "Device Setup" on page 83 softkey. If the output is saved in a file, the file name used in the last saving process is counted up to the next unused name. If you use a file name that already exists, upon saving, a message is displayed. Selecting "Yes" overwrites the existing file, selecting "No" aborts the saving process. For further details on the file name and an example, refer to the "Save/ Recall" menu, "Edit File Name" on page 69 softkey.

Path	Directory in which the file is stored. The default path is C:\r_s\instr\user
Files	List of the existing files in the same format
File Name	Name of the file

Remote command:

```
HCOPy[:IMMediate<1|2>] on page 775
HCOPy[:IMMediate<1|2>]:NEXT on page 775
HCOPy:ITEM:ALL on page 776
```

Device Setup

Opens the "Hardcopy Setup" dialog box to define the output: image file, clipboard, or the printer. The dialog box consists of two tabs which are selected via the "Device (1/2)" on page 83 softkey.

For further information refer to the R&S FSV Quick Start Guide.

Remote command:

```
HCOPy: DEVice: LANGuage<1|2> on page 774

HCOPy: DESTination<1|2> on page 773

HCOPy: PAGE: ORIentation<1|2> on page 776

HCOPy: TDSTamp: STATe<1|2> on page 777

SYSTem: COMMunicate: PRINter: ENUMerate: FIRSt? on page 801

SYSTem: COMMunicate: PRINter: ENUMerate [: NEXT]? on page 802
```

Device (1/2)

Selects the tab of the device in the "Device Setup" dialog box. The analyzer is able to manage two print settings independently of each other. For each device the print setting is displayed on the corresponding tab of the "Device Setup" dialog box ("Device Setup" on page 83 softkey).

For further information refer to the R&S FSV Quick Start Guide.

Colors

Opens a submenu to define the colors to be used. For details see "Print Colors" on page 61 softkey of the "Setup" menu.

The submenu contains the following commands:

- "Select Print Color Set" on page 84
- "Color (On/Off)" on page 84
- "Select Object" on page 84
- "Predefined Colors" on page 84
- "User Defined Colors" on page 84
- "Set to Default" on page 84

General Settings, Printout and Instrument Settings

Select Print Color Set ← Colors

For details see "Select Print Color Set" on page 61 softkey of the "Setup" menu.

Color (On/Off) ← Colors

For details see "Color (On/Off)" on page 60 softkey of the "Setup" menu.

$\textbf{Select Object} \leftarrow \textbf{Colors}$

For details see "Select Object" on page 60 softkey of the "Setup" menu.

Predefined Colors ← Colors

For details see "Predefined Colors" on page 60 softkey of the "Setup" menu.

User Defined Colors ← Colors

For details see "User Defined Colors" on page 60 softkey of the "Setup" menu.

Set to Default ← Colors

For details see "Set to Default" on page 61 softkey of the "Setup" menu.

Comment

Opens dialog box to enter a comment. Max. 120 characters are allowed. 60 characters fit in one line. In the first line, at any point a manual line-feed can be forced by entering "@".

Date and time are inserted automatically. The comment is printed below the diagram area, but not displayed on the screen. If a comment should not be printed, it must be deleted.

For details on the alphanumeric entries refer to the R&S FSV Quick Start Guide, "Basic Operations".

Remote command:

HCOPy:ITEM:WINDow:TEXT on page 776

Install Printer

Opens the "Printers and Faxes" window to install a new printer. All printers that are already installed are displayed.

For further information refer to the R&S FSV Quick Start Guide, appendix 1, "Printer Interface".

Only user accounts with administrator rights can install a printer.

3.1.5 User-Defined Menu – USER key

The USER key displays a user-defined menu. The softkeys displayed here can be labelled and assigned to user-defined settings files as required.

To open the user-defined menu

Press the USER key.

The "User" menu is displayed.

General Settings, Printout and Instrument Settings

Softkeys of the User menu

The "User" menu contains 8 user-definable softkeys as well as a "User Preference Setup" softkey that allows you to define them. Pressing one of the user-definable softkeys has the same effect as the Save File / Recall File function for a pre-defined settings file. The definitions for these softkeys remain unchanged even after a reset function and after updating the firmware.

"User Preference Setup" softkey

Opens an "ApplicationManager" dialog to set up the user-defined softkeys.

For each user-definable softkey (1–8), you can define a key label and assign a settings file that is to be loaded when the softkey is selected.

SCPI command:

MMEMory: USER<Softkey> on page 789

To define the key label

- 1. Click into the table entry for the corresponding softkey.
- 2. Enter a label for the softkey.
- 3. Press ENTER.

To assign a settings file

- 1. Click into the table entry for the corresponding softkey.
- 2. In the file selection dialog, select a stored settings file to be recalled when the softkey is selected.
- Click "Select".
 The selected file is displayed in the "ApplicationManager" dialog.

Measurement Parameters

To store the softkey settings

Click "Save" to store the user-defined softkey definitions.

3.2 Measurement Parameters

In this section all menus necessary for setting measurement parameters are described. For details on changing the mode refer to chapter 3.4.1, "Measurement Mode Selection – MODE Key", on page 305.

Editing measurement parameters in the information bar

The currently defined main measurement parameters are displayed in the information bar of the display. They can easily be edited by touching the setting in the display (with a finger or mouse pointer). The corresponding (edit) dialog box is displayed where you can edit the setting.

If you touch the setting in the display longer than 1 second or right-click it, a contextsensitive menu is displayed. The entries correspond to the functions available in the softkey menu for that setting.

Table 3-1: Sweep range variables

Abbrev	Definition	R&S FSV4 value	R&S FSV7 value	R&S FSV13 value	R&S FSV30 value	R&S FSV40 value
f _{max}	max. fre- quency	4 GHz	7 GHz	13.6 GHz	30 GHz	40 GHz
f _{min}	min. fre- quency available	0 Hz	0 Hz	0 Hz	0 Hz	0 Hz
span _{min}	smallest selectable span > 0 Hz	10 Hz	10 Hz	10 Hz	10 Hz	10 Hz

Initializing the Configuration – PRESET Key	86
Selecting the Frequency and Span – FREQ Key	
Setting the Frequency Span – SPAN Key	
 Setting the Level Display and Configuring the RF Input – AMPT Key 	96
Defining Automatic Settings – AUTO SET Key	
Setting the Bandwidths and Sweep Time – BW Key	
Configuring the Sweep Mode – SWEEP Key	
Setting Traces – TRACE Key	
Triggering the Sweep – TRIG Key	

3.2.1 Initializing the Configuration - PRESET Key

The PRESET key resets the instrument to the default setting and therefore provides a defined initial state as a known starting point for measurements.

Measurement Parameters

If the "local lockout" function is active in the remote control mode, the PRESET key is disabled.

Further information

chapter 3.2.1.2, "Initial Configuration", on page 87

Task

• chapter 3.2.1.1, "Presetting the Instrument", on page 87

3.2.1.1 Presetting the Instrument

- 1. Define the data set for the presetting:
 - a) To retrieve the originally provided settings file (see chapter 3.2.1.2, "Initial Configuration", on page 87), deactivate the "Startup Recall" softkey in the "SAVE/RCL" menu.
 - b) To retrieve a customized settings file, in the "File" menu, activate the "Startup Recall" softkey, press the "Startup Recall Setup" softkey, and select the corresponding file.
 - For details refer to chapter 3.1.2, "Saving and Recalling Settings Files SAVE/RCL Key", on page 67.
- 2. Press the PRESET key to perform a preset.

Remote: *RST or SYSTem: PRESet

After you use the PRESET function, the history of previous actions is deleted, i.e. any actions performed previously cannot be undone or redone using the UNDO/REDO keys.

3.2.1.2 Initial Configuration

The initial configuration is selected such that the RF input is always protected against overload, provided that the applied signal levels are in the allowed range for the instrument.

The parameter set of the initial configuration can be customized using the "Startup Recall" softkey in the "Save/Rcl" menu. For further information refer to chapter 3.1.2, "Saving and Recalling Settings Files – SAVE/RCL Key", on page 67.

Table 3-2: Initial configuration

Parameter	Setting	
mode	Spectrum	
sweep mode	auto	
center frequency	f _{max} /2	

Measurement Parameters

Parameter	Setting
center frequency step size	0.1 * span
span	R&S FSV3: 3.6 GHz
	R&S FSV7: 7 GHz
	R&S FSV13: 13.6 GHz
	R&S FSV30: 30 GHz
	R&S FSV40: 40 GHz
RF attenuation	0 dB
reference level	-10 dBm
level range	100 dB log
level unit	dBm
sweep time	auto
resolution bandwidth	auto (3 MHz)
video bandwidth	auto (3 MHz)
FFT filters	off
span/RBW	100
RBW/VBW	1
sweep	cont
trigger	free run
trace 1	clr write
trace 2/3/4/5/6	blank
detector	auto peak
frequency offset	0 Hz
reference level offset	0 dB
reference level position	100 %
grid	abs
cal correction	on
noise source	off
input	RF

3.2.2 Selecting the Frequency and Span – FREQ Key

The FREQ key is used to configure the frequency axis, to set the frequency offset and the signal track function. You can configure the frequency axis either by the start and stop frequency or the center frequency and the span.

Measurement Parameters

To open the Frequency menu

Press the FREQ key.
 The "Frequency" menu is displayed. The "Frequency Center" edit dialog box is displayed.

Menu and softkey description

chapter 3.2.2.1, "Softkeys of the Frequency Menu", on page 89

Tasks

- chapter 3.2.2.2, "Specifying the Frequency Axis by the Start and Stop Frequency", on page 93
- chapter 3.2.2.3, "Specifying the Frequency Axis by the Center Frequency and the Span", on page 93
- chapter 3.2.2.4, "Specifying the Step Size for the Arrow Keys and the Rotary Knob", on page 93
- chapter 3.2.2.5, "Modifying the Frequency Axis by an Offset", on page 94
- chapter 3.2.2.6, "Tracking Signals (Span > 0)", on page 94

3.2.2.1 Softkeys of the Frequency Menu

The following chapter describes all softkeys available in the "Frequency" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is provided in the corresponding softkey description.

Center	90
CF Stepsize	90
L 0.1*Span (span > 0)	
L 0.1*RBW (span > 0)	
L 0.5*Span (span > 0)	
L 0.5*RBW (span > 0)	
L x*Span (span > 0)	
L x*RBW (span > 0)	
L =Center	
L =Marker	
L Manual	
Start	91
Stop	92
Frequency Offset	
Signal Track (span > 0)	
L Track On/Off (span > 0)	92
L Track BW (span > 0)	93
L Track Threshold (span > 0)	93
L Select Trace (span > 0)	
External Mixer	

Measurement Parameters

Center

Opens an edit dialog box to enter the center frequency. The allowed range of values for the center frequency depends on the frequency span.

```
span > 0: span_{min}/2 \le f_{center} \le f_{max} - span_{min}/2

span = 0: 0 \text{ Hz} \le f_{center} \le f_{max}
```

f_{max} and span_{min} are specified in the data sheet.

Remote command:

```
[SENSe:] FREQuency: CENTer on page 655
```

CF Stepsize

Opens a submenu to set the step size of the center frequency.

The step size defines the value by which the center frequency is increased or decreased when the arrow keys are pressed. When you use the rotary knob the center frequency changes in steps of 10% of the "Center Frequency Stepsize".

The step size can be set to a fraction of the span (span > 0) or a fraction of the resolution bandwidth (span = 0) or it can be set to a fixed value manually.

Apart from the =Center, =Marker and Manual softkeys, the other softkeys are displayed depending on the selected frequency span.

0.1*Span (span > 0) ← CF Stepsize

Sets the step size for the center frequency to 10 % of the span.

Remote command:

```
FREQ:CENT:STEP:LINK SPAN, see [SENSe:]FREQuency:CENTer:STEP:LINK on page 656
FREQ:CENT:STEP:LINK:FACT 10PCT, see [SENSe:]FREQuency:CENTer:STEP:
LINK:FACTor on page 657
```

0.1*RBW (span > 0) ← CF Stepsize

Sets the step size for the center frequency to 10 % of the resolution bandwidth.

This is the default setting.

Remote command:

```
FREQ:CENT:STEP:LINK RBW, see [SENSe:]FREQuency:CENTer:STEP:LINK on page 656
FREQ:CENT:STEP:LINK:FACT 10PCT, see [SENSe:]FREQuency:CENTer:STEP:LINK:FACTor on page 657
```

0.5*Span (span > 0) ← CF Stepsize

Sets the step size for the center frequency to 50 % of the span.

Remote command:

```
FREQ:CENT:STEP:LINK SPAN, see [SENSe:]FREQuency:CENTer:STEP:LINK on page 656
FREQ:CENT:STEP:LINK:FACT 50PCT, see [SENSe:]FREQuency:CENTer:STEP:LINK:FACTor on page 657
```

Measurement Parameters

0.5*RBW (span > 0) ← CF Stepsize

Sets the step size for the center frequency to 50 % of the resolution bandwidth.

Remote command:

```
FREQ:CENT:STEP:LINK RBW, see [SENSe:]FREQuency:CENTer:STEP:LINK on page 656
FREQ:CENT:STEP:LINK:FACT 50PCT, see [SENSe:]FREQuency:CENTer:STEP:LINK:FACTor on page 657
```

x*Span (span > 0) ← CF Stepsize

Opens an edit dialog box to set the step size for the center frequency as a percentage (%) of the span.

Remote command:

```
FREQ:CENT:STEP:LINK SPAN, see [SENSe:]FREQuency:CENTer:STEP:LINK on page 656
FREQ:CENT:STEP:LINK:FACT 20PCT, see [SENSe:]FREQuency:CENTer:STEP:LINK on page 656
```

x*RBW (span > 0) ← CF Stepsize

Opens an edit dialog box to set the step size for the center frequency as a percentage (%) of the resolution bandwidth. Values between 1 % and 100 % in steps of 1 % are allowed. The default setting is 10 %.

Remote command:

```
FREQ:CENT:STEP:LINK RBW, see [SENSe:]FREQuency:CENTer:STEP:LINK on page 656
FREQ:CENT:STEP:LINK:FACT 20PCT, see [SENSe:]FREQuency:CENTer:STEP:LINK on page 656
```

=Center ← CF Stepsize

Sets the step size to the value of the center frequency and removes the coupling of the step size to span or resolution bandwidth.

This function is especially useful for measurements of the signal harmonics. In this case, each stroke of the arrow key selects the center frequency of another harmonic.

=Marker ← CF Stepsize

Sets the step size to the value of the current marker and removes the coupling of the step size to span or resolution bandwidth.

This function is especially useful for measurements of the signal harmonics. In this case, each stroke of the arrow key selects the center frequency of another harmonic.

Manual ← CF Stepsize

Opens an edit dialog box to enter a fixed step size for the center frequency.

Remote command:

```
[SENSe:] FREQuency:CENTer:STEP on page 656
```

Start

Opens an edit dialog box to define the start frequency. The following range of values is allowed:

Measurement Parameters

```
f_{min} \le f_{start} \le f_{max} - span_{min}
```

 f_{min} , f_{max} and span_{min} are specified in the data sheet.

Remote command:

```
[SENSe:] FREQuency: STARt on page 658
```

Stop

Opens an edit dialog box to define the stop frequency. The following range of values for the stop frequency is allowed:

```
f_{min} + span_{min} \le f_{stop} \le f_{max}
```

 f_{min} , f_{max} and span_{min} are specified in the data sheet.

Remote command:

```
[SENSe:] FREQuency:STOP on page 658
```

Frequency Offset

Opens an edit dialog box to enter a frequency offset that shifts the displayed frequency range by the specified offset.

The softkey indicates the current frequency offset. The allowed values range from -100 GHz to 100 GHz. The default setting is 0 Hz.

Remote command:

```
[SENSe:] FREQuency:OFFSet on page 657
```

Signal Track (span > 0)

Opens a submenu to define the signal tracking characteristics:

- search bandwidth
- threshold value
- trace

The search bandwidth and the threshold value are shown in the diagram by two vertical lines and one horizontal line, which are labeled as "TRK". After each sweep the center frequency is set to the maximum signal found within the searched bandwidth. If no maximum signal above the set threshold value is found in the searched bandwidth, the track mechanism stops.

The submenu contains the following softkeys:

- "Track On/Off (span > 0)" on page 92
- "Track BW (span > 0)" on page 93
- "Track Threshold (span > 0)" on page 93
- "Select Trace (span > 0)" on page 93

Track On/Off (span > 0) ← Signal Track (span > 0)

Switches the signal tracking on and off.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:STRack[:STATe] on page 570
```

Measurement Parameters

Track BW (span > 0) \leftarrow Signal Track (span > 0)

Opens an edit dialog box to set the search bandwidth for signal tracking. The frequency range is calculated as a function of the center frequency.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:STRack:BANDwidth|BWIDth on page 569

Track Threshold (span > 0) ← Signal Track (span > 0)

Opens an edit dialog box to set the threshold value for signal tracking.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:STRack:THReshold on page 569

Select Trace (span > 0) ← Signal Track (span > 0)

Opens an edit dialog box to select the trace on which the signal is tracked.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:STRack:TRACe on page 569

External Mixer

Opens the "Ext. Mixer" submenu to activate and configure an optional external mixer. This function is only available for R&S FSV30 and 40 instruments with the B21 option installed.

For details on the external mixer functionality, see chapter 3.8, "Instrument Functions – External Mixer (Option R&S FSV-B21)", on page 379.

3.2.2.2 Specifying the Frequency Axis by the Start and Stop Frequency

- 1. Press the Start softkey and enter a start frequency.
- 2. Press the Stop softkey and enter a stop frequency.

3.2.2.3 Specifying the Frequency Axis by the Center Frequency and the Span

- 1. Press the FREQ key and enter a center frequency in the "Frequency Center" edit dialog box.
- 2. Press the SPAN key and enter the bandwidth you want to analyze.

Entering a value of 0 Hz causes a change to the zero span analysis mode.

3.2.2.4 Specifying the Step Size for the Arrow Keys and the Rotary Knob

1. Press the CF Stepsize softkey.

Measurement Parameters

The available softkeys depend on the selected frequency span (zero span or span > 0).

- 2. To define the step size of the center frequency:
 - a) If span > 0:
 Press "0.1*Span", "0.5*Span" or "x*Span" to define the step size for the center frequency as percentage of the span (see CF Stepsize).
 - b) If span = 0:
 Press "0.1*RBW", "0.5*RBW", or "x*RBW" to define the step size for the center frequency as percentage of the resolution bandwidth (see CF Stepsize).
 - c) Press the =Center softkey to set the step size to the value of the center frequency and remove the dependency of the step size to span or resolution bandwidth.
 - d) Press the =Marker softkey to set the step size to the value of the marker and remove the dependency of the step size to span or resolution bandwidth.
 - e) Press the Manual softkey and enter a fixed step size for the center frequency.

The step size assigned to arrow keys corresponds to the selected value.

The step size of the rotary knob is always 10 % of it.

3.2.2.5 Modifying the Frequency Axis by an Offset

Press the Frequency Offset softkey and enter the offset to shift the displayed frequency span.

3.2.2.6 Tracking Signals (Span > 0)

Note that signal tracking is available for frequency spans > 0.

- Press the Signal Track (span > 0) softkey to open the submenu and start and stop signal tracking with specified parameters.
- Press the Track On/Off (span > 0) softkey to switch signal tracking on or off.
- Press the Track BW (span > 0) softkey and enter a bandwidth for signal tracking.
- Press the Track Threshold (span > 0) softkey and enter the threshold for signal tracking.
- Press the Select Trace (span > 0) softkey and select the trace for signal tracking.

3.2.3 Setting the Frequency Span – SPAN Key

The SPAN key is used to set the frequency span to be analyzed.

To open the Span menu

Press the SPAN key.
 The "Span" menu is displayed. For span > 0 an edit dialog box to enter the frequency is displayed. For zero span, an edit dialog box to enter the sweep time is displayed.

Measurement Parameters

Menu and softkey description

chapter 3.2.3.1, "Softkeys of the Span Menu", on page 95

Task

chapter 3.2.3.2, "Specifying the Span (Alternatives)", on page 96

3.2.3.1 Softkeys of the Span Menu

The following chapter describes all softkeys available in the "Span" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is provided in the corresponding softkey description.

Span Manual	.95
Full Span	
Zero Span	
Last Span	

Span Manual

Opens an edit dialog box to enter the frequency span. The center frequency remains the same when you change the span.

The following range is allowed:

```
span = 0: 0 Hz
span >0: span_{min} \le f_{span} \le f_{max}
```

 f_{max} and span_{min} are specified in the data sheet.

Remote command:

[SENSe:] FREQuency: SPAN on page 658

Full Span

Sets the span to the full frequency range of the R&S FSV specified in the data sheet. This setting is useful for overview measurements.

Remote command:

```
[SENSe:] FREQuency:SPAN:FULL on page 658
```

Zero Span

Sets the span to 0 Hz (zero span). The x-axis becomes the time axis with the grid lines corresponding to 1/10 of the current sweep time ("SWT").

Remote command:

```
FREQ:SPAN OHz, see [SENSe:] FREQuency:SPAN on page 658
```

Last Span

Sets the span to the previous value. With this function e.g. a fast change between overview measurement and detailed measurement is possible.

Measurement Parameters

3.2.3.2 Specifying the Span (Alternatives)

- 1. To set the span, use the Span Manual, Full Span, Zero Span and Last Span softkeys.
- 2. To define a frequency range, use the Start and Stop softkeys of the "Frequency" menu.
- 3. In zero span, the span corresponds to the sweep time. In that case, press the Sweeptime Manual softkey and enter a sweep time.

3.2.4 Setting the Level Display and Configuring the RF Input – AMPT Key

The AMPT key is used to set the reference level, the level range and unit, the scaling and the RF attenuation.

To open the amplitude menu

Press the AMPT key.
 The "Amplitude" menu is displayed. The "Reference Level" dialog box is displayed.

Menu and softkey description

chapter 3.2.4.1, "Softkeys of the Amplitude Menu", on page 96

Tasks

- chapter 3.2.4.2, "Specifying the Amplitude", on page 103
- chapter 3.2.4.3, "Using Electronic Attenuation (Option Electronic Attenuator, R&S FSV-B25)", on page 103

3.2.4.1 Softkeys of the Amplitude Menu

The following table shows all softkeys available in the "Amplitude" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is provided in the corresponding softkey description.

Ref Level	97
Range	97
L Range Log 100 dB	
L Range Log 50 dB	
L Range Log 10 dB	98
L Range Log 5 dB	
L Range Log 1 dB	
L Range Log Manual	
L Range Linear %	
L Range Lin. Unit	
Unit	
Preamp On/Off	

Measurement Parameters

RF Atten Manual/Mech Att Manual	100
RF Atten Auto/Mech Att Auto	100
El Atten On/Off	100
El Atten Mode (Auto/Man)	101
Ref Level Offset	101
Ref Level Position	101
Grid Abs/Rel	102
Noise Correction	102
Input (AC/DC)	102
Input 50 Ω/75 Ω	

Ref Level

Opens an edit dialog box to enter the reference level in the current unit (dBm, dBµV, etc).

The reference level is the maximum value the AD converter can handle without distortion of the measured value. Signal levels above this value will not be measured correctly, which is indicated by the "IFOVL" status display.

Remote command:

```
DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel on page 604
```

Range

Opens a submenu to define the display range of the level axis.

Range Log 100 dB ← Range

Sets the level display range to 100 dB.

Remote command:

Logarithmic scaling:

```
DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:
SPACing on page 603
```

Display range:

DISP:WIND:TRAC:Y 100DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 603

Range Log 50 dB ← Range

Sets the level display range to 50 dB.

Remote command:

Logarithmic scaling:

```
DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:
SPACing on page 603
```

Display range:

```
DISP:WIND:TRAC:Y 50DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 603
```

Measurement Parameters

Range Log 10 dB ← Range

Sets the level display range to 10 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:
SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 10DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 603

Range Log 5 dB ← Range

Sets the level display range to 5 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:
SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 5DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]
on page 603

Range Log 1 dB ← Range

Sets the level display range to 1 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:
SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 1DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]
on page 603

Range Log Manual ← Range

Opens an edit dialog box to define the display range of a logarithmic level axis manually.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y: SPACing on page 603

Display range:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 603

Range Linear % ← Range

Selects linear scaling for the level axis in %.

The grid is divided into decadal sections.

Measurement Parameters

Markers are displayed in the selected unit ("Unit" softkey). Delta markers are displayed in % referenced to the voltage value at the position of marker 1. This is the default setting for linear scaling.

Remote command:

DISP:TRAC:Y:SPAC LIN, see DISPlay[:WINDow<n>]:TRACe<t>:Y:SPACing
on page 603

Range Lin. Unit ← Range

Selects linear scaling in dB for the level display range, i.e. the horizontal lines are labeled in dB.

Markers are displayed in the selected unit ("Unit" softkey). Delta markers are displayed in dB referenced to the power value at the position of marker 1.

Remote command:

```
DISP:TRAC:Y:SPAC LDB, see DISPlay[:WINDow<n>]:TRACe<t>:Y:SPACing on page 603
```

Unit

Opens the "Unit" submenu to select the unit for the level axis.

The default setting is dBm.

If a transducer is switched on, the softkey is not available.

In general, the signal analyzer measures the signal voltage at the RF input. The level display is calibrated in RMS values of an unmodulated sine wave signal. In the default state, the level is displayed at a power of 1 mW (= dBm). Via the known input impedance (50 Ω or 75 Ω), conversion to other units is possible. The following units are available and directly convertible:

- dBm
- dBmV
- dBµV
- dBµA
- dBpW
- Volt
- Ampere
- Watt

Remote command:

CALCulate<n>:UNIT:POWer on page 597

Preamp On/Off

Switches the preamplifier on and off.

If option R&S FSV-B22 is installed, the preamplifier is only active below 7 GHz.

If option R&S FSV-B24 is installed, the preamplifier is active for all frequencies.

When measuring Spurious Emissions, using this softkey automatically opens the "Sweep List" dialog, see "Sweep List dialog box" on page 248.

Measurement Parameters

This function is not available for input from the R&S Digital I/Q Interface (option R&S FSV-B17).

Remote command:

INPut:GAIN:STATe on page 617

RF Atten Manual/Mech Att Manual

Opens an edit dialog box to enter the attenuation, irrespective of the reference level. If electronic attenuation is activated (option R&S FSV-B25 only; "El Atten Mode Auto" soft-key), this setting defines the mechanical attenuation.

The mechanical attenuation can be set in 10 dB steps.

The RF attenuation can be set in 5 dB steps (with option R&S FSV-B25: 1 dB steps). The range is specified in the data sheet. If the current reference level cannot be set for the set RF attenuation, the reference level is adjusted accordingly.

This function is not available for input from the R&S Digital I/Q Interface (option R&S FSV-B17).

The RF attenuation defines the level at the input mixer according to the formula:

 $level_{mixer} = level_{input} - RF$ attenuation

Note: As of firmware version 1.61, the maximum mixer level allowed is **0 dBm**. Mixer levels above this value may lead to incorrect measurement results, which are indicated by the "OVLD" status display. The increased mixer level allows for an improved signal, but also increases the risk of overloading the instrument!

When measuring spurious emissions, using this softkey automatically opens the "Sweep List" dialog box, see "Sweep List dialog box" on page 248.

Remote command:

INPut:ATTenuation on page 612

RF Atten Auto/Mech Att Auto

Sets the RF attenuation automatically as a function of the selected reference level. This ensures that the optimum RF attenuation is always used. It is the default setting.

When measuring spurious emissions, using this softkey automatically opens the "Sweep List" dialog, see "Sweep List dialog box" on page 248.

This function is not available for input from the R&S Digital I/Q Interface (option R&S FSV-B17).

Remote command:

INPut: ATTenuation: AUTO on page 613

El Atten On/Off

This softkey switches the electronic attenuator on or off. This softkey is only available with option R&S FSV-B25.

When the electronic attenuator is activated, the mechanical and electronic attenuation can be defined separately. Note however, that both parts must be defined in the same mode, i.e. either both manually, or both automatically.

This function is not available for input from the R&S Digital I/Q Interface (option R&S FSV-B17).

Measurement Parameters

 To define the mechanical attenuation, use the RF Atten Manual/Mech Att Manual or RF Atten Auto/Mech Att Auto softkeys.

To define the electronic attenuation, use the El Atten Mode (Auto/Man) softkey.

Note: This function is not available for stop frequencies (or center frequencies in zero span) >7 GHz. In this case, the electronic and mechanical attenuation are summarized and the electronic attenuation can no longer be defined individually. As soon as the stop or center frequency is reduced below 7 GHz, this function is available again. When the electronic attenuator is switched off, the corresponding RF attenuation mode (auto/manual) is automatically activated.

Remote command:

INPut: EATT: AUTO on page 616

El Atten Mode (Auto/Man)

This softkey defines whether the electronic attenuator value is to be set automatically or manually. If manual mode is selected, an edit dialog box is opened to enter the value. This softkey is only available with option R&S FSV-B25, and only if the electronic attenuator has been activated via the El Atten On/Off softkey.

Note: This function is not available for stop frequencies (or center frequencies in zero span) >7 GHz. In this case, the electronic and mechanical attenuation are summarized and the electronic attenuation can no longer be defined individually. As soon as the stop or center frequency is reduced below 7 GHz, electronic attenuation is available again. If the electronic attenuation was defined manually, it must be re-defined.

The attenuation can be varied in 1 dB steps from 0 to 30 dB. Other entries are rounded to the next lower integer value.

To re-open the edit dialog box for manual value definition, select the "Man" mode again.

If the defined reference level cannot be set for the given RF attenuation, the reference level is adjusted accordingly and the warning "Limit reached" is output.

Remote command:

INPut:EATT:AUTO on page 616
INPut:EATT on page 616

Ref Level Offset

Opens an edit dialog box to enter the arithmetic level offset. This offset is added to the measured level irrespective of the selected unit. The scaling of the y-axis is changed accordingly. The setting range is ±200 dB in 0.1 dB steps.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet on page 604

Ref Level Position

Opens an edit dialog box to enter the reference level position, i.e. the position of the maximum AD converter value on the level axis. The setting range is from -200 to +200 %, 0 % corresponding to the lower and 100 % to the upper limit of the diagram.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RPOSition on page 605

Measurement Parameters

Grid Abs/Rel

Switches between absolute and relative scaling of the level axis (not available with "Linear" range).

"Abs" Absolute scaling: The labeling of the level lines refers to the absolute

value of the reference level. Absolute scaling is the default setting.

"Rel" Relative scaling: The upper line of the grid is always at 0 dB. The scaling

is in dB whereas the reference level is always in the set unit (for details

on unit settings see the "Unit" softkey).

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:MODE on page 604

Noise Correction

If activated, the results are corrected by the instrument's inherent noise, which increases the dynamic range.

"ON" A reference measurement of the instrument's inherent noise is carried

out. The noise power measured is then subtracted from the power in

the channel that is being examined.

The inherent noise of the instrument depends on the selected center frequency, resolution bandwidth and level setting. Therefore, the correction function is disabled whenever one of these parameters is changed. A disable message is displayed on the screen. Noise corrections of the screen is changed.

tion must be switched on again manually after the change.

"OFF" No noise correction is performed.

"AUTO" Noise correction is performed. After a parameter change, noise correc-

tion is restarted automatically and a new correction measurement is

performed.

Remote command:

[SENSe:] POWer: NCORrection on page 698

Input (AC/DC)

Toggles the RF input of the R&S FSV between AC and DC coupling.

This function is not available for input from the R&S Digital I/Q Interface (option R&S FSV-B17).

Remote command:

INPut:COUPling on page 613

Input 50 Ω/75 Ω

Uses 50 Ω or 75 Ω as reference impedance for the measured levels. Default setting is 50 Ω .

The setting 75 Ω should be selected if the 50 Ω input impedance is transformed to a higher impedance using a 75 Ω adapter of the RAZ type (= 25 Ω in series to the input impedance of the instrument). The correction value in this case is 1.76 dB = 10 log (75 Ω /50 Ω).

All levels specified in this Operating Manual refer to the default setting of the instrument (50 Ω).

Measurement Parameters

This function is not available for input from the R&S Digital I/Q Interface (option R&S FSV-B17).

Remote command:

INPut:IMPedance on page 617

3.2.4.2 Specifying the Amplitude

- Set the reference level, offset and position using the "Ref Level", "Ref Level Offset" and "Ref Level Position" softkeys (see "Ref Level" on page 97, "Ref Level Offset" on page 101 and "Ref Level Position" on page 101).
- 2. Select the level range and the unit for the level axis using the "Range" and "Unit" softkeys (see "Range" on page 97 and "Unit" on page 99).
- Set the scaling using the "Ref Level Position" and/or "Grid Abs/Rel" softkeys (see "Ref Level Position" on page 101 and "Grid Abs/Rel" on page 102).
- 4. Set the attenuation using the "RF Atten Manual/Mech Atten Manual" or "RF Atten Auto/Mech Att Auto", or (for option B25 only) "El Atten Mode" softkeys (see "RF Atten Manual/Mech Att Manual" on page 100, "RF Atten Auto/Mech Att Auto" on page 100, "El Atten Mode (Auto/Man)" on page 101).
- 5. Define the RF input coupling using the "Input (AC/DC)" softkey, or a reference impedance using the "Input ($50\Omega/75\Omega$)" softkey (see "Input (AC/DC)" on page 102, "Input $50~\Omega/75~\Omega$ " on page 102).
- 6. If available, activate or deactivate the RF Preamplifier (option R&S FSV-B22/B24) using the "Preamp" softkey (see "Preamp On/Off" on page 99).

3.2.4.3 Using Electronic Attenuation (Option Electronic Attenuator, R&S FSV-B25)

Besides the mechanical attenuator at the RF input, the R&S FSV also offers an electronic attenuation setting (option Electronic Attenuator B25). The electronic attenuator can be set manually or automatically. The default attenuation is preset by the mechanical attenuator. The attenuation can be varied in 1 dB steps from 0 to 30 dB. Other entries are rounded to the next lower integer value.

In automatic mode, the electronic attenuator is set to 0 dB. If a reference level outside the allowed 30 dB range is set, the mechanical attenuator performs the setting. From this new reference level to over 30dB, the electronic attenuator performs the setting again.

For stop frequencies (or center frequencies in zero span) >7 GHz, electronic attenuation cannot be defined individually. In this case, the electronic and mechanical attenuation are summarized and the electronic attenuation can no longer be defined manually. As soon as the stop or center frequency is reduced below 7 GHz, electronic attenuation is available again. If the electronic attenuation was defined manually, it must be re-defined.

Measurement Parameters

Setting electronic attenuation

- 1. Activate the electronic attenuation by pressing the El Atten On/Off softkey.
- Select the required attenuator mode by pressing the El Atten Mode (Auto/Man) softkey until the required mode is highlighted.

Two new softkeys are displayed to set the mechanical attenuation. The same mode is activated for mechanical attenuation as was selected for electronic attenuation.

- 3. To define the attenuation manually:
 - a) Press the El Atten Mode (Auto/Man) softkey again, if necessary, to display the edit dialog box.
 - b) Enter the value for the electronic attenuator in the edit dialog box.
 - c) If necessary, press the RF Atten Manual/Mech Att Manual softkey to open the edit dialog box for mechanical attenuation and enter the required value.

3.2.5 Defining Automatic Settings – AUTO SET Key

The "Auto Set" menu allows you define automatic settings for measurements quickly.

To open the Auto Set menu

Press the AUTO SET key.
 The "Auto Set" menu is displayed.

Menu and softkey description

chapter 3.2.5.1, "Softkeys of the Auto Set Menu", on page 104

3.2.5.1 Softkeys of the Auto Set Menu

The following table shows all softkeys available in the "Auto Set" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is provided in the corresponding softkey description.

Measurement Parameters

Adjusting settings automatically during triggered measurements

When you select an auto adjust function a measurement is performed to determine the optimal settings. If you select an auto adjust funtion for a triggered measurement, you can select how the R&S FSV should behave:

- (default:) The measurement for adjustment waits for the next trigger
- The measurement for adjustment is performed without waiting for a trigger. The trigger source is temporarily set to "Free Run". After the measurement is completed, the original trigger source is restored. The trigger level is adjusted as follows:
 - For IF Power and RF Power triggers:
 Trigger Level = Reference Level 15 dB
 - For Video trigger:Trigger Level = 85 %

SCPI command:

[SENSe:]ADJust:CONFigure:TRIG on page 632

Auto All	105
Auto Freq	105
Auto Level	
Settings	106
L Meas Time Manual	106
L Meas Time Auto	
L Upper Level Hysteresis	
Lower Level Hysteresis	106
Sweep Type	
L Sweep	
L FFT	
L Auto	
L FFT Filter Mode	
L Auto	
L Narrow	

Auto All

Performs all automatic settings.

- "Auto Freg" on page 105
- "Auto Level" on page 106

Remote command:

[SENSe:]ADJust:ALL on page 630

Auto Freq

Defines the center frequency automatically by determining the highest frequency level in the frequency span. This function uses the signal counter; thus it is intended for use with sinusoidal signals.

This function is not available for input from the R&S Digital I/Q Interface (option R&S FSV-B17).

Measurement Parameters

This function is not available for 1xEV-DO MS Analysis mode (K85).

Remote command:

[SENSe:]ADJust:FREQuency on page 630

Auto Level

Defines the optimal reference level for the current measurement automatically.

The measurement time for automatic leveling can be defined using the Settings softkey.

You can define a threshold that the signal must exceed before the reference level is adjusted, see "Upper Level Hysteresis" on page 106 and "Lower Level Hysteresis" on page 106.

Remote command:

[SENSe:]ADJust:LEVel on page 630

Settings

Opens a submenu to define settings for automatic leveling.

Possible settings are:

- "Meas Time Manual" on page 106
- "Meas Time Auto" on page 106

Meas Time Manual ← Settings

Opens an edit dialog box to enter the duration of the level measurement in seconds. The level measurement is used to determine the optimal reference level automatically (see the "Auto Level" softkey, "Auto Level" on page 106). The default value is 1 ms.

Remote command:

[SENSe:] ADJust:CONFigure:LEVel:DURation on page 630

Meas Time Auto ← Settings

The level measurement is used to determine the optimal reference level automatically (see the Auto Level softkey).

Upper Level Hysteresis ← Settings

Defines an upper threshold the signal must exceed before the reference level is automatically adjusted when the "Auto Level" function is performed.

Remote command:

[SENSe:] ADJust:CONFiguration:HYSTeresis:UPPer on page 631

Lower Level Hysteresis ← **Settings**

Defines a lower threshold the signal must exceed before the reference level is automatically adjusted when the "Auto Level" function is performed.

Remote command:

[SENSe:]ADJust:CONFiguration:HYSTeresis:LOWer on page 631

Sweep Type

Opens a submenu to define the sweep type.

This function is not available in IQ Analyzer mode or for input from the R&S Digital I/Q Interface (option R&S FSV-B17).

Measurement Parameters

In frequency sweep mode, the analyzer provides several possible methods of sweeping:

- "Sweep" on page 107
- "FFT" on page 107 (not available with 5-Pole filters, channel filters or RRC filters, see chapter 3.2.6.3, "Selecting the Appropriate Filter Type", on page 114)
- "Auto" on page 107

Sweep ← Sweep Type

Sets the Sweep Type to standard analog frequency sweep.

In the standard sweep mode, the local oscillator is set to provide the spectrum quasi analog from the start to the stop frequency.

Remote command:

```
SWE:TYPE SWE, see [SENSe:] SWEep:TYPE on page 705
```

FFT ← Sweep Type

Sets the Sweep Type to FFT mode.

The FFT sweep mode samples on a defined frequency value and transforms it to the spectrum by fast Fourier transformation (FFT).

FFT is not available when using 5-Pole filters, Channel filters or RRC filters. In this case, sweep mode is used.

Note: The same applies when a tracking generator (internal or external, options R&S FSV-B9/B10) is active.

Remote command:

```
SWE:TYPE FFT, see [SENSe:] SWEep:TYPE on page 705
```

Auto ← **Sweep Type**

Automatically sets the fastest available Sweep Type for the current measurement. Auto mode is set by default.

Remote command:

```
SWE:TYPE AUTO, see [SENSe:] SWEep:TYPE on page 705
```

FFT Filter Mode ← Sweep Type

Defines the filter mode to be used for FFT filters by defining the partial span size. The partial span is the span which is covered by one FFT analysis.

Auto ← FFT Filter Mode ← Sweep Type

The firmware determines whether to use wide or narrow filters to obtain the best measurement results.

Remote command:

```
[SENSe:]BANDwidth|BWIDth[:RESolution]:FFT on page 635
```

Narrow ← FFT Filter Mode ← Sweep Type

For an RBW ≤ 10kHz, the FFT filters with the smaller partial span are used. This allows you to perform measurements near a carrier with a reduced reference level due to a narrower analog prefilter.

Remote command:

```
[SENSe:]BANDwidth|BWIDth[:RESolution]:FFT on page 635
```

Measurement Parameters

3.2.6 Setting the Bandwidths and Sweep Time - BW Key

The BW key is used to set the resolution bandwidth, video bandwidth (VBW) and sweep time (SWT). The values available for resolution bandwidth and video bandwidth depend on the selected filter type. For details on channel filters see also chapter 3.2.6.4, "List of Available RRC and Channel Filters", on page 115 .

To open the bandwidth menu

Press the BW key.
 The "Bandwidth" menu is displayed.

Menu and softkey description

chapter 3.2.6.1, "Softkeys of the Bandwidth Menu", on page 108

Further information

- chapter 3.2.6.4, "List of Available RRC and Channel Filters", on page 115
- table 3-3

Tasks

- chapter 3.2.6.2, "Specifying the Bandwidth", on page 114
- chapter 3.2.6.3, "Selecting the Appropriate Filter Type", on page 114

3.2.6.1 Softkeys of the Bandwidth Menu

The following table shows all softkeys available in the "Bandwidth" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is provided in the corresponding softkey description.

For Spurious Emission Measurements, the settings are defined in the "Sweep List" dialog, see "Sweep List dialog box" on page 248.

Res BW Manual	109
Res BW Auto	109
Video BW Manual	109
Video BW Auto	110
Sweeptime Manual	110
Sweeptime Auto	
Sweep Type	
L Sweep	
L FFT.	
L Auto	
L FFT Filter Mode	
L Auto.	
L Narrow	112

Measurement Parameters

Coupling Ratio	112
L RBW/VBW Sine [1/1]	
L RBW/VBW Pulse [.1]	
L RBW/VBW Noise [10]	
L RBW/VBW Manual	
L Span/RBW Auto [100]	
L Span/RBW Manual	
L Default Coupling	
Filter Tyne	112

Res BW Manual

Opens an edit dialog box to enter a value for the resolution bandwidth. The available resolution bandwidths are specified in the data sheet.

For details on the correlation between resolution bandwidth and filter type refer to chapter 3.2.6.3, "Selecting the Appropriate Filter Type", on page 114.

Numeric input is always rounded to the nearest possible bandwidth. For rotary knob or UP/DNARROW key inputs, the bandwidth is adjusted in steps either upwards or downwards.

The manual input mode of the resolution bandwidth is indicated by a green bullet next to the "RBW" display in the channel bar.

When measuring Spurious Emissions, using this softkey automatically opens the "Sweep List" dialog (see "Sweep List dialog box" on page 248).

Remote command:

```
[SENSe:]BANDwidth|BWIDth[:RESolution]:AUTO on page 634 [SENSe:]BANDwidth|BWIDth[:RESolution] on page 634
```

Res BW Auto

Couples the resolution bandwidth to the selected span (for span > 0). If you change the span, the resolution bandwidth is automatically adjusted.

This setting is recommended if you need the ideal resolution bandwidth in relation to a particular span.

Remote command:

```
[SENSe:]BANDwidth|BWIDth[:RESolution]:AUTO on page 634
```

Video BW Manual

Opens an edit dialog box to enter the video bandwidth. The available video bandwidths are specified in the data sheet.

Numeric input is always rounded to the nearest possible bandwidth. For rotary knob or UP/DOWN key inputs, the bandwidth is adjusted in steps either upwards or downwards.

The manual input mode of the video bandwidth is indicated by a green bullet next to the "VBW" display in the channel bar.

Note: RMS detector and VBW.

Measurement Parameters

If an RMS detector is used, the video bandwidth in the hardware is bypassed. Thus, duplicate trace averaging with small VBWs and RMS detector no longer occurs. However, the VBW is still considered when calculating the sweep time. This leads to a longer sweep time for small VBW values. Thus, you can reduce the VBW value to achieve more stable trace curves even when using an RMS detector. Normally, if the RMS detector is used the sweep time should be increased to get more stable trace curves. For details on detectors see chapter 3.2.8.6, "Detector Overview", on page 137.

When measuring Spurious Emissions, using this softkey automatically opens the "Sweep List" dialog (see "Sweep List dialog box" on page 248).

Remote command:

```
[SENSe:]BANDwidth|BWIDth:VIDeo:AUTO on page 636 [SENSe:]BANDwidth|BWIDth:VIDeo on page 636
```

Video BW Auto

Couples the video bandwidth to the resolution bandwidth. If you change the resolution bandwidth, the video bandwidth is automatically adjusted.

This setting is recommended if a minimum sweep time is required for a selected resolution bandwidth. Narrow video bandwidths result in longer sweep times due to the longer settling time. Wide bandwidths reduce the signal/noise ratio.

Remote command:

```
[SENSe:]BANDwidth|BWIDth:VIDeo:AUTO on page 636
```

Sweeptime Manual

Opens an edit dialog box to enter the sweep time.

Sweep time	
absolute max. sweep time value:	16000 s
absolute min. sweep time value:	zero span: 1 µs
	span > 0: depends on device model (refer to data sheet)

Allowed values depend on the ratio of span to RBW and RBW to VBW. For details refer to the data sheet.

Numeric input is always rounded to the nearest possible sweep time. For rotary knob or UPARROW/DNARROW key inputs, the sweep time is adjusted in steps either downwards or upwards.

The manual input mode of the sweep time is indicated by a green bullet next to the "SWT" display in the channel bar. If the selected sweep time is too short for the selected bandwidth and span, level measurement errors will occur due to a too short settling time for the resolution or video filters. In this case, the R&S FSV displays the error message "UNCAL" and marks the indicated sweep time with a red bullet.

When measuring Spurious Emissions, using this softkey automatically opens the "Sweep List" dialog, see "Sweep List dialog box" on page 248.

```
SWE:TIME:AUTO OFF, see [SENSe:]SWEep:TIME:AUTO on page 705 [SENSe:]SWEep:TIME on page 705
```

Measurement Parameters

Sweeptime Auto

Couples the sweep time to the span, video bandwidth (VBW) and resolution bandwidth (RBW) (not available for zero span). If you change the span, resolution bandwidth or video bandwidth, the sweep time is automatically adjusted.

The R&S FSV always selects the shortest sweep time that is possible without falsifying the signal. The maximum level error is < 0.1 dB, compared to using a longer sweep time.

When measuring Spurious Emissions, using this softkey automatically opens the "Sweep List" dialog, see "Sweep List dialog box" on page 248.

Remote command:

```
[SENSe:] SWEep:TIME:AUTO on page 705
```

Sweep Type

Opens a submenu to define the sweep type.

This function is not available in IQ Analyzer mode or for input from the R&S Digital I/Q Interface (option R&S FSV-B17).

In frequency sweep mode, the analyzer provides several possible methods of sweeping:

- "Sweep" on page 107
- "FFT" on page 107 (not available with 5-Pole filters, channel filters or RRC filters, see chapter 3.2.6.3, "Selecting the Appropriate Filter Type", on page 114)
- "Auto" on page 107

Sweep ← Sweep Type

Sets the Sweep Type to standard analog frequency sweep.

In the standard sweep mode, the local oscillator is set to provide the spectrum quasi analog from the start to the stop frequency.

Remote command:

```
SWE:TYPE SWE, see [SENSe:]SWEep:TYPE on page 705
```

FFT ← Sweep Type

Sets the Sweep Type to FFT mode.

The FFT sweep mode samples on a defined frequency value and transforms it to the spectrum by fast Fourier transformation (FFT).

FFT is not available when using 5-Pole filters, Channel filters or RRC filters. In this case, sweep mode is used.

Note: The same applies when a tracking generator (internal or external, options R&S FSV-B9/B10) is active.

Remote command:

```
SWE:TYPE FFT, see [SENSe:] SWEep:TYPE on page 705
```

Auto ← Sweep Type

Automatically sets the fastest available Sweep Type for the current measurement. Auto mode is set by default.

```
SWE: TYPE AUTO, see [SENSe:] SWEep: TYPE on page 705
```

Measurement Parameters

FFT Filter Mode ← Sweep Type

Defines the filter mode to be used for FFT filters by defining the partial span size. The partial span is the span which is covered by one FFT analysis.

Auto ← FFT Filter Mode ← Sweep Type

The firmware determines whether to use wide or narrow filters to obtain the best measurement results.

Remote command:

[SENSe:]BANDwidth|BWIDth[:RESolution]:FFT on page 635

Narrow ← FFT Filter Mode ← Sweep Type

For an RBW ≤ 10kHz, the FFT filters with the smaller partial span are used. This allows you to perform measurements near a carrier with a reduced reference level due to a narrower analog prefilter.

Remote command:

[SENSe:]BANDwidth|BWIDth[:RESolution]:FFT on page 635

Coupling Ratio

Opens a submenu to select the coupling ratios for functions coupled to the bandwidth.

RBW/VBW Sine [1/1] ← Coupling Ratio

Sets the following coupling ratio:

"video bandwidth = resolution bandwidth"

This is the default setting for the coupling ratio resolution bandwidth/video bandwidth.

This is the coupling ratio recommended if sinusoidal signals are to be measured.

This setting takes effect if you define the video bandwidth automatically (Video BW Auto).

Remote command:

BAND:VID:RAT 1, see [SENSe:]BANDwidth|BWIDth:VIDeo:RATio on page 637

RBW/VBW Pulse [.1] ← Coupling Ratio

Sets the following coupling ratio:

"video bandwidth = 10 × resolution bandwidth or"

"video bandwidth = 10 MHz (= max. VBW)."

This coupling ratio is recommended whenever the amplitudes of pulsed signals are to be measured correctly. The IF filter is exclusively responsible for pulse shaping. No additional evaluation is performed by the video filter.

This setting takes effect if you define the video bandwidth automatically (Video BW Auto).

Remote command:

BAND:VID:RAT 10, see [SENSe:]BANDwidth|BWIDth:VIDeo:RATio on page 637

RBW/VBW Noise [10] ← Coupling Ratio

Sets the following coupling ratio:

Measurement Parameters

"video bandwidth = resolution bandwidth/10"

At this coupling ratio, noise and pulsed signals are suppressed in the video domain. For noise signals, the average value is displayed.

This setting takes effect if you define the video bandwidth automatically (Video BW Auto).

Remote command:

```
BAND:VID:RAT 0.1, see [SENSe:]BANDwidth|BWIDth:VIDeo:RATio on page 637
```

RBW/VBW Manual ← Coupling Ratio

Activates the manual input of the coupling ratio.

The resolution bandwidth/video bandwidth ratio can be set in the range 0.001 to 1000.

This setting takes effect if you define the video bandwidth automatically (Video BW Auto).

Remote command:

```
BAND:VID:RAT 10, see [SENSe:]BANDwidth|BWIDth:VIDeo:RATio on page 637
```

Span/RBW Auto [100] ← Coupling Ratio

Sets the following coupling ratio:

"resolution bandwidth = span/100"

This coupling ratio is the default setting of the R&S FSV.

This setting takes effect if you define the resolution bandwidth automatically (Res BW Auto).

Remote command:

```
BAND:VID:RAT 0.001, see [SENSe:]BANDwidth|BWIDth:VIDeo:RATio on page 637
```

Span/RBW Manual ← Coupling Ratio

Activates the manual input of the coupling ratio.

This setting takes effect if you define the resolution bandwidth automatically (Res BW Auto).

The span/resolution bandwidth ratio can be set in the range 1 to 10000.

Remote command:

```
BAND: RAT 0.1, see [SENSe:]BANDwidth|BWIDth[:RESolution]: RATio on page 635
```

Default Coupling ← Coupling Ratio

Sets all coupled functions to the default state ("AUTO").

In addition, the ratio "RBW/VBW" is set to "SINE [1/1]" and the ratio "SPAN/RBW" to 100.

```
[SENSe:]BANDwidth|BWIDth[:RESolution]:AUTO on page 634
[SENSe:]BANDwidth|BWIDth:VIDeo:AUTO on page 636
[SENSe:]SWEep:TIME:AUTO on page 705
```

Measurement Parameters

Filter Type

Opens a submenu to select the filter type.

When measuring Spurious Emissions, using this softkey automatically opens the "Sweep List" dialog (see "Sweep List dialog box" on page 248).

The submenu contains the following softkeys:

- Normal (3 dB)
- CISPR (6 dB)
- MIL Std (6 dB)

Note that the 6 dB bandwidths are available only with option R&S FSV-K54.

- Channel
- RRC
- 5-Pole (not available for sweep type "FFT")

For detailed information on filters see chapter 3.2.6.3, "Selecting the Appropriate Filter Type", on page 114 and chapter 3.2.6.4, "List of Available RRC and Channel Filters", on page 115.

Remote command:

[SENSe:]BANDwidth|BWIDth[:RESolution]:TYPE on page 636

3.2.6.2 Specifying the Bandwidth

- 1. Set the resolution bandwidth using the Res BW Manual or Res BW Auto softkey.
- 2. Set the video bandwidth using the Video BW Manual or Video BW Auto softkey.
- 3. Set the sweep time using the Sweeptime Manual or Sweeptime Auto softkey.
- 4. Press the Filter Type softkey and select the appropriate filters.

3.2.6.3 Selecting the Appropriate Filter Type

All resolution bandwidths are realized with digital filters.

The video filters are responsible for smoothing the displayed trace. Using video bandwidths that are small compared to the resolution bandwidth, only the signal average is displayed and noise peaks and pulsed signals are repressed. If pulsed signals are to be measured, it is advisable to use a video bandwidth that is large compared to the resolution bandwidth (VBW * 10 x RBW) for the amplitudes of pulses to be measured correctly.

The following filter types are available:

- Normal (3dB) (Gaussian) filters
 The Gaussian filters are set by default. The available bandwidths are specified in the data sheet.
- CISPR (6 dB) filters
- MIL Std (6 dB) filters
 Note that the 6 dB bandwidths are available only with option R&S FSV-K54.
- Channel filters

Measurement Parameters

For details see chapter 3.2.6.4, "List of Available RRC and Channel Filters", on page 115 .

Channel filters do not support FFT mode.

RRC filters

For details see chapter 3.2.6.4, "List of Available RRC and Channel Filters", on page 115 .

RRC filters do not support FFT mode.

• 5-Pole filters

The available bandwidths are specified in the data sheet. 5-Pole filters do not support FFT mode.

3.2.6.4 List of Available RRC and Channel Filters

For power measurement a number of especially steep-edged channel filters are available (see the following table). The indicated filter bandwidth is the 3 dB bandwidth. For RRC filters, the fixed roll-off factor (a) is also indicated.

Table 3-3: Filter types

Filter Bandwidth	Filter Type	Application
100 Hz	CFILter	
200 Hz	CFILter	A0
300 Hz	CFILter	
500 Hz	CFILter	
1 kHz	CFILter	
1.5 kHz	CFILter	
2 kHz	CFILter	
2.4 kHz	CFILter	SSB
2.7 kHz	CFILter	
3 kHz	CFILter	
3.4 kHz	CFILter	
4 kHz	CFILter	DAB, Satellite
4.5 kHz	CFILter	
5 kHz	CFILter	
6 kHz	CFILter	
6 kHz, a=0.2	RRC	APCO
8.5 kHz	CFILter	ETS300 113 (12.5 kHz channels)
9 kHz	CFILter	AM Radio

Measurement Parameters

Filter Bandwidth	Filter Type	Application
10 kHz	CFILter	
12.5 kHz	CFILter	CDMAone
14 kHz	CFILter	ETS300 113 (20 kHz channels)
15 kHz	CFILter	
16 kHz	CFILter	ETS300 113 (25 kHz channels)
18 kHz, a=0.35	RRC	TETRA
20 kHz	CFILter	
21 kHz	CFILter	PDC
24.3 kHz, a=0.35	RRC	IS 136
25 kHz	CFILter	
30 kHz	CFILter	CDPD, CDMAone
50 kHz	CFILter	
100 kHz	CFILter	
150 kHz	CFILter	FM Radio
192 kHz	CFILter	PHS
200 kHz	CFILter	
300 kHz	CFILter	
500 kHz	CFILter	J.83 (8-VSB DVB, USA)
1 MHz	CFILter	CDMAone
1.228 MHz	CFILter	CDMAone
1.28 MHz, a=0.22	RRC	
1.5 MHz	CFILter	DAB
2 MHz	CFILter	
3 MHz	CFILter	
3.75 MHz	CFILter	
3.84 MHz, a=0.22	RRC	W-CDMA 3GPP
4.096 MHz, a=0.22	RRC	W-CDMA NTT DOCoMo
5 MHz	CFILter	
20 MHz	CFILter	
28 MHz	CFILter	
40 MHz	CFILter	

Measurement Parameters

3.2.7 Configuring the Sweep Mode - SWEEP Key

The SWEEP key is used to configure the sweep mode. Continuous sweep or single sweep is possible. The sweep time and the number of measured values are set.

To open the Sweep menu

Press the SWEEP key.
 The "Sweep" menu is displayed.

Menu and softkey description

chapter 3.2.7.1, "Softkeys of the Sweep Menu", on page 117

Task

• chapter 3.2.7.2, "Specifying the Sweep Settings", on page 122

3.2.7.1 Softkeys of the Sweep Menu

The following table shows all softkeys available in the "Sweep" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is provided in the corresponding softkey description.

Continuous Sweep	117
Single Sweep	118
Continue Single Sweep	
Sweeptime Manual	
Sweeptime Auto	
Sweep Type	
L Sweep	
L FFT	
L Auto	
L FFT Filter Mode	120
L Auto	120
L Narrow	120
Sweep Count	120
Sweep Points	121
Select Frame	121
Continue Frame (On Off)	121
Frame Count	
Spectrogram Clear	

Continuous Sweep

Sets the continuous sweep mode: the sweep takes place continuously according to the trigger settings. This is the default setting.

Measurement Parameters

The trace averaging is determined by the sweep count value (see the "Sweep Count" softkey, "Sweep Count" on page 120).

Remote command:

INIT: CONT ON, see INITiate < n >: CONTinuous on page 610

Single Sweep

Sets the single sweep mode: after triggering, starts the number of sweeps that are defined by using the Sweep Count softkey. The measurement stops after the defined number of sweeps has been performed.

Remote command:

INIT: CONT OFF, see INITiate < n >: CONTinuous on page 610

Continue Single Sweep

Repeats the number of sweeps set by using the Sweep Count softkey, without deleting the trace of the last measurement.

This is particularly of interest when using the trace configurations "Average" or "Max Hold" to take previously recorded measurements into account for averaging/maximum search.

For details on trace configuration refer to chapter 3.2.8, "Setting Traces – TRACE Key", on page 122.

Remote command:

INITiate<n>:CONMeas on page 610

Sweeptime Manual

Opens an edit dialog box to enter the sweep time.

Sweep time	
absolute max. sweep time value:	16000 s
absolute min. sweep time value:	zero span: 1 µs
	span > 0: depends on device model (refer to data sheet)

Allowed values depend on the ratio of span to RBW and RBW to VBW. For details refer to the data sheet.

Numeric input is always rounded to the nearest possible sweep time. For rotary knob or UPARROW/DNARROW key inputs, the sweep time is adjusted in steps either downwards or upwards.

The manual input mode of the sweep time is indicated by a green bullet next to the "SWT" display in the channel bar. If the selected sweep time is too short for the selected bandwidth and span, level measurement errors will occur due to a too short settling time for the resolution or video filters. In this case, the R&S FSV displays the error message "UNCAL" and marks the indicated sweep time with a red bullet.

Measurement Parameters

When measuring Spurious Emissions, using this softkey automatically opens the "Sweep List" dialog, see "Sweep List dialog box" on page 248.

Remote command:

```
SWE:TIME:AUTO OFF, see [SENSe:]SWEep:TIME:AUTO on page 705 [SENSe:]SWEep:TIME on page 705
```

Sweeptime Auto

Couples the sweep time to the span, video bandwidth (VBW) and resolution bandwidth (RBW) (not available for zero span). If you change the span, resolution bandwidth or video bandwidth, the sweep time is automatically adjusted.

The R&S FSV always selects the shortest sweep time that is possible without falsifying the signal. The maximum level error is < 0.1 dB, compared to using a longer sweep time.

When measuring Spurious Emissions, using this softkey automatically opens the "Sweep List" dialog, see "Sweep List dialog box" on page 248.

Remote command:

```
[SENSe:] SWEep:TIME:AUTO on page 705
```

Sweep Type

Opens a submenu to define the sweep type.

This function is not available in IQ Analyzer mode or for input from the R&S Digital I/Q Interface (option R&S FSV-B17).

In frequency sweep mode, the analyzer provides several possible methods of sweeping:

- "Sweep" on page 107
- "FFT" on page 107 (not available with 5-Pole filters, channel filters or RRC filters, see chapter 3.2.6.3, "Selecting the Appropriate Filter Type", on page 114)
- "Auto" on page 107

Sweep ← Sweep Type

Sets the Sweep Type to standard analog frequency sweep.

In the standard sweep mode, the local oscillator is set to provide the spectrum quasi analog from the start to the stop frequency.

Remote command:

```
SWE:TYPE SWE, see [SENSe:] SWEep:TYPE on page 705
```

FFT ← **Sweep Type**

Sets the Sweep Type to FFT mode.

The FFT sweep mode samples on a defined frequency value and transforms it to the spectrum by fast Fourier transformation (FFT).

FFT is not available when using 5-Pole filters, Channel filters or RRC filters. In this case, sweep mode is used.

Note: The same applies when a tracking generator (internal or external, options R&S FSV-B9/B10) is active.

```
SWE:TYPE FFT, see [SENSe:]SWEep:TYPE on page 705
```

Measurement Parameters

Auto ← Sweep Type

Automatically sets the fastest available Sweep Type for the current measurement. Auto mode is set by default.

Remote command:

SWE: TYPE AUTO, see [SENSe:] SWEep: TYPE on page 705

FFT Filter Mode ← Sweep Type

Defines the filter mode to be used for FFT filters by defining the partial span size. The partial span is the span which is covered by one FFT analysis.

Auto ← FFT Filter Mode ← Sweep Type

The firmware determines whether to use wide or narrow filters to obtain the best measurement results.

Remote command:

[SENSe:]BANDwidth|BWIDth[:RESolution]:FFT on page 635

Narrow ← FFT Filter Mode ← Sweep Type

For an RBW ≤ 10kHz, the FFT filters with the smaller partial span are used. This allows you to perform measurements near a carrier with a reduced reference level due to a narrower analog prefilter.

Remote command:

[SENSe:]BANDwidth|BWIDth[:RESolution]:FFT on page 635

Sweep Count

Opens an edit dialog box to enter the number of sweeps to be performed in the single sweep mode. Values from 0 to 32767 are allowed. If the values 0 or 1 are set, one sweep is performed. The sweep count is applied to all the traces in a diagram.

If the trace configurations "Average", "Max Hold" or "Min Hold" are set, the sweep count value also determines the number of averaging or maximum search procedures.

In continuous sweep mode, if sweep count = 0 (default), averaging is performed over 10 sweeps. For sweep count =1, no averaging, maxhold or minhold operations are performed.

For details on trace configuration see chapter 3.2.8, "Setting Traces – TRACE Key", on page 122.

Example:

- Press the TRACE key > Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6 softkey >
 "Max Hold" on page 124 softkey.
- Press the SWEEP key > "Sweep Count" softkey.
- In the "Average Sweep Count" dialog box, enter 10.
- Press the "Single Sweep" on page 118 softkey:
 R&S FSV performs the "Max Hold" function over 10 sweeps.

Remote command:

[SENSe:] SWEep:COUNt on page 699

Measurement Parameters

Sweep Points

Opens an edit dialog box to enter the number of measured values to be collected during one sweep.

- Entry via rotary knob:
 - In the range from 101 to 1001, the sweep points are increased or decreased in steps of 100 points.
 - In the range from 1001 to 32001, the sweep points are increased or decreased in steps of 1000 points.
- Entry via keypad:

All values in the defined range can be set.

The default value is 691 sweep points.

When measuring spurious emissions, using this softkey automatically opens the "Sweep List" dialog, see "Sweep List dialog box" on page 248.

Remote command:

[SENSe:] SWEep:POINts on page 704

Select Frame

For spectrogram measurements only.

Opens a dialog box to select a specific frame and loads the corresponding trace from the memory.

Note that activating a marker or changing the position of the active marker automatically selects the frame that belongs to that marker.

This softkey is available in single sweep mode or if the sweep is stopped.

Remote command:

CALCulate<n>:SGRam:FRAMe:SELect on page 589

Continue Frame (On Off)

For spectrogram measurements only.

Determines whether the results of the last measurement are deleted before starting a new measurement.

On

Repeats the single sweep measurement without deleting the spectrogram results of the last measurement. One of the following trace modes is to be used: Max Hold, Min Hold, Average.

Off

Deletes the last measurement results before performing a single sweep measurement.

This softkey is available in single sweep mode.

Remote command:

CALCulate<n>:SGRam:CONT on page 588

Frame Count

For spectrogram measurements only.

Opens a dialog box to set the number of frames to be captured in a single sweep.

Measurement Parameters

Therefore, the frame count defines the number of traces the R&S FSV plots in the Spectrogram result display in a single sweep. The maximum number of possible frames depends on the history depth (see CALCulate<n>: SGRam: HDEPth on page 589).

The sweep count, on the other hand, determines how many sweeps are combined in one frame in the Spectrogram, i.e. how many sweeps the R&S FSV performs to plot one trace in the Spectrogram result display (see "Sweep Count" on page 120).

This softkey is available in single sweep mode.

Remote command:

CALCulate<n>:SGRam:FRAMe:COUNt on page 589

Spectrogram Clear

For spectrogram measurements only.

Resets the Spectrogram result display and clears its history buffer.

Remote command:

CALCulate<n>:SGRam:CLEar[:IMMediate] on page 587

3.2.7.2 Specifying the Sweep Settings

- 1. Press the Sweep Count softkey and enter the sweep count.
- 2. Press the Sweeptime Manual or Sweeptime Auto softkey to set the sweep time.
- 3. Press the Sweep Type softkey to select the sweep type.
- 4. Press the Sweep Points softkey and enter the number of sweep points.
- 5. Press the Continuous Sweep or Single Sweep softkey to select the sweep mode.
- 6. Press the Continue Single Sweep softkey to repeat the single sweep.

3.2.8 Setting Traces – TRACE Key

The TRACE key is used to configure the data acquisition for measurement and the analysis of the measurement data.

The R&S FSV is capable of displaying up to six different traces at a time in a diagram. A trace consists of a maximum of 691 displayed measurement points on the horizontal axis (frequency or time). If more measured values than measurement points are available, several measured values are combined in one displayed measurement point.

The trace functions include the following:

- Display mode of the trace
 For details on trace modes see chapter 3.2.8.4, "Trace Mode Overview", on page 134.
- Evaluation of the trace as a whole
 For details on averaging see chapter 3.2.8.5, "Description of the Averaging Method", on page 135.

Measurement Parameters

 Evaluation of individual measurement points of a trace. For details on detectors see chapter 3.2.8.6, "Detector Overview", on page 137.

To open the Trace menu

Press the TRACE key.
 The "Trace" menu is displayed. The "Trace Configuration" dialog box is displayed.

Menu and softkey description

• chapter 3.2.8.1, "Softkeys of the Trace Menu", on page 123

Further information

- chapter 3.2.8.4, "Trace Mode Overview", on page 134
- chapter 3.2.8.6, "Detector Overview", on page 137
- chapter 3.2.8.7, "ASCII File Export Format", on page 138

Tasks

- chapter 3.2.8.2, "Configuring Traces", on page 132
- chapter 3.2.8.3, "Specifying the Trace Settings", on page 133

3.2.8.1 Softkeys of the Trace Menu

The following table shows all softkeys available in the "Trace" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is provided in the corresponding softkey description.

Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6	124
L Clear Write	124
L Max Hold	124
L Min Hold	125
L Average	125
L View	
L Blank	125
L Hold/Cont	125
L Detector	
L Auto Select	126
L Auto Peak	
L Positive Peak	
L Negative Peak	
L Sample	
L RMS	
L Average	127
L Quasipeak	
L CISPR Average	
L RMS Average	
More Traces	
Copy Trace	

Measurement Parameters

Trace Wizard	128
Spectrogram	128
Average Mode	
L Lin	
L Log.	129
L Power	
ASCII Trace Export	
Decim Sep	
Trace Math	
Trace Math Mode	
L Lin	131
L Log.	
L Power	
Trace Math Position	
Trace Math Off	131

Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6

Selects the active trace (1, 2, 3, 4, 5, 6) and opens the "Trace Mode" submenu for the selected trace.

The default setting is trace 1 in the overwrite mode (see "Clear Write" on page 124), the other traces are switched off (see "Blank" on page 125). For details see chapter 3.2.8.4, "Trace Mode Overview", on page 134.

Tip: To configure several traces in one step, press the Trace Wizard softkey to open a trace configuration dialog. See also chapter 3.2.8.2, "Configuring Traces", on page 132.

Remote command:

Selected via numeric suffix of:TRACe<1...6> commands

Clear Write ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6

Overwrite mode: the trace is overwritten by each sweep. This is the default setting.

All available detectors can be selected.

Remote command:

DISP:TRAC:MODE WRIT, see DISPlay[:WINDow<n>]:TRACe<t>:MODE
on page 601

Max Hold ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6

The maximum value is determined over several sweeps and displayed. The R&S FSV saves the sweep result in the trace memory only if the new value is greater than the previous one.

The detector is automatically set to "Positive Peak".

This mode is especially useful with modulated or pulsed signals. The signal spectrum is filled up upon each sweep until all signal components are detected in a kind of envelope.

This mode is not available for statistics measurements.

Remote command:

DISP:TRAC:MODE MAXH, see DISPlay[:WINDow<n>]:TRACe<t>:MODE on page 601

Measurement Parameters

Min Hold ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6

The minimum value is determined from several measurements and displayed. The R&S FSV saves the smallest of the previously stored/currently measured values in the trace memory.

The detector is automatically set to "Negative Peak".

This mode is useful e.g. for making an unmodulated carrier in a composite signal visible. Noise, interference signals or modulated signals are suppressed whereas a CW signal is recognized by its constant level.

This mode is not available for statistics measurements.

Remote command:

```
DISP:TRAC:MODE MINH, see DISPlay[:WINDow<n>]:TRACe<t>:MODE
on page 601
```

Average ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6

The average is formed over several sweeps. The Sweep Count determines the number of averaging procedures.

All available detectors can be selected. If the detector is automatically selected, the sample detector is used (see chapter 3.2.8.6, "Detector Overview", on page 137).

This mode is not available for statistics measurements.

Remote command:

```
DISP:TRAC:MODE AVER, see DISPlay[:WINDow<n>]:TRACe<t>:MODE
on page 601
```

View ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6

The current contents of the trace memory are frozen and displayed.

Note: If a trace is frozen, the instrument settings, apart from level range and reference level (see below), can be changed without impact on the displayed trace. The fact that the displayed trace no longer matches the current instrument setting is indicated by the icon on the tab label.

If the level range or reference level is changed, the R&S FSV automatically adapts the measured data to the changed display range. This allows an amplitude zoom to be made after the measurement in order to show details of the trace.

Remote command:

```
DISP:TRAC:MODE VIEW, see DISPlay[:WINDow<n>]:TRACe<t>:MODE
on page 601
```

Blank ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6

Hides the selected trace.

Remote command:

```
DISP:TRAC OFF, see DISPlay[:WINDow<n>]:TRACe<t>[:STATe] on page 601
```

Hold/Cont ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6

Switches the reset of the traces in Min Hold, Max Hold and Average mode after some specific parameter changes have been made on and off. The default setting is off.

Measurement Parameters

Normally, the measurement is started anew after parameter changes, before the measurement results are evaluated (e.g. using a marker). In all cases that require a new measurement after parameter changes, the trace is reset automatically to avoid false results (e.g. with span changes). For applications that require no reset after parameter changes, the automatic reset can be switched off.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:MODE:HCONtinuous on page 602

Detector ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6

Opens a submenu to select the detector manually, or activate automatic selection.

Note: When measuring spurious emissions, using this softkey automatically opens the Sweep List dialog, see "Sweep List dialog box" on page 248.

If a detector was selected manually, the "MAN" indicator is highlighted.

If "AUTO" is selected, the detector is defined automatically, depending on the selected trace mode:

Trace mode	Detector
Clear Write	Auto Peak
Max Hold	Positive Peak
Min Hold	Negative Peak
Average	Sample Peak
View	-
Blank	-

For details see chapter 3.2.8.6, "Detector Overview", on page 137.

Auto Select \leftarrow Detector \leftarrow Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6 Selects the best detector for the selected trace and filter mode. This is the default setting.

For details see also chapter 3.2.8.6, "Detector Overview", on page 137.

Trace mode	Detector
Clear/Write	Auto Peak
Average	Sample
Max Hold	Max Peak
Min Hold	Min Peak

Remote command:

[SENSe:] [WINDow:] DETector<trace>[:FUNCtion]:AUTO on page 707

Auto Peak ← **Detector** ← **Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6** Selects the "Auto Peak" detector.

Measurement Parameters

For details see chapter 3.2.8.6, "Detector Overview", on page 137.

Remote command:

DET APE, see [SENSe:] [WINDow:] DETector<trace>[:FUNCtion] on page 706

Positive Peak ← Detector ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6 Selects the "Positive Peak" detector.

For details see chapter 3.2.8.6, "Detector Overview", on page 137.

Remote command:

DET POS, see [SENSe:][WINDow:]DETector<trace>[:FUNCtion]
on page 706

Negative Peak ← Detector ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6 Selects the "Negative Peak" detector.

For details see chapter 3.2.8.6, "Detector Overview", on page 137.

Remote command:

DET NEG, see [SENSe:][WINDow:]DETector<trace>[:FUNCtion] on page 706

Sample ← Detector ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6 Selects the "Sample" detector.

For details see chapter 3.2.8.6, "Detector Overview", on page 137.

Remote command:

DET SAMP, see [SENSe:] [WINDow:]DETector<trace>[:FUNCtion]
on page 706

RMS ← Detector ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6 Selects the "RMS" detector.

For details see chapter 3.2.8.6, "Detector Overview", on page 137.

Remote command:

DET RMS, see [SENSe:][WINDow:]DETector<trace>[:FUNCtion] on page 706

Average \leftarrow Detector \leftarrow Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6 Selects the "Average" detector.

For details see chapter 3.2.8.6, "Detector Overview", on page 137.

Remote command:

DET AVER, see [SENSe:] [WINDow:]DETector<trace>[:FUNCtion]
on page 706

Quasipeak ← Detector ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6 Selects the "Quasipeak" detector.

The quasipeak detector is available with option R&S FSV-K54.

Measurement Parameters

For details see chapter 3.2.8.6, "Detector Overview", on page 137.

Remote command:

```
DET QPE, see [SENSe:] [WINDow:] DETector<trace>[:FUNCtion] on page 706
```

CISPR Average ← Detector ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6 Selects the "CISPR Average" detector.

The CISPR Average detector is available with option R&S FSV-K54.

For details see chapter 3.2.8.6, "Detector Overview", on page 137.

Remote command:

```
DET CAV, see [SENSe:] [WINDow:] DETector<trace>[:FUNCtion] on page 706
```

RMS Average ← Detector ← Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6 Selects the "RMS Average" detector.

The quasipeak detector is available with option R&S FSV-K54.

For details see chapter 3.2.8.6, "Detector Overview", on page 137.

Remote command:

```
DET CRMS, see [SENSe:] [WINDow:]DETector<trace>[:FUNCtion]
on page 706
```

More Traces

Opens a submenu to select one of the traces not currently displayed in the main menu.

Copy Trace

Opens an edit dialog box to enter the number of the trace memory in which the currently selected trace will be copied.

Remote command:

```
TRACe<n>: COPY on page 732
```

Trace Wizard

Opens the "Trace Wizard" dialog. See chapter 3.2.8.2, "Configuring Traces", on page 132.

Spectrogram

Opens the submenu for the spectrogram view (firmware option R&S FSV-K14).

For details on this application refer to chapter 3.10, "Instrument Functions - Spectrogram Measurements", on page 413.

Average Mode

Opens a submenu to select the averaging method for the average trace mode. The following methods are available:

- Lin
- Log
- Power

Measurement Parameters

Logarithmic averaging is recommended to display signals with a low signal to noise ratio. While positive peak values are decreased in logarithmic averaging due to the characteristics involved, it is also true that negative peaks are increased relative to the average value. If the distorted amplitude distribution is averaged, a value is obtained that is smaller than the actual average value. The difference is -2.5 dB.

This low average value is usually corrected in noise power measurements by a 2.5 dB factor. Therefore the R&S FSV offers the selection of linear averaging. The trace data is converted to linear values prior to averaging, then averaged and reconverted to logarithmic values. After these conversions the data is displayed on the screen. The average value is always correctly displayed irrespective of the signal characteristic.

In case of stationary sinusoidal signals both logarithmic and linear averaging has the same results.

Lin ← Average Mode

Activates linear averaging. Linear averaging means that the power level values are converted into linear units prior to averaging. After the averaging, the data is converted back into its original unit.

This softkey takes effect if the grid is set to a linear scale (see "Range Linear" softkey, "Range Linear %" on page 98). In this case, the averaging is done in two ways (depending on the set unit – see "Unit" softkey):

- The unit is set to either W or dBm: the data is converted into W prior to averaging, i.e. averaging is done in W.
- The unit is set to either V, A, dBmV, dBμV, dBμA or dBpW: the data is converted into V prior to averaging, i.e. averaging is done in V.

Remote command:

```
SENS:AVER1:TYPE LIN, see [SENSe:]AVERage<n>:TYPE on page 633
```

Log ← **Average Mode**

Activates logarithmic averaging.

This averaging method only takes effect if the grid is set to a logarithmic scale ("Range" softkey), i.e. the unit of the data is dBm. In this case the values are averaged in dBm. Otherwise (i.e. with linear scaling), the behavior is the same as with linear averaging (see Lin softkey). For further information on logarithmic scaling refer to the "Average Mode" softkey.

Remote command:

```
SENS:AVER1:TYPE VID, see [SENSe:]AVERage<n>:TYPE on page 633
```

Power ← **Average Mode**

Activates linear power averaging.

The power level values are converted into unit Watt prior to averaging. After the averaging, the data is converted back into its original unit.

Unlike the linear mode, the averaging is always done in W.

```
SENS:AVER1:TYPE POW, see [SENSe:]AVERage<n>:TYPE on page 633
```

Measurement Parameters

ASCII Trace Export

Opens the "ASCII Trace Export Name" dialog box and saves the active trace in ASCII format to the specified file and directory.

The file consists of the header containing important scaling parameters and a data section containing the trace data. For details on an ASCII file see chapter 3.2.8.7, "ASCII File Export Format", on page 138.

This format can be processed by spreadsheet calculation programs, e.g. MS-Excel. It is necessary to define ';' as a separator for the data import. Different language versions of evaluation programs may require a different handling of the decimal point. It is therefore possible to select between separators '.' (decimal point) and ',' (comma) using the "Decim Sep" softkey (see "Decim Sep" on page 71).

If the spectrogram display is selected when you perform this function, the entire histogram buffer with all frames is exported to a file. The data corresponding to a particular frame begins with information about the frame number and the time that frame was recorded. For large history buffers the export operation may take some time. For details see chapter 3.10.4, "ASCII File Export Format for Spectrograms", on page 423.

Remote command:

```
FORMat:DEXPort:DSEParator on page 609
MMEMory:STORe<n>:TRACe on page 624
MMEMory:STORe:SGRam on page 623
```

Decim Sep

Selects the decimal separator with floating-point numerals for the ASCII Trace export to support evaluation programs (e.g. MS-Excel) in different languages. The values '.' (decimal point) and ',' (comma) can be set.

Remote command:

FORMat: DEXPort: DSEParator on page 609

Trace Math

Opens the "Trace Mathematics" dialog box to define which trace is subtracted from trace 1. The result is displayed in trace 1 and refers to the zero point defined with the Trace Math Position softkey. The following subtractions can be performed:

"T1"->"T1"-"T2"	Subtracts trace 2 from trace 1.
"T1"->"T1"-"T3"	Subtracts trace 3 from trace 1
"T1"->"T1"-"T4"	Subtracts trace 4 from trace 1
"T1"->"T1"-"T5"	Subtracts trace 5 from trace 1
"T1"->"T1"-"T6"	Subtracts trace 6 from trace 1

To switch off the trace math, use the Trace Math Off softkey.

```
CALCulate<n>:MATH[:EXPression][:DEFine] on page 583 CALCulate<n>:MATH:STATe on page 584
```

Measurement Parameters

Trace Math Mode

Opens a submenu to select the mode for the trace math calculations.

Lin ← Trace Math Mode

Activates linear subtraction, which means that the power level values are converted into linear units prior to subtraction. After the subtraction, the data is converted back into its original unit.

This softkey takes effect if the grid is set to a linear scale (see Range softkey). In this case, subtraction is done in two ways (depending on the set unit – see Unit softkey):

- The unit is set to either W or dBm: the data is converted into W prior to subtraction, i.e. averaging is done in W.
- The unit is set to either V, A, dBmV, dBμV, dBμA or dBpW: the data is converted into V prior to subtraction, i.e. subtraction is done in V.

Remote command:

CALC:MATH:MODE LIN, see CALCulate<n>:MATH:MODE on page 584

Log ← **Trace Math Mode**

Activates logarithmic subtraction.

This subtraction method only takes effect if the grid is set to a logarithmic scale (see Range softkey), i.e. the unit of the data is dBm. In this case the values are subtracted in dBm. Otherwise (i.e. with linear scaling) the behavior is the same as with linear subtraction (see Lin softkey). For further information on logarithmic scaling refer to the Average Mode softkey.

Remote command:

CALC:MATH:MODE LOG, see CALCulate<n>:MATH:MODE on page 584

Power ← Trace Math Mode

Activates linear power subtraction.

The power level values are converted into unit Watt prior to subtraction. After the subtraction, the data is converted back into its original unit.

Unlike the linear mode, the subtraction is always done in W.

Remote command:

CALC:MATH:MODE POW, see CALCulate<n>:MATH:MODE on page 584

Trace Math Position

Opens an edit dialog box to define the zero point in % of the diagram height. The range of values extends from -100 % to +200 %.

Remote command:

CALCulate<n>:MATH:POSition on page 583

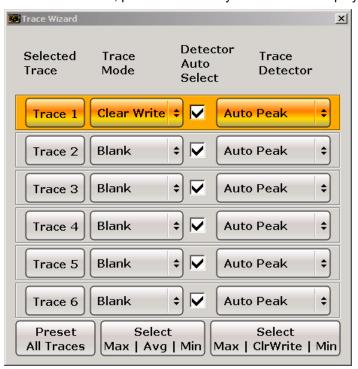
Trace Math Off

Deactivates any previously selected trace math functions.

Remote command:

CALC:MATH:STAT OFF, see CALCulate<n>:MATH:STATe on page 584

Measurement Parameters


3.2.8.2 Configuring Traces

1. To open the trace wizard, press the TRACE key and then the "Trace Wizard" softkey (see "Trace Wizard" on page 128).

Tip: Context-sensitive menus for traces. Traces have context-sensitive menus. If you right-click on a trace in the display or a trace setting in the information channel bar (or touch it for about 1 second), a menu is displayed which corresponds to the softkey functions available for traces. This is useful, for example, when the softkey display is hidden

If a menu entry contains an arrow to the right of it, a submenu is available for that entry.

To close the menu, press the ESC key or click in the display outside of the menu.

2. For each trace you can define the following settings:

Measurement Parameters

Display Mode	 Clear Write Max Hold Min Hold Average View Blank For details see chapter 3.2.8.4, "Trace Mode Overview", on page 134.
Detector Auto Select	Activates automatic detector selection (see Auto Select softkey). If activated, the "Trace Detector" setting is ignored.
Trace Detector	Defines a specific trace detector. If one of the following settings is defined, the "Detector Auto Select" option is deactivated. • "Auto Select" on page 126 • "Auto Peak" on page 127 • "Positive Peak" on page 127 • "Negative Peak" on page 127 • "Sample" on page 127 • "RMS" on page 127 • "Average" on page 127 • "Quasipeak" on page 127

3. To configure several traces to predefined display modes in one step, press the button for the required function:

Preset All Traces	Trace 1: Clear Write Trace 2-6: Blank
Select Max Avg Min	Trace 1: Max Hold Trace 2: Average Trace 3: Min Hold Trace 4-6: Blank
Select Max ClrWrite Min	Trace 1: Max Hold Trace 2: Clear Write Trace 3: Min Hold Trace 4-6: Blank

For details see chapter 3.2.8.4, "Trace Mode Overview", on page 134.

3.2.8.3 Specifying the Trace Settings

- 1. To configure one or more traces, see chapter 3.2.8.2, "Configuring Traces", on page 132.
- 2. To select the trace mode for the selected trace, press the softkey for the corresponding trace (for details see chapter 3.2.8.4, "Trace Mode Overview", on page 134).
- To select a detector, press the Auto Select softkey for automatic detector selection, or press the Detector softkey (for details see chapter 3.2.8.6, "Detector Overview", on page 137).

Measurement Parameters

- 4. To change the sweep count setting, which also determines trace averaging, press the Sweep Count softkey.
- 5. To deactivate the reset of the traces in "Min Hold" and "Max Hold" mode after some specific parameter changes, press the Trace Math softkey.
- To copy a trace into another trace memory, press the Copy Trace softkey.
 Upon copying, the contents of the selected memory are overwritten and the new contents are displayed in the View mode.
- 7. To export the active trace in ASCII format:
 - a) Press the "More" softkey.
 - b) If necessary, press the Decim Sep softkey to change the decimal separator with floating-point numerals.
 - c) Press the ASCII File Export softkey to enter the ASCII file export name. The active trace is saved in ASCII format on the harddisk on or an external storage device.

3.2.8.4 Trace Mode Overview

The traces can be activated individually for a measurement or frozen after completion of a measurement. Traces that are not activate are hidden. Each time the trace mode is changed, the selected trace memory is cleared.

The R&S FSV offers 6 different trace modes:

Clear Write

Overwrite mode: the trace is overwritten by each sweep. This is the default setting. All available detectors can be selected.

Remote command:

```
DISP:TRAC:MODE WRIT, see DISPlay[:WINDow<n>]:TRACe<t>:MODE
on page 601
```

Max Hold

The maximum value is determined over several sweeps and displayed. The R&S FSV saves the sweep result in the trace memory only if the new value is greater than the previous one.

The detector is automatically set to "Positive Peak".

This mode is especially useful with modulated or pulsed signals. The signal spectrum is filled up upon each sweep until all signal components are detected in a kind of envelope.

This mode is not available for statistics measurements.

```
DISP:TRAC:MODE MAXH, see DISPlay[:WINDow<n>]:TRACe<t>:MODE
on page 601
```

Measurement Parameters

Min Hold

The minimum value is determined from several measurements and displayed. The R&S FSV saves the smallest of the previously stored/currently measured values in the trace memory.

The detector is automatically set to "Negative Peak".

This mode is useful e.g. for making an unmodulated carrier in a composite signal visible. Noise, interference signals or modulated signals are suppressed whereas a CW signal is recognized by its constant level.

This mode is not available for statistics measurements.

Remote command:

```
DISP:TRAC:MODE MINH, see DISPlay[:WINDow<n>]:TRACe<t>:MODE
on page 601
```

Average

The average is formed over several sweeps. The Sweep Count determines the number of averaging procedures.

All available detectors can be selected. If the detector is automatically selected, the sample detector is used (see chapter 3.2.8.6, "Detector Overview", on page 137).

This mode is not available for statistics measurements.

Remote command:

```
DISP:TRAC:MODE AVER, see DISPlay[:WINDow<n>]:TRACe<t>:MODE
on page 601
```

View

The current contents of the trace memory are frozen and displayed.

Note: If a trace is frozen, the instrument settings, apart from level range and reference level (see below), can be changed without impact on the displayed trace. The fact that the displayed trace no longer matches the current instrument setting is indicated by the icon on the tab label.

If the level range or reference level is changed, the R&S FSV automatically adapts the measured data to the changed display range. This allows an amplitude zoom to be made after the measurement in order to show details of the trace.

Remote command:

```
DISP:TRAC:MODE VIEW, see DISPlay[:WINDow<n>]:TRACe<t>:MODE
on page 601
```

Blank

Hides the selected trace.

Remote command:

```
DISP:TRAC OFF, see DISPlay[:WINDow<n>]:TRACe<t>[:STATe] on page 601
```

3.2.8.5 Description of the Averaging Method

Averaging is carried out over the measurement points derived from the measurement samples. Several measured values may be combined in a measurement point. This

Measurement Parameters

means that with linear level display the average is formed over linear amplitude values. The sweep mode (continuous or single sweep, for details see chapter 3.2.7, "Configuring the Sweep Mode – SWEEP Key", on page 117) and running averaging apply to the average display analogously. In principle, two methods for calculating the average are used: continuous averaging and averaging over the selected number of sweeps.

sweep count > 1

Depending on the relation of the following two parameters, two different situations exist:

n = number of sweeps performed since measurement start

c = sweep count (number of sweeps forming one statistics cycle)

– n≤o

In single sweep or continuous sweep mode during the first statistics cycle, averaging over the selected number of sweeps is performed. The average trace "n" is calculated at each measurement point according to:

$$Avg(n) = \frac{n-1}{n} Avg(n-1) + \frac{1}{n} Curr(n)$$

Fig. 3-2: Equation 1

with Avg = average trace; Curr = current trace

Until the first statistics cycle is completed (n < c), a preliminary average is displayed which represents the arithmetic mean value over all measured sweeps. With n increasing, the displayed trace is increasingly smoothed since there are more single sweeps for averaging.

When the first statistics cycle is completed (n = c), the average trace is saved in the trace memory.

- n > c

In continuous sweep mode after the first statistics cycle, continuous averaging is performed. The average trace "n" is calculated at each measurement point according to:

$$Avg(n) = \frac{c-1}{c}Avg(n-1) + \frac{1}{c}Curr(n)$$

Fig. 3-3: Equation 2

with Avg = average trace; Curr = current trace

In single sweep mode, the same formula is valid if the Continue Single Sweep softkey is pressed.

sweep count = 0

In continuous sweep mode, a continuous average is calculated according to figure 3-3 with c = 10:

$$Avg(n) = \frac{9}{10}Avg(n-1) + \frac{1}{10}Curr(n)$$

Fig. 3-4: Equation 3

with Avg = average trace; Curr = current trace

Measurement Parameters

Due to the weighting between the current trace and the average trace, past values have practically no influence on the displayed trace after about ten sweeps. With this setting, signal noise is effectively reduced without need for restarting the averaging process after a change of the signal.

sweep count = 1
 The current trace is displayed. No averaging is performed. This is a special case of figure 3-2 with n = 0.

3.2.8.6 Detector Overview

The measurement detector for the individual display modes can be selected directly by the user or set automatically by the R&S FSV. The detector activated for the specific trace is indicated in the corresponding trace display field by an abbreviation.

The detectors of the R&S FSV are implemented as pure digital devices. They collect signal power data within each measured point during a sweep. The default number of sweep points is 691. The following detectors are available:

Table 3-4: Detector types

Detector	Indicator	Function
Auto Peak	Ар	Determines the maximum and the minimum value within a measurement point (not available for SEM)
Positive Peak	Pk	Determines the maximum value within a measurement point
Negative Peak (min peak)	Mi	Determines the minimum value within a measurement point
RMS	Rm	Determines the root mean square power within a measurement point
Average	Av	Determines the linear average power within a measurement point
Sample	Sa	Selects the last value within a measurement point

The result obtained from the selected detector within a measurement point is displayed as the power value at this measurement point.

All detectors work in parallel in the background, which means that the measurement speed is independent of the detector combination used for different traces.

Measurement Parameters

Number of measured values

During a frequency sweep, the R&S FSV increments the first local oscillator in steps that are smaller than approximately 1/10 of the bandwidth. This ensures that the oscillator step speed is conform to the hardware settling times and does not affect the precision of the measured power.

The number of measured values taken during a sweep is independent of the number of oscillator steps. It is always selected as a multiple or a fraction of 691 (= default number of trace points displayed on the screen). Choosing less then 691 measured values (e.g. 125 or 251) will lead to an interpolated measurement curve, choosing more than 691 points (e.g. 1001, 2001 ...) will result in several measured values being overlaid at the same frequency position.

RMS detector and VBW

If the RMS detector is selected, the video bandwidth in the hardware is bypassed. Thus, duplicate trace averaging with small VBWs and RMS detector no longer occurs. However, the VBW is still considered when calculating the sweep time. This leads to a longer sweep time for small VBW values. Thus, you can reduce the VBW value to achieve more stable trace curves even when using an RMS detector. Normally, if the RMS detector is used the sweep time should be increased to get more stable trace curves.

3.2.8.7 ASCII File Export Format

The data of the file header consist of three columns, each separated by a semicolon: parameter name; numeric value; basic unit. The data section starts with the keyword "Trace <n>" (<n> = number of stored trace), followed by the measured data in one or several columns (depending on measurement) which are also separated by a semicolon.

File contents: header and data section	Description
Type;FSV;	Instrument model
Version;1.50;	Firmware version
Date;01.Apr 2010;	Date of data set storage
Screen;A;	Instrument mode
Points per Symbol;4;	Points per symbol
x Axis Start;-13;sym;	Start value of the x axis
x Axis Stop;135;sym;	Stop value of the x axis
Ref value y axis;-10.00;dBm;	Y axis reference value
Ref value position;100;%;	Y axis reference position
Trace;1;	Trace number
Meas;Result;	Result type
Meas Signal;Magnitude;	Result display
Demodulator;Offset QPSK;	Demodulation type

Measurement Parameters

File contents: header and data section	Description
ResultMode;Trace;	Result mode
x unit;sym;	Unit of the x axis
y unit;dBm;	Unit of the y axis
Trace Mode;Clear Write;	Trace mode
Values;592;	Number of results
<values></values>	List of results

3.2.9 Triggering the Sweep - TRIG Key

The TRIG key is used to select trigger mode, trigger threshold, trigger delay, trigger polarity and for gated sweep the gate configuration.

To open the Trigger menu

Press the TRIG key.
 The "Trigger" menu is displayed.

Menu and softkey description

chapter 3.2.9.1, "Softkeys of the Trigger Menu", on page 139

Tasks

- chapter 3.2.9.2, "Specifying the Trigger Settings", on page 147
- chapter 3.2.9.3, "Using Gated Sweep Operation", on page 147

3.2.9.1 Softkeys of the Trigger Menu

The following table shows all softkeys available in the "Trigger" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is provided in the corresponding softkey description.

Trg/Gate Source	140
L Free Run	
L External	140
L Video	140
L RF Power	141
L IF Power/BB Power	141
L Power Sensor	142
L Time	142
L Digital IQ	143
Trg/Gate Level	143
Trg/Gate Polarity	
Trigger Offset	
Repetition Interval	

Measurement Parameters

Trigger Hysteresis	144
Trigger Holdoff	
Gated Trigger	
Gate Settings	
L Gate Mode (Lvl/Edge)	
L Gate Delay	
L Gate Length (Gate Mode Edge)	
L Trg/Gate Source	
L Trg/Gate Level	146
L Trg/Gate Polarity	
L Sweep Time	
L Res BW Manual	

Trg/Gate Source

Opens the "Trigger/Gate Source" dialog box to select the trigger/gate mode.

As gate modes, all modes except "Power Sensor" are available. For details see also chapter 3.2.9.3, "Using Gated Sweep Operation", on page 147.

The default setting is "Free Run". If a trigger mode other than "Free Run" has been set, the enhancement label "TRG" is displayed and the trigger source is indicated.

Note: When triggering or gating is activated, the squelch function is automatically disabled (see "Squelch" on page 163).

Remote command:

```
TRIGger<n>[:SEQuence]:SOURce on page 753
[SENSe:]SWEep:EGATe:SOURce on page 701
```

Free Run ← Trg/Gate Source

The start of a sweep is not triggered. Once a measurement is completed, another is started immediately.

Remote command:

```
TRIG:SOUR IMM, see TRIGger<n>[:SEQuence]:SOURce on page 753
```

External ← Trg/Gate Source

Defines triggering via a TTL signal at the "EXT TRIG/GATE IN" input connector on the rear panel.

Remote command:

```
TRIG:SOUR EXT, see TRIGger<n>[:SEQuence]:SOURce on page 753

SWE:EGAT:SOUR EXT for gated triggering, see [SENSe:]SWEep:EGATe:SOURce on page 701
```

Video ← Trg/Gate Source

Defines triggering by the displayed voltage.

A horizontal trigger line is shown in the diagram. It is used to set the trigger threshold from 0 % to 100 % of the diagram height.

Measurement Parameters

Video mode is only available in the time domain.

Remote command:

```
TRIG:SOUR VID, see TRIGger<n>[:SEQuence]:SOURce on page 753

SWE:EGAT:SOUR VID for gated triggering, see [SENSe:]SWEep:EGATe:SOURce on page 701
```

RF Power ← Trg/Gate Source

Defines triggering of the measurement via signals which are outside the measurement channel.

This trigger mode is available with detector board 1307.9554.02 Rev 05.00 or higher. It is not available for input from the R&S Digital I/Q Interface (option R&S FSV-B17). If RF Power trigger mode is selected and digital baseband input is activated, the trigger mode is automatically switched to "Free Run".

In RF Power trigger mode the instrument uses a level detector at the first intermediate frequency. The detector threshold can be selected in a range between - 50 dBm and -10 dBm at the input mixer. The resulting trigger level at the RF input lies within the following range:

```
(-24dBm + RF Att) \le Triggerlevel \le (+5dBm + RF Att), max. 30 dBm, for Preamp = OFF (-40dBm + RF Att) \le Triggerlevel \le (-11dBm + RF Att), max. 30 dBm, for Preamp = ON with
```

```
500 MHz ≤ InputSignal ≤ 7 GHz
```

Note: If input values outside of this range occur (e.g. for fullspan measurements), the sweep may be aborted and a message indicating the allowed input values is displayed in the status bar.

A Trigger Offset, Trg/Gate Polarity and Trigger Holdoff can be defined for the RF trigger to improve the trigger stability, but no hysteresis.

Remote command:

```
TRIG:SOUR RFP, see TRIGger<n>[:SEQuence]:SOURce on page 753
SWE:EGAT:SOUR RFP for gated triggering, see [SENSe:]SWEep:EGATe:SOURce on page 701
```

IF Power/BB Power ← Trg/Gate Source

For this purpose, the R&S FSV uses a level detector at the second intermediate frequency.

The available trigger levels depend on the RF attenuation and preamplification. A reference level offset, if defined, is also considered.

For details on available trigger levels and trigger bandwidths see the data sheet.

The bandwidth at the intermediate frequency depends on the RBW and sweep type:

Sweep mode:

- RBW > 500 kHz: 40 MHz, nominal
- RBW ≤ 500 kHz: 6 MHz, nominal

FFT mode:

- RBW > 20 kHz: 40 MHz, nominal
- RBW ≤ 20 kHz: 6 MHz, nominal

Measurement Parameters

Note: Be aware that in auto sweep type mode, due to a possible change in sweep types, the bandwidth may vary considerably for the same RBW setting.

The R&S FSV is triggered as soon as the trigger level is exceeded around the selected frequency (= start frequency in the frequency sweep).

Thus, the measurement of spurious emissions, e.g. for pulsed carriers, is possible even if the carrier lies outside the selected frequency span.

For digital input via the R&S Digital I/Q Interface (R&S FSV-B17), the baseband power ("BB Power") is used as the trigger source.

Remote command:

```
TRIG:SOUR IFP, see TRIGger<n>[:SEQuence]:SOURce on page 753
TRIG:SOUR BBP for digital input
SWE:EGAT:SOUR IFP for gated triggering, see [SENSe:]SWEep:EGATe:SOURce
on page 701
```

Power Sensor ← Trg/Gate Source

Uses an external power sensor as a trigger function. This option is only available if the R&S FSV-K9 Power Sensor option is installed and a power sensor is connected and configured.

(See chapter 3.9, "Instrument Functions - Power Sensor (R&S FSV-K9)", on page 400.)

Power sensors are configured in the "Input/Output" menu, see chapter 3.9.3, "Configuring an External Power Trigger", on page 405.

If a power sensor is selected as the trigger mode, the following softkeys are not available; these settings are configured in the "Power Sensor Configuration" dialog box (see chapter 3.9.5, "Power Sensor Configuration Dialog", on page 409).

- Trg/Gate Level
- Trg/Gate Polarity
- Trigger Hysteresis
- Trigger Holdoff

Note: For R&S power sensors, the "Gate Mode" *LvI* is not supported. The signal sent by these sensors merely reflects the instant the level is first exceeded, rather than a time period. However, only time periods can be used for gating in level mode. Thus, the trigger impulse from the sensors is not long enough for a fully gated measurement; the measurement cannot be completed.

Remote command:

```
TRIG:SOUR PSE, see TRIGger<n>[:SEQuence]:SOURce on page 753

SWE:EGAT:SOUR PSE for gated triggering, see [SENSe:]SWEep:EGATe:SOURce on page 701

TRACe<n>:IQ:SET on page 746
```

TIME TIP. 19. BET ON Page 140

$\textbf{Time} \leftarrow \textbf{Trg/Gate Source}$

Opens an edit dialog box to define a repetition interval in which the measurement is triggered. The shortest interval is 2 ms.

```
TRIG:SOUR TIMETRIGger<n>[:SEQuence]:SOURce on page 753
```

Measurement Parameters

Digital IQ ← Trg/Gate Source

For I/Q Analyzer or AnalogDemod mode only:

Defines triggering of the measurement directly via the LVDS connector. In the submenu you must specify which general purpose bit (GP0 to GP5) will provide the trigger data.

This trigger mode is available for input from the R&S Digital I/Q Interface (option R&S FSV-B17) only.

A Trigger Offset, and Trg/Gate Polarity can be defined for the Digital IQ trigger to improve the trigger stability, but no hysteresis or holdoff value.

The following table describes the assignment of the general purpose bits to the LVDS connector pins.

(See table 3-20)

Table 3-5: Assignment of general purpose bits to LVDS connector pins

Bit	LVDS pin
GP0	SDATA4_P - Trigger1
GP1	SDATA4_P - Trigger2
GP2	SDATA0_P - Reserve1
GP3	SDATA4_P - Reserve2
GP4	SDATA0_P - Marker1
GP5	SDATA4_P - Marker2

Remote command:

```
TRIG:SOUR GP0, see TRIGger<n>[:SEQuence]:SOURce on page 753

SWE:EGAT:SOUR RFP for gated triggering, see [SENSe:]SWEep:EGATe:SOURce on page 701
```

Trg/Gate Level

Opens an edit dialog box to enter the trigger/gate level.

For details see also chapter 3.2.9.3, "Using Gated Sweep Operation", on page 147.

In the trigger modes "Time" and "Power Sensor", this softkey is not available.

Remote command:

```
TRIGger<n>[:SEQuence]:LEVel:IFPower on page 752
TRIGger<n>[:SEQuence]:LEVel:VIDeo on page 752
```

Trg/Gate Polarity

Sets the polarity of the trigger/gate source.

The sweep starts after a positive or negative edge of the trigger signal. The default setting is "Pos". The setting applies to all trigger modes with the exception of the "Free Run", "Power Sensor" and "Time" mode.

For details also see chapter 3.2.9.3, "Using Gated Sweep Operation", on page 147.

"Pos" Level triggering: the sweep is stopped by the logic "0" signal and restarted by the logical "1" signal after the gate delay time has elapsed.

Measurement Parameters

"Neg" Edge triggering: the sweep is continued on a "0" to "1" transition for the gate length duration after the gate delay time has elapsed.

Remote command:

```
TRIGger<n>[:SEQuence]:SLOPe on page 752
[SENSe:]SWEep:EGATe:POLarity on page 701
```

Trigger Offset

Opens an edit dialog box to enter the time offset between the trigger signal and the start of the sweep.

offset > 0:	Start of the sweep is delayed
offset < 0:	Sweep starts earlier (pre-trigger) Only possible for span = 0 (e.g. I/Q Analyzer mode) and gated trigger switched off Maximum allowed range limited by the sweep time: pretrigger _{max} = sweep time
	When using the R&S Digital I/Q Interface (R&S FSV-B17) with I/Q Analyzer mode, the maximum range is limited by the number of pretrigger samples. See table 3-14.

In the "External" or "IF Power" trigger mode, a common input signal is used for both trigger and gate. Therefore, changes to the gate delay will affect the trigger delay (trigger offset) as well.

Tip: To determine the trigger point in the sample (for "External" or "IF Power" trigger mode), use the TRACe < n > : IQ: TPISample? command.

In the "Time" trigger mode, this softkey is not available.

Remote command:

```
TRIGger<n>[:SEQuence]:HOLDoff[:TIME] on page 750
```

Repetition Interval

Opens an edit dialog box to define a repetition interval in which the measurement is triggered. The shortest interval is 2 ms. This softkey is only available if the trigger source "Time" is selected (see "Time" on page 142).

Remote command:

```
TRIGger<n>[:SEQuence]:TIME:RINTerval on page 754
```

Trigger Hysteresis

Defines the value for the trigger hysteresis for "IF power" or "RF Power" trigger sources. The hysteresis in dB is the value the input signal must stay below the power trigger level in order to allow a trigger to start the measurement. The range of the value is between 3 dB and 50 dB with a step width of 1 dB.

Remote command:

```
TRIGger<n>[:SEQuence]:IFPower:HYSTeresis on page 751
```

Trigger Holdoff

Defines the value for the trigger holdoff. The holdoff value in s is the time which must pass before triggering, in case another trigger event happens.

Measurement Parameters

This softkey is only available if "IFPower", "RF Power" or "BBPower" is the selected trigger source.

Remote command:

```
TRIGger<n>[:SEQuence]:IFPower:HOLDoff on page 750
For digital input via the R&S Digital I/Q Interface, R&S FSV-B17:
TRIGger<n>[:SEQuence]:BBPower:HOLDoff on page 750
```

Gated Trigger

Switches the sweep mode with gate on or off.

This softkey requires the following "Trigger Mode" (see "Trg/Gate Source" on page 140):

span > 0	External or IF Power/BB PowerIF Power
span = 0	External or IF Power/BB PowerIF Power or Video

If a different mode is active, the IF Power/BB Power trigger mode is automatically selected.

Note: When triggering or gating is activated, the squelch function is automatically disabled (see "Squelch" on page 163).

If the gate is switched on, a gate signal applied to the rear panel connector "EXT TRIG-GER/GATE" or the internal IF power detector controls the sweep of the analyzer.

In the trigger mode Time, this softkey is not available.

For details also see chapter 3.2.9.3, "Using Gated Sweep Operation", on page 147.

Remote command:

```
[SENSe:]SWEep:EGATe on page 700
[SENSe:]SWEep:EGATe:SOURce on page 701
```

Gate Settings

Opens a submenu to make all the settings required for gated sweep operation.

In the "Time" trigger mode, this softkey is not available.

For details also see chapter 3.2.9.3, "Using Gated Sweep Operation", on page 147.

Gate Mode (LvI/Edge) ← Gate Settings

Sets the gate mode. As settings level-triggered or edge-triggered gate mode can be selected.

For details also see chapter 3.2.9.3, "Using Gated Sweep Operation", on page 147.

"Edge" Edge-triggered gate mode
"LvI" Level-triggered gate mode

This mode is not supported when using R&S Power Sensors as power

triggers ("Trg/Gate Source" = Power Sensor or External).

Remote command:

```
[SENSe:] SWEep:EGATe:TYPE on page 703
```

Measurement Parameters

Gate Delay ← Gate Settings

Opens an edit dialog box to enter the gate delay time between the gate signal and the continuation of the sweep. The delay position on the time axis in relation to the sweep is indicated by a line labeled "GD".

This is useful for e.g. taking into account a delay between the gate signal and the stabilization of an RF carrier.

As a common input signal is used for both trigger and gate when selecting the "External" or "IF Power" trigger mode, changes to the gate delay will affect the trigger delay (trigger offset) as well.

For details also see chapter 3.2.9.3, "Using Gated Sweep Operation", on page 147.

Remote command:

[SENSe:] SWEep:EGATe:HOLDoff on page 701

Gate Length (Gate Mode Edge) ← Gate Settings

Opens an edit dialog box to enter the gate length. The gate length in relation to the sweep is indicated by a line labeled "GL".

The length of the gate signal defines if the sweep is to be interrupted. Only in the edge-triggered mode the gate length can be set, while in the level-triggered the gate length depends on the length of the gate signal.

For details also see chapter 3.2.9.3, "Using Gated Sweep Operation", on page 147.

Remote command:

[SENSe:] SWEep:EGATe:LENGth on page 701

Trg/Gate Source ← Gate Settings

See "Trg/Gate Source" on page 140.

Trg/Gate Level ← Gate Settings

See "Trg/Gate Level" on page 143.

Trg/Gate Polarity ← Gate Settings

See "Trg/Gate Polarity" on page 143.

Sweep Time ← Gate Settings

Opens an edit dialog box to change the sweep time in order to obtain a higher resolution for positioning gate delay and gate length. When leaving the "Gate Settings" submenu, the original sweep time is retrieved.

For details also see chapter 3.2.9.3, "Using Gated Sweep Operation", on page 147.

Res BW Manual ← **Gate Settings**

Opens an edit dialog box to enter a value for the resolution bandwidth. The available resolution bandwidths are specified in the data sheet.

For details on the correlation between resolution bandwidth and filter type refer to chapter 3.2.6.3, "Selecting the Appropriate Filter Type", on page 114.

Numeric input is always rounded to the nearest possible bandwidth. For rotary knob or UP/DNARROW key inputs, the bandwidth is adjusted in steps either upwards or downwards.

Measurement Parameters

The manual input mode of the resolution bandwidth is indicated by a green bullet next to the "RBW" display in the channel bar.

When measuring Spurious Emissions, using this softkey automatically opens the "Sweep List" dialog (see "Sweep List dialog box" on page 248).

Remote command:

```
[SENSe:]BANDwidth|BWIDth[:RESolution]:AUTO on page 634 [SENSe:]BANDwidth|BWIDth[:RESolution] on page 634
```

3.2.9.2 Specifying the Trigger Settings

- Press the "Trg/Gate Source" softkey to select the trigger mode (for details see "Trg/ Gate Source" on page 140.
- 2. Press the Trg/Gate Level softkey to set the trigger level.
- 3. Press the Trigger Offset softkey to set the trigger offset. In addition, a Trigger Hysteresis and Trigger Holdoff can be defined via the corresponding softkeys.

For details on gated sweep operation, see chapter 3.2.9.3, "Using Gated Sweep Operation", on page 147.

3.2.9.3 Using Gated Sweep Operation

By using a gate in sweep mode and stopping the measurement while the gate signal is inactive, the spectrum for pulsed RF carriers can be displayed without the superposition of frequency components generated during switching. Similarly, the spectrum can also be examined for an inactive carrier. The sweep can be controlled by an external gate or by the internal power trigger.

Gated sweep operation is also possible for span = 0. This enables – e.g. in burst signals – level variations of individual slots to be displayed versus time.

- Press the Gate Settings softkey to define the settings of the gate mode.
 At the center frequency a transition to zero span is made and the time parameters gate delay and gate length are displayed as vertical lines to adjust them easily.

 When guitting the Gate Settings submenu, the original span is retrieved so the desired
 - When quitting the Gate Settings submenu, the original span is retrieved so the desired measurement can be performed with the accurately set gate.
- Setting the parameters gate delay and gate length highly accurate, press the Sweep
 Time softkey to alter the x-axis in a way that the signal range concerned (e.g. one full
 burst) is displayed.
- 3. Press the Gate Delay softkey to set the sampling time in a way that the desired portion of the signal is shown.
- 4. Press the Gate Mode (LvI/Edge) softkey to set the gate mode.

Measurement Parameters

- If the "Edge" gate mode has been selected, press the Gate Length (Gate Mode Edge) softkey to set the sampling duration in a way that the desired portion of the signal is shown.
- 6. Press the Trg/Gate Polarity softkey to set the polarity of the trigger source.
- 7. Press the Gated Trigger softkey to activate the gated sweep mode.
 To indicate that a gate is used for the sweep, the enhancement label "GAT" is displayed on the screen. This label appears to the right of the window for which the gate is configured.

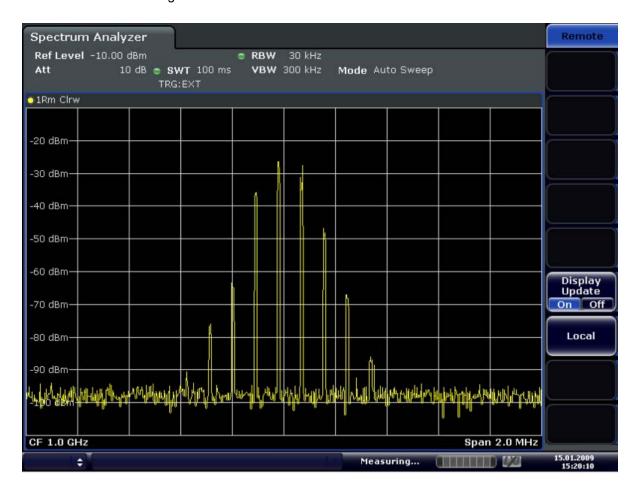


Fig. 3-5: TDMA signal with GATE OFF

Measurement Parameters

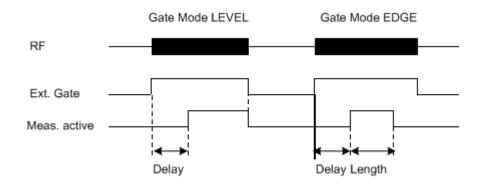


Fig. 3-6: Timing diagram for GATE, GATE DELAY and GATE LENGTH

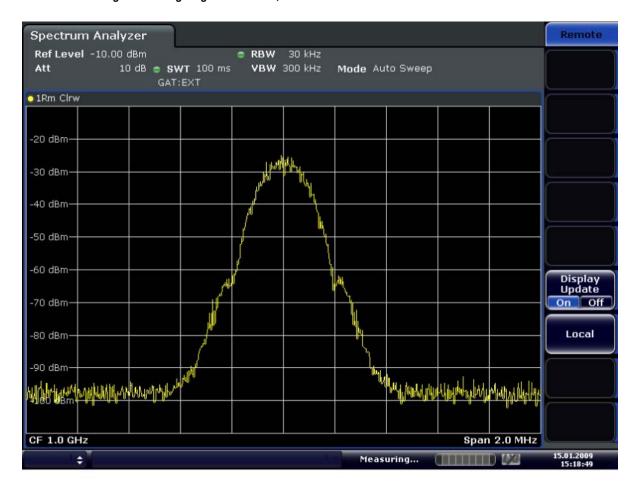


Fig. 3-7: TDMA signal with GATE ON

Measurement Functions

3.3 Measurement Functions

In this section all menus necessary for setting measurement functions are described. This includes the following topics and keys:

•	Using Markers and Delta Markers – MKR Key	150
	Performing Peak Searches with Markers – PEAK SEARCH Key	
•	Performing Marker Functions – MKR FUNC Key	158
	Changing Settings via Markers – MKR-> Key	
	Power Measurements – MEAS Key	
	Measurement Configuration – MEAS CONFIG Key	
	Using Limit Lines and Display Lines – LINES Key	
	Input/Output Configuration – INPUT/OUTPUT Key	
	Performing Measurements – RUN SINGLE/RUN CONT Keys	

3.3.1 Using Markers and Delta Markers - MKR Key

The markers are used for marking points on traces, reading out measurement results and for selecting a display section quickly. The R&S FSV provides 16 markers per trace.

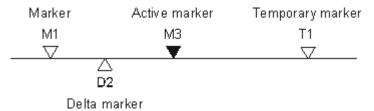


Fig. 3-8: Marker types

All markers can be used either as markers or delta markers. The marker that can be moved by the user is defined in the following as the active marker. Temporary markers are used in addition to the markers and delta markers to evaluate the measurement results. They disappear when the associated function is deactivated.

The measurement results of the active marker (also called marker values) are displayed in the marker field, which is located at the upper right corner of the diagram, or in a separate table beneath the diagram. The marker information includes the following:

- marker type (M1 in the example)
- trace in square brackets ([1] in the example)
- level (-33.09 dBm in the example)
- marker location (3 GHz in the example)

Fig. 3-9: Marker values

The MKR key is used to select and position the absolute and relative measurement markers (markers and delta markers). In addition, the functions for the frequency counter,

Measurement Functions

a fixed reference point for relative measurement markers, and for enlargement of the measurement area are assigned to this key.

To open the Marker menu

Press the MKR key.

The "Marker" menu is displayed. If no marker is active, marker 1 is activated and a peak search on the trace is carried out. Otherwise, the edit dialog box for the last activated marker is opened and the current frequency/time value is displayed.

Further information

- chapter 3.3.1.3, "Displayed Marker Information", on page 157
- chapter 3.3.4, "Changing Settings via Markers MKR-> Key", on page 172.

Menu and softkey description

chapter 3.3.1.1, "Softkeys of the Marker Menu", on page 151

Tasks

chapter 3.3.1.2, "Basic Marker Functions", on page 155

3.3.1.1 Softkeys of the Marker Menu

The following table shows all softkeys available in the "Marker" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is provided in the corresponding softkey description.

Marker 1 / Marker 2 / Marker 3 / Marker 16,/ Marker Norm/Delta	.151
More Markers	.152
Marker to Trace	.152
Marker Wizard	.152
L All Marker Off	.153
All Marker Off	.154
Marker Table	.154
Marker Stepsize	.154
L Stepsize Standard	
L Stepsize Sweep Points	.154
Marker Zoom (span > 0)	
Link Mkr1 and Delta1	

Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/Delta

The "Marker X" softkey activates the corresponding marker and opens an edit dialog box to enter a value for the marker to be set to. Pressing the softkey again deactivates the selected marker.

If a marker value is changed using the rotary knob, the step size is defined via the Stepsize Standard or Stepsize Sweep Points softkeys.

Measurement Functions

Marker 1 is always the reference marker for relative measurements. If activated, markers 2 to 16 are delta markers that refer to marker 1. These markers can be converted into markers with absolute value display using the "Marker Norm/Delta" softkey. If marker 1 is the active marker, pressing the "Marker Norm/Delta" softkey switches on an additional delta marker.

Remote command:

```
CALCulate<n>:MARKer<m>[:STATe] on page 523

CALCulate<n>:MARKer<m>:X on page 532

CALCulate<n>:MARKer<m>:Y? on page 534

CALCulate<n>:DELTamarker<m>[:STATe] on page 476

CALCulate<n>:DELTamarker<m>:X on page 486

CALCulate<n>:DELTamarker<m>:X:RELative on page 487

CALCulate<n>:DELTamarker<m>:Y? on page 487
```

More Markers

Opens a sub-menu to select one of up to 16 available markers. See "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/Delta" on page 151.

Marker to Trace

Opens an edit dialog box to enter the number of the trace on which the marker is to be placed.

Remote command:

```
CALCulate<n>:MARKer<m>:TRACe on page 531
CALCulate<n>:DELTamarker<m>:TRACe on page 486
```

Marker Wizard

Opens a configuration dialog for markers. The marker wizard allows you to configure and activate up to 16 different markers in one dialog. The first 8 markers are displayed on one tab, the last 8 markers on a second tab. For each marker, the following settings are available:

Measurement Functions

"Selected/ When you press the "Selected" or "State" field the corresponding State" marker is activated and the marker row is highlighted.

"Normal/Delta" Defines whether it is a normal marker or delta marker. For delta markers

you can define a reference marker.

"Ref. Marker" Reference marker for delta markers. The marker values for the delta

marker are indicated relative to the specified reference marker.

The reference marker can either be another active marker, or a fixed

reference marker ("FXD", see "Ref Fixed" on page 161).

"Trace" Trace for which the marker is to be set.

Remote command:

CALCulate<n>:MARKer<m>[:STATe] on page 523

CALCulate<n>:DELTamarker<m>[:STATe] on page 476

CALCulate<n>:MARKer<m>:TRACe on page 531

CALCulate<n>: DELTamarker<m>: TRACe on page 486 CALCulate<n>: DELTamarker<m>: MREF on page 485

All Marker Off ← Marker Wizard

Switches all markers off. It also switches off all functions and displays that are associated with the markers/delta markers.

Remote command:

CALCulate<n>:MARKer<m>:AOFF on page 523

Measurement Functions

All Marker Off

Switches all markers off. It also switches off all functions and displays that are associated with the markers/delta markers.

Remote command:

CALCulate<n>:MARKer<m>:AOFF on page 523

Marker Table

Defines how the marker information is displayed.

For more information, see Displayed Marker Information.

"On" Displays the marker information in a table in a separate area beneath

the diagram.

"Off" Displays the marker information within the diagram area.

"Aut" (Default) The marker table is displayed automatically if more than 2

markers are active, and removed if only 1 or 2 markers are active. This

helps keep the information in the display clear.

Remote command:

DISPlay: MTABle on page 599

Marker Stepsize

Opens a submenu to set the step size of all markers and delta markers.

Default value for the marker step size is Stepsize Sweep Points.

Stepsize Standard ← **Marker Stepsize**

Moves the marker or delta marker from one measurement point to the next, if the marker or delta marker value is changed via the rotary knob ("Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/Delta" softkeys, see "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/Delta" on page 151). If more measured values than measurement points exist, it is not possible to read out all measured values. In this case, use the Stepsize Sweep Points softkey.

Remote command:

CALC:MARK:X:SSIZ STAN (see CALCulate<n>:MARKer<m>:X:SSIZe on page 534)

Stepsize Sweep Points ← Marker Stepsize

Moves the marker or delta marker from one measured value to the next, if the marker or delta marker value is changed via the rotary knob ("Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/Delta" softkeys, see "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/Delta" on page 151). If more measured values than measurement points exist, every single measured value is accessible and its value is displayed in the marker field.

The number of measured values is defined in the ""Sweep"" menu via the Sweep Points softkey.

Measurement Functions

This functionality is available for all base unit measurements with the exception of statistics ("APD" and "CCDF" softkeys in the "Measurement" menu).

Remote command:

CALC:MARK:X:SSIZ POIN (see CALCulate<n>:MARKer<m>:X:SSIZe
on page 534)

Marker Zoom (span > 0)

Opens an edit dialog box to enter a display range for the zoom. The area around marker 1 is expanded accordingly and more details of the result can be seen. If no marker is activated, marker 1 is switched on and set on the largest signal.

The following sweep is stopped at the position of the reference marker. The frequency of the signal is counted and the measured frequency becomes the new center frequency. The zoomed display range is then configured and the new settings are used by the R&S FSV for further measurements.

If the display has not yet been switched to the new frequency display range and you press the softkey, the procedure is aborted. If an instrument setting is changed during this operation, the procedure is also aborted.

This function is not available in I/Q Analyzer mode.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:ZOOM on page 551

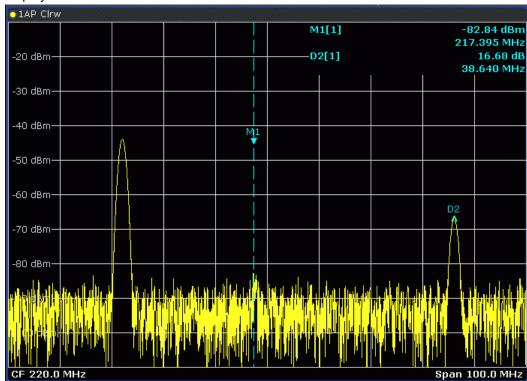
Link Mkr1 and Delta1

The delta marker 1 is linked to marker 1, so if the x-axis value of the marker 1 is changed, the delta marker 1 will follow on the same x-position. The link is off by default.

You can set the two markers on different traces to measure the difference (e.g. between a max hold trace and a min hold trace or between a measurement and a reference trace).

Remote command:

CALCulate<n>:DELTamarker<m>:LINK on page 482


3.3.1.2 Basic Marker Functions

- To open the "Marker" menu, press the MKR key.
 Marker 1 is activated and positioned on the maximum value of the trace as a normal marker. If several traces are displayed, the marker is set to the maximum value (peak) of the trace which has the lowest number (1 to 3) and is not frozen (View mode). In case a marker is already located there, the new marker is set to the frequency of the next lowest level (next peak).
- To change marker settings quickly, right-click on the marker in the display (or touch it for about 1 second). A context-sensitive menu is displayed which corresponds to the softkey functions available for markers.
- To configure and activate several markers at once, select the "Marker Wizard" to open a configuration dialog for all markers.
- To change to another trace, press the "Marker to Trace" softkey ("Marker to Trace" on page 152) and enter the number of the trace on which the marker is to be placed.

Measurement Functions

The marker changes to the selected trace, but remains on the previous frequency or time. If a trace is turned off, the corresponding markers and marker functions are also deactivated.

- To switch to another marker, click on the marker label in the diagram. Alternatively, select the corresponding softkey. If necessary, select the More Markers softkey first to open a submenu that contains all marker numbers.
- To move the marker to a different position, click the marker label in the diagram and then drag it to the new position. When a marker label is selected, a vertical line is displayed which indicates the marker's current x-value.

- To switch on a delta marker, select the softkey for the corresponding marker, then press the "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/Delta" (
 "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/Delta" on page 151) until "Delta" is highlighted.
 - The selected marker is switched on as a delta marker. The frequency and level of the marker are displayed in relation to marker 1 in the marker field.
- To change the marker type of a marker, select the softkey for the corresponding marker, then press the "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/ Delta" softkey ("Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/ Delta" on page 151).
 - For a normal marker, the frequency and level are displayed as absolute values in the marker field. For a delta marker, the frequency and level of the marker are displayed in relation to marker 1 in the marker field.
- To switch off a marker, press the corresponding softkey again.
 The marker is deactivated. Marker 1 becomes the active marker for entry. The frequency and level of marker 1 are displayed in the marker field.
- To switch off all markers, press the All Marker Off softkey.

Measurement Functions

 To change the stepsize between one measured value and the next when the marker or delta marker value is changed via the rotary knob, press either the Stepsize Standard softkey or the Stepsize Sweep Points softkey.

- To zoom into the display around a marker, press the "Marker Zoom (span > 0)" on page 155 softkey and enter a span.
- To link the delta marker1 to marker1, so if the x-axis value of the marker 1 is changed, the delta marker 1 follows on the same x-position, press the Link Mkr1 and Delta1 softkey.

3.3.1.3 Displayed Marker Information

The following additional information is displayed within the diagram grid or in a marker table beneath the diagram. The marker table is displayed automatically if more than 2 markers are active. You can hide or show the table using the Marker Table softkey.

Marker information in Diagram Grid

The x and y axis positions of the last 2 markers or delta markers that were set, as well as their index, are displayed within the diagram grid, if available. The value in the square brackets after the index indicates the trace to which the marker is assigned. (Example: M1[1) defines marker 1 on trace 1.) For more than 2 markers, a separate marker table is displayed beneath the diagram.

If applicable, the active measurement function for the marker and its main results are indicated, as well. The functions are indicated with the following abbreviations:

FXD	Reference fixed marker active
PHNoise	Phase noise measurement active
CNT	Frequency counter active
TRK	Signal track active
NOIse	Noise measurement active
MDepth	Measurement of the AM modulation depth active
тоі	TOI measurement active
Occ BW	Occupied bandwidth

Marker Information in Marker Table

In addition to the marker information displayed within the diagram grid, a separate marker table may be displayed beneath the diagram. This table provides the following information for all active markers:

As of firmware version 1.50, the marker table also provides information from connected power sensors (requires option R&S FSV-K9).

See also chapter 3.9, "Instrument Functions - Power Sensor (R&S FSV-K9)", on page 400.

Measurement Functions

No.	Serial number	
Туре	Marker type: N (normal), D (delta), T (temporary, internal)	
Dgr	Diagram number	
Trc	Trace to which the marker is assigned	
Stimulus	x-value of the marker	
Response	y-value of the marker	
Func	Activated marker or measurement function	
Func.Result	Result of the active marker or measurement function	

3.3.2 Performing Peak Searches with Markers – PEAK SEARCH Key

The PEAK SEARCH key is used to perform a peak search with the currently active marker. If no marker is active, marker 1 is activated in normal mode and set as the peak.

If the selected diagram does not support markers, this key is ignored.

3.3.3 Performing Marker Functions – MKR FUNC Key

The MKR FUNC key provides various functions for markers, e.g.

- Phase Noise measurements
- Setting reference points
- Marker demodulation
- Defining Marker peak lists
- Signal counts
- Measuring the power for a band around the marker

To open the marker function menu

Press the MKR FUNC key.
 The "Mkr Func" (marker function) menu is displayed.

Menu and softkey description

chapter 3.3.3.1, "Softkeys of the Marker Function Menu", on page 159

Further information

- chapter 3.3.3.4, "AF Demodulation", on page 168
- chapter 3.3.3.5, "Frequency Measurement with the Frequency Counter", on page 168
- chapter 3.3.3.6, "Measurement of Noise Density", on page 169
- chapter 3.3.3.7, "Measurement example for Phase Noise Auto Peak Search", on page 170

Measurement Functions

Tasks

- chapter 3.3.3.2, "Setting a Fixed Reference Point (Phase Noise Measurement)", on page 167
- chapter 3.3.3.3, "Setting the Demodulation Mode and Duration", on page 168
- chapter 3.3.3.8, "Performing Band Power Measurements", on page 171

3.3.3.1 Softkeys of the Marker Function Menu

The following table shows all softkeys available in the marker function menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is provided in the corresponding softkey description.

Select Marker (No)	160
Signal Count	
Noise Meas On/Off	160
Phase Noise	
L Phase Noise On/Off	160
L Ref Point Level	161
L Ref Point Frequency (span > 0)/Ref Point Time (zero span)	161
L Peak Search	161
L Ph. Noise Auto Peak Search	161
L Select Marker (No)	161
Ref Fixed	
L Ref. Fixed On/Off	162
L Ref Point Level	
L Ref Point Frequency (span > 0)/Ref Point Time (zero span)	162
L Peak Search	162
Marker Demod	162
L Mkr Demod On/Off	162
L AM	163
L FM	163
L Mkr Stop Time	163
L Continuous Demod (span > 0)	163
L Squelch	163
L Squelch Level	163
n dB down	164
Marker Peak List	164
L Peak List On/Off	165
L Sort Mode Freq/Lvl	165
L Max Peak Count	165
L Peak Excursion	165
Left Limit	165
L Right Limit	165
L Threshold	
L ASCII File Export	166
L Decim Sep	
L Marker Number	
Band Power	166

Measurement Functions

L Select Marker (No)	167
L Band Power On/Off	
L Span	
L Power	167
L Density	167

Select Marker (No)

Opens a submenu to select one of 16 markers and define whether the marker is a normal or a delta marker (see "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/ Delta" on page 151). "(No)" indicates the number of the currently active marker.

See "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/Delta" on page 151.

Signal Count

Switches the frequency counter on or off, and opens an edit dialog box to define the resolution of the frequency counter, if enabled. The frequency is counted at the position of the reference marker (marker 1). If no marker is activate, marker 1 is switched on and positioned on the largest signal.

The sweep stops at the reference marker until the frequency counter has delivered a result. The result is displayed in the marker field (see figure 3-9), labeled with [Tx CNT].

For more information see chapter 3.3.3.5, "Frequency Measurement with the Frequency Counter", on page 168.

Remote command:

```
CALCulate<n>:MARKer<m>:COUNt on page 523
CALCulate<n>:MARKer<m>:COUNt:FREQuency? on page 524
```

Noise Meas On/Off

Switches the noise measurement for the active marker on or off. The corresponding marker becomes the normal marker.

For more information on noise measurement see chapter 3.3.3.6, "Measurement of Noise Density", on page 169.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:NOISe[:STATe] on page 549 CALCulate<n>:MARKer<m>:FUNCtion:NOISe:RESult on page 549
```

Phase Noise

This softkey opens a submenu that contains functionality to configure and perform phase noise measurements.

Phase Noise On/Off ← Phase Noise

Switches the phase noise measurement with all active delta markers on and off. The correction values for the bandwidth and the log amplifier are taken into account in the measurement.

Marker 1 is activated, if necessary, and a peak search is performed. If marker 1 is activated, its position becomes the reference point for the measurement.

Measurement Functions

Deltamarker 2 is activated and can be used to read out the phase noise value at a given frequency offset.

Remote command:

```
CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise[:STATe] on page 480 CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise:RESult? on page 481
```

Ref Point Level ← Phase Noise

Opens an edit dialog box to enter a reference level value. All relative level values of the delta markers refer to this reference level.

Remote command:

```
CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y on page 479
```

Ref Point Frequency (span > 0)/Ref Point Time (zero span) ← Phase Noise

Opens an edit dialog box to enter a frequency reference or time value. All relative frequency or time values of the delta markers refer to this frequency reference. For phase noise measurement, input of reference time is not possible.

Remote command:

```
CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:X on page 479
```

Peak Search ← Phase Noise

Sets the maximum value of the selected trace as the reference point.

Remote command:

```
CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:MAXimum[:PEAK]
on page 479
```

Ph. Noise Auto Peak Search ← Phase Noise

Activates an automatic peak search for the reference fixed marker 1 at the end of each particular sweep.

This function can be used to track a drifting source during a phase noise measurement. The delta marker 2, which shows the phase noise measurement result, keeps the delta frequency value. Therefore the phase noise measurement leads to reliable results in a certain offset although the source is drifting. Only if the marker 2 reaches the border of the span, the delta marker value is adjusted to be within the span. In these cases, select a larger span.

Remote command:

```
CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise:AUTO on page 481
```

Select Marker (No) ← Phase Noise

Opens a submenu to select one of 16 markers and define whether the marker is a normal or a delta marker (see "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/ Delta" on page 151). "(No)" indicates the number of the currently active marker.

See "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/Delta" on page 151.

Ref Fixed

Opens a submenu to set all values of a reference point. Instead of using the current values of the reference marker (marker 1) as reference point for the delta markers, level and frequency or time are set to fixed values and used as reference point.

Measurement Functions

Ref. Fixed On/Off ← Ref Fixed

Switches the relative measurement to a fixed reference value on or off. The level and frequency or time values of marker 1 immediately become the reference point, but can be altered using the corresponding softkeys ("Ref Point Level" on page 161, "Ref Point Frequency (span > 0)/Ref Point Time (zero span)" on page 161 and "Peak Search" on page 161).

When set to ON, all delta markers which previously referenced marker 1 are automatically set to reference the fixed marker.

The reference marker assignment can be changed using the "Marker Wizard" (see "Marker Wizard" on page 152).

Remote command:

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed[:STATe] on page 478

Ref Point Level ← Ref Fixed

Opens an edit dialog box to enter a reference level value. All relative level values of the delta markers refer to this reference level.

Remote command:

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y on page 479

Ref Point Frequency (span > 0)/Ref Point Time (zero span) ← Ref Fixed

Opens an edit dialog box to enter a frequency reference or time value. All relative frequency or time values of the delta markers refer to this frequency reference. For phase noise measurement, input of reference time is not possible.

Remote command:

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:X on page 479

Peak Search ← Ref Fixed

Sets the maximum value of the selected trace as the reference point.

Remote command:

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:MAXimum[:PEAK]
on page 479

Marker Demod

The marker demodulation function sends the AM data at the current marker frequency (in a bandwidth corresponding to the RBW) to the audio output. The "Marker Demod" softkey opens a submenu to set the demodulation output settings.

For more information see chapter 3.3.3.4, "AF Demodulation", on page 168.

Marker demodulation is only available with option R&S FSV-B3 and is not available for Spectrum Emission Mask measurements.

Mkr Demod On/Off ← Marker Demod

Switches the demodulation output on or off.

For more information see chapter 3.3.3.4, "AF Demodulation", on page 168.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:DEModulation[:STATe] on page 539

Measurement Functions

AM ← Marker Demod

Sets AM as the output demodulation mode. This is the default setting.

For more information see chapter 3.3.3.4, "AF Demodulation", on page 168.

Remote command:

```
CALC:MARK1:FUNC:DEM:SEL AM, see CALCulate<n>:MARKer<m>:FUNCtion:
DEModulation:SELect on page 539
```

FM ← Marker Demod

Sets FM as the output demodulation mode. Default setting is AM.

For more information see chapter 3.3.3.4, "AF Demodulation", on page 168.

Remote command:

```
CALC:MARK1:FUNC:DEM:SEL FM, see CALCulate<n>:MARKer<m>:FUNCtion:
DEModulation:SELect on page 539
```

Mkr Stop Time ← Marker Demod

Opens an edit dialog box to define how long demodulation should be output for span > 0

For more information see chapter 3.3.3.4, "AF Demodulation", on page 168.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:DEModulation:HOLDoff on page 539
```

Continuous Demod (span > 0) ← Marker Demod

Switches the continuous demodulation on or off. If the sweep time is long enough, the set frequency range can be monitored acoustically.

For more information see chapter 3.3.3.4, "AF Demodulation", on page 168.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:DEModulation:CONTinuous on page 538
```

Squelch ← Marker Demod

Activates the squelch function, i.e. the audible AF is cut off below a defined threshold level. Thus, you avoid hearing noise at the audio output when no signal is available.

The squelch function activates the video trigger function (see "Video" on page 140) and deactivates any other trigger or gating settings. The squelch level and trigger level are set to the same value.

The trigger source in the channel information bar is indicated as "SQL" for squelch. The squelch level is indicated by a red line in the diagram.

Remote command:

```
[SENSe:] DEMod:SQUelch[:STATe] on page 644
```

$\textbf{SqueIch LeveI} \leftarrow \textbf{Marker Demod}$

Defines the level threshold below which the audible AF is cut off if squelching is enabled. The video trigger level is set to the same value.

Measurement Functions

The squelch level is indicated by a red line in the diagram.

Remote command:

[SENSe:] DEMod:SQUelch:LEVel on page 644

n dB down

Opens an edit dialog box to enter a value to define the level spacing of the two temporary markers to the right and left of marker 1 (default setting: 3 dB). Activates the temporary markers T1 and T2. The values of the temporary markers (T1, T2) and the entered value (ndB) are displayed in the marker field.

If a positive value is entered, the markers T1 and T2 are placed below the active reference marker. If a negative value (e.g. for notch filter measurements) is entered, the markers T1 and T2 are placed above the active reference marker. Marker T1 is placed to the left and marker T2 to the right of the reference marker.

In the marker table, the following results are displayed:

Span setting	Parameter name	Description
span > 0	Bw	frequency spacing of the two temporary markers
	Q factor	quality of the displayed bandwidth value (Bw)
span = 0	PWid	pulse width between the two temporary markers

If it is not possible to form the frequency spacing for the n dB value (e.g. because of noise display), dashes instead of a measured value are displayed.

Remote command:

```
CALC:MARK1:FUNC:NDBD:STAT ON, see CALCulate<n>:MARKer<m>:FUNCtion:
NDBDown:STATe on page 548

CALC:MARK1:FUNC:NDBD 3dB, see CALCulate<n>:MARKer<m>:FUNCtion:
NDBDown on page 546

CALC:MARK1:FUNC:NDBD:RES?, see CALCulate<n>:MARKer<m>:FUNCtion:
NDBDown:RESult? on page 547

CALC:MARK:FUNC:NDBD:QFAC?, see CALCulate<n>:MARKer<m>:FUNCtion:
NDBDown:QFACtor on page 547

CALC:MARK1:FUNC:NDBD:FREQ? (span > 0), see CALCulate<n>:MARKer<m>:FUNCtion:
NDBDown:QFACtor on page 547

CALC:MARK1:FUNC:NDBD:FREQ? (span > 0), see CALCulate<n>:MARKer<m>:
FUNCtion:NDBDown:FREQuency? on page 546

CALC:MARK1:FUNC:NDBD:TIME? (span = 0), see CALCulate<n>:MARKer<m>:
FUNCtion:NDBDown:TIME? on page 548
```

Marker Peak List

Opens the "Peak List" submenu to define criteria for the sort order and the contents of the peak list. For each listed peak the frequency ("Stimulus") and level ("Response") values are given. In addition, the peaks are indicated in the trace display. A maximum of 50 entries are listed.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:COUNt? on page 541
CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:X on page 543
CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:Y? on page 543
```

Measurement Functions

Peak List On/Off ← Marker Peak List

Activates/deactivates the marker peak list. If activated, the peak list is displayed and the peaks are indicated in the trace display.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:STAT on page 543

Sort Mode Freq/LvI ← Marker Peak List

Defines the criteria for sorting:

"Freq" sorting in ascending order of frequency values (span > 0) or time values

(span = 0)

"LvI" sorting in ascending order of the level

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:SORT on page 542

Max Peak Count ← Marker Peak List

Defines the maximum number of peaks to be determined and displayed.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:LIST:SIZE on page 542

Peak Excursion ← **Marker Peak List**

Opens an edit dialog box for level measurements to enter the minimum level value by which a signal must rise or fall so that it will be identified as a maximum or a minimum by the search functions. Entries from 0 dB to 80 dB are allowed; the resolution is 0.1 dB. The default setting for the peak excursion is 6 dB.

For more information see "Specifying the suitable peak excursion" and "Effect of different peak excursion settings".

Remote command:

CALCulate<n>:MARKer<m>:PEXCursion on page 530

Left Limit ← **Marker Peak List**

Opens an edit dialog box to enter a value for the lower limit (left vertical line: S1 for span > 0; T1 for zero span). The search is performed between the lines of the left and right limit (see also Right Limit softkey).

Remote command:

CALCulate<n>:MARKer<m>:X:SLIMits:LEFT on page 532

Right Limit ← Marker Peak List

Opens an edit dialog box to enter a value for the upper limit (left vertical line: S2 for span > 0; T2 for zero span). The search is performed between the lines of the left and right limit (see also Left Limit softkey). If no value is set, the upper limit corresponds to the stop frequency.

Remote command:

CALCulate<n>:MARKer<m>:X:SLIMits:RIGHT on page 533

Measurement Functions

Threshold ← Marker Peak List

Opens an edit dialog box to define the threshold line. The threshold line represents the lower level limit for a "Peak" search and the upper level limit for a "Min" search.

Remote command:

```
CALCulate<n>:THReshold:STATe on page 596
CALCulate<n>:THReshold on page 596
```

ASCII File Export ← Marker Peak List

Opens the "ASCII File Export Name" dialog box and saves the active peak list in ASCII format to the specified file and directory.

The file consists of the header containing important scaling parameters and a data section containing the marker data. For details on an ASCII file see chapter 3.2.8.7, "ASCII File Export Format", on page 138.

This format can be processed by spreadsheet calculation programs, e.g. MS-Excel. It is necessary to define ';' as a separator for the data import. Different language versions of evaluation programs may require a different handling of the decimal point. It is therefore possible to select between separators '.' (decimal point) and ',' (comma) using the "Decim Sep" softkey (see "Decim Sep" on page 71).

An example of an output file for Spectrum Emission Mask measurements is given in "ASCII File Export Format (Spectrum Emission Mask)" on page 240.

Remote command:

```
FORMat:DEXPort:DSEParator on page 609
MMEMory:STORe<n>:LIST on page 623
```

Decim Sep ← **Marker Peak List**

Selects the decimal separator with floating-point numerals for the ASCII Trace export to support evaluation programs (e.g. MS-Excel) in different languages. The values '.' (decimal point) and ',' (comma) can be set.

Remote command:

```
FORMat: DEXPort: DSEParator on page 609
```

Marker Number ← Marker Peak List

If enabled, the determined peaks are indicated by their corresponding marker number in the trace display.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:ANN:LAB:STAT on page 541
```

Band Power

Opens a submenu to activate and configure a band power marker. Band power markers allow you to measure the integrated power for a defined span (band) around a marker. The result can be displayed either as a power (dBm) or density (dBm/Hz). The span is indicated by lines in the diagram.

Band power markers are only available for standard frequency measurements in Spectrum mode.

For more information see chapter 3.3.3.8, "Performing Band Power Measurements", on page 171.

Measurement Functions

Select Marker (No) ← Band Power

Opens a submenu to select one of 16 markers and define whether the marker is a normal or a delta marker (see "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/ Delta" on page 151). "(No)" indicates the number of the currently active marker.

See "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/Delta" on page 151.

Band Power On/Off ← Band Power

Activates or deactivates the band power marker. When switched to on, if no marker is active yet, marker 1 is activated. Otherwise, the currently active marker is used as a band power marker (all other marker functions for this marker are deactivated). All markers can be defined as band power markers, each with a different span.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:BPOWer[:STATe] on page 537
```

Span ← Band Power

Defines the span (band) around the marker for which the power is measured. The span is indicated by lines in the diagram.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:SPAN on page 537
```

Power ← Band Power

Selects the power mode for the band power marker, i.e. the result is displayed in dBm.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:MODE on page 536
CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:RESult? on page 536
```

Density ← Band Power

Selects the density mode for the band power marker, i.e. the result is displayed in dBm/Hz.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:MODE on page 536
CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:RESult? on page 536
```

3.3.3.2 Setting a Fixed Reference Point (Phase Noise Measurement)

1. Press the Phase Noise softkey.

The submenu with the Phase Noise On/Off softkey switched on is displayed. The level and frequency or time values of marker 1 immediately become the reference point.

- Setting the maximum of the selected trace as reference point, press the Peak Search softkey.
- 3. To define the values for the reference point, proceed as follows:
 - a) Press the Ref Fixed softkey.
 - b) Press the Ref Point Level softkey and enter a reference level value.

Measurement Functions

- c) If span > 0, press the Ref Point Frequency (span > 0)/Ref Point Time (zero span) softkey and enter a frequency reference value.
- d) If span = 0, press the "Ref Point Time" softkey and enter a reference time value (see "Ref Point Frequency (span > 0)/Ref Point Time (zero span)" on page 161).

3.3.3.3 Setting the Demodulation Mode and Duration

- Press the Marker Demod softkey.
 The submenu with the Mkr Demod On/Off softkey switched on is displayed.
- 2. To change the demodulation mode, press the AM or FM softkey.
- 3. For details see chapter 3.3.3.4, "AF Demodulation", on page 168.
- 4. To modify the demodulation time for span > 0, press the Mkr Stop Time softkey.
- 5. To change to continuous demodulation for span > 0, press the Continuous Demod (span > 0) softkey.

3.3.3.4 AF Demodulation

The R&S FSV provides demodulators for AM and FM signals. With these demodulators, a displayed signal can be identified acoustically by using headphones.

A CAUTION

Risk of hearing damage

To protect your hearing, make sure that the volume setting is not too high before putting on the headphones.

The volume for the headphones is controlled using the rotary knob next to the "AF Output" interface on the front panel of the instrument.

For span > 0, the demodulation is not continuous. The frequency at which the demodulation takes place is determined by the active marker. The demodulation bandwidth corresponds to the RBW. If the level of the selected frequency is above the threshold line, the sweep stops for the selected time (stop time) and the RF signal is demodulated. For span = 0, the demodulation is continuously active irrespective of the stop time set.

3.3.3.5 Frequency Measurement with the Frequency Counter

In order to accurately determine the frequency of a signal, the R&S FSV is equipped with a frequency counter which measures the frequency of the RF signal at the intermediate frequency. Using the measured IF, the R&S FSV calculates the frequency of the RF input signal by applying the known frequency conversion factors.

The frequency measurement uncertainty depends only upon the accuracy of the frequency reference used (external or internal reference). Although the R&S FSV always

Measurement Functions

operates synchronously irrespective of the set span, the frequency counter delivers a more exact result than a measurement performed with a marker. This is due to the following:

- The marker measures only the position of the point on the trace and infers from this
 value the signal frequency. The trace, however, contains only a limited number of
 points. Depending upon the selected span, each point may contain many measurement values, which therefore limits the frequency resolution.
- The resolution with which the frequency can be measured with a marker is dependant on the selected resolution bandwidth, which in return affects the necessary measurement time. For this reason, the bandwidth is normally defined as wide as possible and the sweep time as short as possible. This results in a loss of frequency resolution. For the measurement with the frequency counter, the sweep is stopped at the reference marker, the frequency is counted with the desired resolution and then the sweep is allowed to continue.

In IQ Analyzer mode (see chapter 3.5, "Instrument Functions - I/Q Analyzer", on page 310), the resolution with which the frequency can be measured with a marker is always the filter bandwidth, which is derived from the defined sample rate.

3.3.3.6 Measurement of Noise Density

During noise measurement, the noise power density is measured at the position of the marker. For span = 0, all points of the trace are used to determine the noise power density. For span > 0, two points to the right and left of the marker are used for the measurement to obtain a stable result.

The noise power density is indicated in the marker field. With logarithmic amplitude units (dBm, dBmV, dB μ V, dB μ A), the noise power density is output in dBm/Hz, i.e. as level in 1 Hz bandwidth with reference to 1 mW. With linear amplitude units (V, A, W), the noise voltage density is evaluated in μ V/Hz, the noise current density in μ A/Hz or the noise power density in μ W/Hz.

In the default setting, the R&S FSV uses the sample detector for the noise function.

With the sample detector, the trace can additionally be set to AVERAGE to stabilize the measured values. With RMS detector used, trace averaging must not be used since in this case it produces too low noise levels which cannot be corrected. Instead, the sweep time can be increased to obtain stable measurement results.

Prerequisite settings

The following settings have to be made to ensure that the power density measurement yields correct values:

- Detector: Sample or RMS
- Video bandwidth:
 - ≤ 0.1 resolution bandwidth with sample detector
 - ≥ 3 x resolution bandwidth with RMS detector
- Trace averaging:

With the sample detector, the trace can additionally be set to average to stabilize the measured values. With RMS detector used, trace averaging must not be used since

Measurement Functions

in this case it produces too low noise levels which cannot be corrected. Instead, the sweep time can be increased to obtain stable measurement results.

Correction factors

The R&S FSV uses the following correction factors to evaluate the noise density from the marker level:

- Since the noise power is indicated with reference to 1 Hz bandwidth, the bandwidth correction value is deducted from the marker level. It is 10 x lg (1 Hz/BWNoise), where BWNoise is the noise or power bandwidth of the set resolution filter (RBW).
- RMS detector: With the exception of bandwidth correction, no further corrections are required since this detector already indicates the power with every point of the trace.
- Sample detector: As a result of video filter averaging and trace averaging, 1.05 dB is added to the marker level. This is the difference between the average value and the RMS value of white noise. With a logarithmic level axis, 1.45 dB is added additionally. Logarithmic averaging is thus fully taken into account which yields a value that is 1.45 dB lower than that of linear averaging.
- To allow a more stable noise display the adjacent (symmetric to the measurement frequency) points of the trace are averaged.
- For span > 0, the measured values are averaged versus time (after a sweep).

The R&S FSV noise figure can be calculated from the measured power density level. It is calculated by deducting the set RF attenuation (RF Att) from the displayed noise level and adding 174 to the result.

3.3.3.7 Measurement example for Phase Noise Auto Peak Search

The phase noise of a CW signal at 100 MHz with 0 dBm level is to be measured at 800 kHz from the carrier.

1. PRESET

The R&S FSP is set to the default setting.

2. FREQ > "CENTER": 100 MHz

The center frequency is set to 100 MHz.

3. SPAN: 2 MHz

The span is set to 2 MHz.

4. AMPT: 0 dBm

The reference level is set to 0 dBm.

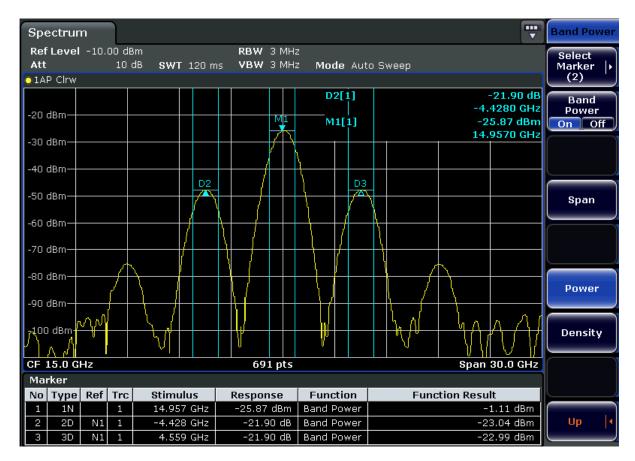
5. MKR FCTN > "MARKER 1"

Marker 1 is switched on and positioned at the maximum of the displayed trace.

6. "PHASE NOISE": 800 kHz

The phase noise measurement is switched on. The delta marker is positioned on the main marker and the measured phase noise value is displayed in the marker info field. The sample detector is used and the video bandwidth is set to $3 \times RBW$. When

Measurement Functions


the phase noise measurement function is enabled, the entry of the delta marker frequency is activated. It can be entered directly.

3.3.3.8 Performing Band Power Measurements

Band power markers allow you to measure the integrated power (similar to ACP measurements) for a defined span (band) around a marker. By default, 5 % of the current span is used. The span is indicated by colored lines in the diagram. The result can be displayed either as a power (dBm) or density (dBm/Hz).

Band power markers are only available for standard frequency measurements in Spectrum mode (not zero span, I/Q Analyzer etc.).

All markers can be defined as band power markers, each with a different span. When a band power marker is activated, if no marker is active yet, marker 1 is activated. Otherwise, the currently active marker is used as a band power marker (all other marker functions for this marker are deactivated).

If the detector mode for the marker trace is set to "AutoSelect", the RMS detector is used.

1. In the MKR FUNC menu, press "Band Power".

Measurement Functions

- 2. In the "Band Power" menu, press "Span" and enter the width of the band around the marker for which the power is to be measured.
- 3. To display the measurement result in dBm/Hz, press "Density". By default, the result is displayed as a power in dBm.
- 4. Press "Band Power On" to activate the band power marker.

The measurement results are displayed as usual in the marker table or in the diagram.

3.3.4 Changing Settings via Markers – MKR-> Key

The MKR -> key is used for search functions of measurement markers, assignment of the marker frequency as center frequency, restriction of the search area and characterization of maxima and minima. For details on markers in general, see chapter 3.3.1, "Using Markers and Delta Markers – MKR Key", on page 150.

To open the Marker To menu

Press the MKR -> key.
 The "Marker To" menu is displayed. If no marker is active, marker 1 will be activated and a peak search on the trace carried out. Otherwise, the edit dialog box for the last activated marker is opened and the current frequency/time value is displayed.

Menu and softkey description

• chapter 3.3.4.1, "Softkeys of the Marker To Menu", on page 172 Menu"

Further information

 chapter 3.3.4.8, "Effect of Different Peak Excursion Settings (Example)", on page 180

Tasks

- chapter 3.3.4.2, "Searching for a Maximum", on page 178
- chapter 3.3.4.3, "Searching for a Minimum", on page 179
- chapter 3.3.4.4, "Specifying the Search Limits", on page 179
- chapter 3.3.4.5, "Specifying the Search Range", on page 179
- chapter 3.3.4.6, "Examining a Signal at the Center in Detail", on page 179
- chapter 3.3.4.7, "Specifying the Suitable Peak Excursion", on page 180

3.3.4.1 Softkeys of the Marker To Menu

The following table shows all softkeys available in the "Marker To" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is provided in the corresponding softkey description.

Measurement Functions

Select Marker (No)	173
Peak	173
Next Peak	
Center =Mkr Freq (span > 0)	
Ref LvI =Mkr LvI	174
Marker to Trace	174
Min	174
Next Min	
Auto Max Peak/Auto Min Peak	
Search Limits	
L Left Limit	
L Right Limit	175
L Threshold	
L Use Zoom Limits	175
L Search Lim Off	175
Next Mode	175
Exclude LO	176
Search Mode (Spectrograms)	
L Search Mode for Next Peak in X Direction	
L Search Mode for Next Peak in Y Direction	177
L Marker Search Type	
L Marker Search Area	
Peak Excursion	178

Select Marker (No)

Opens a submenu to select one of 16 markers and define whether the marker is a normal or a delta marker (see "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/ Delta" on page 151). "(No)" indicates the number of the currently active marker.

Peak

Sets the active marker/delta marker to the highest maximum of the trace.

Remote command:

```
CALCulate<n>:MARKer<m>:MAXimum[:PEAK] on page 526
CALCulate<n>:DELTamarker<m>:MAXimum[:PEAK] on page 482
```

Next Peak

Sets the active marker/delta marker to the next maximum of the selected trace.

Remote command:

```
CALCulate<n>:MARKer<m>:MAXimum:NEXT on page 527
CALCulate<n>:DELTamarker<m>:MAXimum:NEXT on page 483
```

Center = Mkr Freq (span > 0)

Sets the center frequency to the current marker or delta marker frequency. A signal can thus be set to as center frequency, for example to examine it in detail with a smaller span.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:CENTer on page 538
```

Measurement Functions

Ref LvI =Mkr LvI

Sets the reference level to the current marker level.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:REFerence on page 550
```

Marker to Trace

Opens an edit dialog box to enter the number of the trace on which the marker is to be placed.

Remote command:

```
CALCulate<n>:MARKer<m>:TRACe on page 531
CALCulate<n>:DELTamarker<m>:TRACe on page 486
```

Min

Sets the active marker/delta marker to the minimum of the selected trace.

Remote command:

```
CALCulate<n>:MARKer<m>:MINimum[:PEAK] on page 528
CALCulate<n>:DELTamarker<m>:MINimum[:PEAK] on page 484
```

Next Min

Sets the active marker/delta marker to the next minimum of the selected trace.

Remote command:

```
CALCulate<n>:MARKer<m>:MINimum:NEXT on page 529
CALCulate<n>:DELTamarker<m>:MINimum:NEXT on page 485
```

Auto Max Peak/Auto Min Peak

Adds an automatic peak search action for marker 1 at the end of each particular sweep. This function may be used during adjustments of a device under test to keep track of the current peak marker position and level.

The current marker search limit settings (Left Limit, Right Limit, Threshold softkeys) are taken into account.

Remote command:

```
CALCulate<n>:MARKer<m>:MAXimum:AUTO on page 526
CALCulate<n>:MARKer<m>:MINimum:AUTO on page 528
```

Search Limits

Opens a submenu to set the limits for maximum or minimum search in the x and y direction.

Remote command:

```
CALCulate<n>:MARKer<m>:X:SLIMits[:STATe] on page 532
```

Left Limit ← Search Limits

Opens an edit dialog box to enter a value for the lower limit (left vertical line: S1 for span > 0; T1 for zero span). The search is performed between the lines of the left and right limit (see also Right Limit softkey).

Remote command:

```
CALCulate<n>:MARKer<m>:X:SLIMits:LEFT on page 532
```

Measurement Functions

Right Limit Search Limits

Opens an edit dialog box to enter a value for the upper limit (left vertical line: S2 for span > 0; T2 for zero span). The search is performed between the lines of the left and right limit (see also Left Limit softkey). If no value is set, the upper limit corresponds to the stop frequency.

Remote command:

CALCulate<n>:MARKer<m>:X:SLIMits:RIGHT on page 533

Threshold ← Search Limits

Opens an edit dialog box to define the threshold line. The threshold line represents the lower level limit for a "Peak" search and the upper level limit for a "Min" search.

Remote command:

```
CALCulate<n>: THReshold: STATe on page 596 CALCulate<n>: THReshold on page 596
```

Use Zoom Limits ← Search Limits

Restricts the marker search to the zoomed area.

Remote command:

CALCulate<n>:MARKer<m>:X:SLIMits:ZOOM on page 533

Search Lim Off ← Search Limits

Deactivates all limits of the search range.

Remote command:

```
CALCulate<n>:MARKer<m>:X:SLIMits[:STATe] on page 532 CALCulate<n>:THReshold:STATe on page 596
```

Next Mode

Selects the mode of the Next Peak or Next Min softkey.

Three settings are available:

"<" Sets the active marker/delta marker to the next maximum/minimum left

to the marker of the selected trace.

"abs" Sets the active marker/delta marker to the next lower maximum/higher

minimum of the selected trace.

Measurement Functions

">" Sets the active marker/delta marker to the next maximum/minimum right to the marker of the selected trace.

Remote command:

Next Peak:

CALC:MARK:MAX:LEFT (<): CALCulate<n>:MARKer<m>:MAXimum:LEFT on page 527

CALCulate<n>:DELTamarker<m>:MAXimum:LEFT on page 483

CALC:MARK:MAX:RIGH(>): CALCulate<n>:MARKer<m>:MAXimum:RIGHt

on page 527

CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt on page 483

CALC: DELT: MAX: NEXT (abs): CALCulate<n>: MARKer<m>: MAXimum: NEXT

on page 527

CALCulate<n>:DELTamarker<m>:MAXimum:NEXT on page 483

Next Min:

CALC:MARK:MIN:LEFT (>): CALCulate<n>:MARKer<m>:MINimum:LEFT on page 529

CALCulate<n>:DELTamarker<m>:MINimum:LEFT on page 484

CALC:MARK:MIN:RIGH(>): CALCulate<n>:MARKer<m>:MINimum:RIGHt

on page 530

CALCulate<n>:DELTamarker<m>:MINimum:RIGHt on page 485

CALC:MARK:MIN:NEXT (abs): CALCulate<n>:MARKer<m>:MINimum:NEXT

on page 529

CALCulate<n>: DELTamarker<m>: MINimum: NEXT on page 485

Exclude LO

Switches the frequency range limit for the marker search functions on or off.

"ON" The minimum frequency included in the peak search range is ≥ 5 ×

resolution bandwidth (RBW).

Due to the interference by the first local oscillator to the first intermediate frequency at the input mixer, the LO is represented as a signal at 0 Hz. To avoid the peak marker jumping to the LO signal at 0 Hz, this fre-

quency is excluded from the peak search.

"OFF" No restriction to the search range. The frequency 0 Hz is included in

the marker search functions.

Remote command:

CALCulate<n>:MARKer<m>:LOEXclude on page 525

Search Mode (Spectrograms)

Spectrograms show not only the current sweep results, but also the sweep history. Thus, when searching for peaks, you must define the search settings within a single time frame (x-direction) and within several time frames (y-direction).

This setting is only available for spectrogram displays.

Search Mode for Next Peak in X Direction ← Search Mode (Spectrograms)

Selects the search mode for the next peak search within the currently selected frame.

"Left" Determines the next maximum/minimum to the left of the current peak.

Measurement Functions

"Absolute" Determines the next maximum/minimum to either side of the current

peak.

"Right" Determines the next maximum/minimum to the right of the current peak.

Remote command:

```
CALCulate<n>:MARKer<m>:MAXimum:LEFT on page 527
CALCulate<n>:MARKer<m>:MAXimum:NEXT on page 527
CALCulate<n>:MARKer<m>:MAXimum:RIGHt on page 527
CALCulate<n>:MARKer<m>:MINimum:LEFT on page 529
CALCulate<n>:MARKer<m>:MINimum:NEXT on page 529
CALCulate<n>:MARKer<m>:MINimum:RIGHt on page 529
CALCulate<n>:MARKer<m>:MINimum:RIGHt on page 530
```

Search Mode for Next Peak in Y Direction ← **Search Mode (Spectrograms)**

Selects the search mode for the next peak search within all frames at the current marker position.

"Up" Determines the next maximum/minimum above the current peak (in

more recent frames).

"Absolute" Determines the next maximum/minimum above or below the current

peak (in all frames).

"Down" Determines the next maximum/minimum below the current peak (in

older frames).

Remote command:

```
CALCulate<n>:MARKer<m>:SGRam:Y:MAXimum:ABOVe on page 564

CALCulate<n>:DELTamarker<m>:SGRam:Y:MAXimum:ABOVe on page 490

CALCulate<n>:MARKer<m>:SGRam:Y:MAXimum:BELow on page 565

CALCulate<n>:DELTamarker<m>:SGRam:Y:MAXimum:BELow on page 490

CALCulate<n>:MARKer<m>:SGRam:Y:MAXimum:NEXT on page 565

CALCulate<n>:DELTamarker<m>:SGRam:Y:MAXimum:NEXT on page 565

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum:ABOVe on page 491

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum:ABOVe on page 566

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum:BELow on page 492

CALCulate<n>:MARKer<m>:SGRam:Y:MINimum:BELow on page 566

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum:BELow on page 567

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum:NEXT on page 567

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum:NEXT on page 492
```

Marker Search Type ← Search Mode (Spectrograms)

Defines the type of search to be performed in the spectrogram.

"X-Search" Searches only within the currently selected frame.

"Y-Search" Searches within all frames but only at the current marker position.

Measurement Functions

"XY-Search" Searches in all frames at all positions.

Remote command:

```
CALCulate<n>:MARKer<m>:SGRam:XY:MAXimum[:PEAK] on page 563

CALCulate<n>:DELTamarker<m>:SGRam:XY:MAXimum[:PEAK] on page 489

CALCulate<n>:MARKer<m>:SGRam:XY:MINimum[:PEAK] on page 564

CALCulate<n>:DELTamarker<m>:SGRam:XY:MINimum[:PEAK] on page 489

CALCulate<n>:MARKer<m>:SGRam:Y:MAXimum[:PEAK] on page 565

CALCulate<n>:DELTamarker<m>:SGRam:Y:MAXimum[:PEAK] on page 491

CALCulate<n>:MARKer<m>:SGRam:Y:MINimum[:PEAK] on page 567

CALCulate<n>:MARKer<m>:SGRam:Y:MINimum[:PEAK] on page 493

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum[:PEAK] on page 493

CALCulate<n>:MARKer<m>:MAXimum[:PEAK] on page 526

CALCulate<n>:DELTamarker<m>:MAXimum[:PEAK] on page 482

CALCulate<n>:MARKer<m>:MINimum[:PEAK] on page 528

CALCulate<n>:DELTamarker<m>:MINimum[:PEAK] on page 484
```

Marker Search Area ← Search Mode (Spectrograms)

Defines which frames the search is performed in.

"Visible" Only the visible frames are searched.

"Memory" All frames stored in the memory are searched.

Remote command:

```
CALCulate<n>:MARKer<m>:SGRam:SARea on page 563
CALCulate<n>:DELTamarker<m>:SGRam:SARea on page 488
```

Peak Excursion

Opens an edit dialog box for level measurements to enter the minimum level value by which a signal must rise or fall so that it will be identified as a maximum or a minimum by the search functions. Entries from 0 dB to 80 dB are allowed; the resolution is 0.1 dB. The default setting for the peak excursion is 6 dB.

For more information see "Specifying the suitable peak excursion" and "Effect of different peak excursion settings".

Remote command:

```
CALCulate<n>:MARKer<m>:PEXCursion on page 530
```

3.3.4.2 Searching for a Maximum

- To search for the highest maximum, press the Peak softkey.
- To define the search mode for the next maximum, use the Next Mode softkey.
- To start the search, press the Next Peak softkey.

You can define an automatic peak search action for marker 1 at the end of each particular sweep using the Auto Max Peak/Auto Min Peak softkey.

Measurement Functions

3.3.4.3 Searching for a Minimum

- To search for the minimum, press the Min softkey.
- To define the search mode for the next minimum, use the Next Mode softkey.
- To start the search, press the Next Min softkey.

You can define an automatic peak search action for marker 1 at the end of each particular sweep using the Auto Max Peak/Auto Min Peak softkey.

3.3.4.4 Specifying the Search Limits

- To define the lower limit, press the Left Limit softkey.
- To define the upper limit, press the Right Limit softkey.
- To define the threshold, press the Threshold softkey.
- To switch the search limits off, press the Search Lim Off softkey.

3.3.4.5 Specifying the Search Range

 Press the Exclude LO softkey to deactivate the "Exclude LO" mode in order to include the frequency down to 0 Hz in the marker search functions.

3.3.4.6 Examining a Signal at the Center in Detail

- Press the PRESET key to set the R&S FSV to the default setting.
- 2. Press the MKR -> key to open the "Marker To" menu.
- 3. Marker 1 is activated and set to the largest signal of the trace.
- 4. Press the Center =Mkr Freq (span > 0) softkey to set to the marker frequency.
- 5. The span is adapted in such a way that the minimum frequency (= 0 Hz) or the maximum frequency is not exceeded.
- Press the Ref LvI = Mkr LvI softkey to set the reference level to the measured marker level.
- 7. Press the SPAN key.
- 8. The edit dialog box to enter a frequency span is displayed.
- 9. Reduce the span, e.g. using the rotary knob.

Measurement Functions

3.3.4.7 Specifying the Suitable Peak Excursion

- If the Peak Excursion softkey is used, the default value is sufficient, since, in this
 mode, the next lower maximum or next higher minimum will always be detected.
- 2. If the < or > of the softkey Next Mode is used, the 6 dB level change set as a default value may already be attained by the inherent noise of the instrument. To avoid identifying noise peaks as maxima or minima, enter a peak excursion value that is higher than the difference between the highest and the lowest value measured for the displayed inherent noise.

3.3.4.8 Effect of Different Peak Excursion Settings (Example)

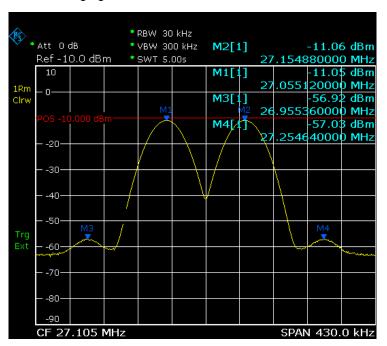


Fig. 3-10: Trace example

The following table lists the signals as indicated by the marker numbers in the diagram above, as well as the minimum of the amplitude decrease to both sides of the signal:

Signal #	Min. amplitude decrease to both sides of the signal
1	30 dB
2	29.85 dB
3	7 dB
4	7 dB

Measurement Functions

The detected signals and their order are different depending on the peak excursion setting and the peak search method (whether the next lower maximum or the next relative maximum is searched). The following results are obtained. All tests start with the marker set to signal 1 by pressing the Peak softkey.

40 dB peak excursion Result: With both methods apart from signal 1 no.

Result: With both methods apart from signal 1 no signal is detected, as the signal level does not decrease by more than 30 dB to either side of any signal.

Next lower maximum	Next relative maximum
Next Mode abs: signal 1 (no further signal detected)	Next Mode <: signal 1 (no further signal detected)
	Next Mode >: signal 1 (no further signal detected)

20 dB peak excursion

Result: With both methods apart from signal 1 signal 2 is detected, as the signal level decreases at least by 29.85 dB to either side of this signal, which is now greater than the peak excursion.

Next lower maximum	Next relative maximum
Next Mode abs: signal 2	Next Mode <: signal 1 (no further signal detected)
Next Mode abs: signal 2 (no further signal detected)	Next Mode >: signal 2
	Next Mode >: signal 2 (no further signal detected)

• 6 dB peak excursion

Result: With both methods all signals are detected.

Next lower maximum	Next relative maximum
Next Mode abs: signal 2	Next Mode <: signal 3
Next Mode abs: signal 3	Next Mode >: signal 1
Next Mode abs: signal 4	Next Mode >: signal 2
	Next Mode >: signal 4

3.3.5 Power Measurements – MEAS Key

With its power measurement functions, the R&S FSV is able to measure all the necessary parameters with high accuracy in a wide dynamic range.

A modulated carrier is almost always used (except e.g. SSB-AM) for high-frequency transmission of information. Due to the information modulated upon the carrier, the latter covers a spectrum which is defined by the modulation, the transmission data rate and

Measurement Functions

the signal filtering. Within a transmission band each carrier is assigned a channel taking into account these parameters. In order to ensure error-free transmission, each transmitter must be conforming to the specified parameters. These include among others:

- the output power
- the occupied bandwidth, i.e. the bandwidth which must contain a defined percentage of the power
- the power dissipation allowed in the adjacent channels

The MEAS key is used for complex measurement functions as power measurements, occupied bandwidth, signal statistic, carrier to noise spacing, AM modulation depth, third-order intercept point, harmonics and spurious emissions. For measurement examples refer to the Quick Start Guide, "Basic Measurement Examples".

Further examples are described in chapter 2, "Advanced Measurement Examples", on page 10 and chapter 4.3, "Remote Control – Programming Examples", on page 845

The following measurements can be performed:

- Channel power and adjacent-channel power with span > 0 and with a single or several
 carriers ("CH Power ACLR" softkey, for details see chapter 3.3.5.2, "Measuring
 Channel Power and Adjacent-Channel Power", on page 185)
- Carrier-to-noise ratio ("C/N C/NO" softkey, for details see chapter 3.3.5.3, "Measuring the Carrier-to-Noise Ratio", on page 209)
- Occupied bandwidth ("OBW" softkey, for details see chapter 3.3.5.4, "Measuring the Occupied Bandwidth", on page 212)
- Spectrum Emission Mask measurements ("Spectrum Emission Mask" softkey, for details see chapter 3.3.5.5, "Measuring with Spectrum Emission Masks", on page 215)
- Spurious Emissions measurements ("Spurious Emissions" softkey, for details see chapter 3.3.5.6, "Measuring Spurious Emissions", on page 242)
- Power in zero span ("Time Domain Power" softkey, for details see chapter 3.3.5.7,
 "Measuring the Power in Zero Span", on page 253).
- Amplitude probability distribution ("APD" and "CCDF" softkeys, for details see chapter 3.3.5.8, "Calculating Signal Amplitude Statistics", on page 256)
- 3rd order intercept ("TOI" softkey, for details see chapter 3.3.5.9, "Measuring the Third Order Intercept Point (TOI)", on page 274)
- Modulation depth ("AM Mod Depth" softkey, for details see chapter 3.3.5.10, "Measuring the AM Modulation Depth", on page 280)
- Harmonic Distortion measurements ("Harmonic Distortion" softkey, for details see chapter 3.3.5.11, "Measuring Harmonic Distortion", on page 281)

To open the power measurement menu

Press the MEAS key.
 The measurement menu for spectrum analysis is displayed (see chapter 3.3.5.1, "Softkeys of the Power Measurement Menu", on page 183).

Measurement Functions

3.3.5.1 Softkeys of the Power Measurement Menu

The following table shows all softkeys available in the power measurement menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is provided in the corresponding softkey description.

Ch Power ACLR	183
C/N, C/No (span > 0)	183
OBW (span > 0)	183
Spectrum Emission Mask	183
Spurious Emissions	184
Time Domain Power (zero span)	184
All Functions Off	184
APD	184
CCDF	184
TOI	184
AM Mod Depth	185
Harmonic Distortion	185
All Functions Off.	185

Ch Power ACLR

Activates the active channel or adjacent-channel power measurement either for a single carrier signal or for several carrier signals, depending on the current measurement configuration, and opens a submenu to configure the channel power measurement.

For details see chapter 3.3.5.2, "Measuring Channel Power and Adjacent-Channel Power", on page 185.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:POWer:SELect on page 560
CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult? on page 557
CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe] on page 561
```

C/N, C/No (span > 0)

Opens a submenu to configure the carrier/noise ratio measurement. Measurements without (C/N) and measurements with reference to the bandwidth (C/No) are possible.

For details see chapter 3.3.5.3, "Measuring the Carrier-to-Noise Ratio", on page 209.

OBW (span > 0)

Activates measurement of the occupied bandwidth according to the current configuration and opens a submenu to configure the measurement. For details see chapter 3.3.5.4, "Measuring the Occupied Bandwidth", on page 212.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:POWer:SELect on page 560
CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult? on page 557
CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe] on page 561
```

Spectrum Emission Mask

Opens a submenu to configure the Spectrum Emission Mask measurement.

Measurement Functions

The Spectrum Emission Mask (SEM) measurement defines a measurement that monitors compliance with a spectral mask.

For details see chapter 3.3.5.5, "Measuring with Spectrum Emission Masks", on page 215.

Remote command:

SENS: SWE: MODE ESP, see [SENSe:] SWEep: MODE on page 704

Spurious Emissions

Opens a submenu to configure the Spurious Emissions measurement.

The Spurious Emissions measurement defines a measurement that monitors unwanted RF products outside the assigned frequency band generated by an amplifier.

For details see chapter 3.3.5.6, "Measuring Spurious Emissions", on page 242.

Remote command:

SENS: SWE: MODE LIST, see [SENSe:] SWEep: MODE on page 704

Time Domain Power (zero span)

Activates the power measurement in zero span and opens a submenu to configure the power measurement. For details see chapter 3.3.5.7, "Measuring the Power in Zero Span", on page 253.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary[:STATe] on page 582

All Functions Off

Switches off all power measurement functions.

APD

Activates the function to measure the amplitude probability density (APD) and opens a submenu.

For details see chapter 3.3.5.8, "Calculating Signal Amplitude Statistics", on page 256.

Remote command:

CALCulate<n>:STATistics:APD[:STATe] on page 591

CCDF

Activates the function to measure the complementary cumulative distribution function (CCDF) and opens a submenu.

For details see chapter 3.3.5.8, "Calculating Signal Amplitude Statistics", on page 256.

Remote command:

CALCulate<n>:STATistics:CCDF[:STATe] on page 592

TOI

Opens a submenu and activates the measurement of the 3rd order intercept point.

Measurement Functions

For details see chapter 3.3.5.9, "Measuring the Third Order Intercept Point (TOI)", on page 274.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:TOI[:STATe] on page 551 CALCulate<n>:MARKer<m>:FUNCtion:TOI:RESult? on page 550
```

AM Mod Depth

Opens a submenu and activates the measurement of the AM modulation depth. An AM-modulated carrier is required on the screen to ensure correct operation.

For details see chapter 3.3.5.10, "Measuring the AM Modulation Depth", on page 280.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:MDEPth[:STATe] on page 545
CALCulate<n>:MARKer<m>:FUNCtion:MDEPth:RESult? on page 544
```

Harmonic Distortion

Opens a submenu to determine the settings for harmonics measurement and activates the harmonic distortion measurement.

For details see chapter 3.3.5.11, "Measuring Harmonic Distortion", on page 281.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:HARMonics[:STATe] on page 555

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:DISTortion? on page 552

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:LIST? on page 553
```

All Functions Off

Switches off all power measurement functions.

3.3.5.2 Measuring Channel Power and Adjacent-Channel Power

Measuring the power in channels adjacent to the carrier or transmission channel is useful to detect interference. The results are displayed as a bar chart for the individual channels.

•	About Channel Power Measurements	185
	Channel Power Measurement Results	
•	Configuring and Performing Channel Power Measurements	191
	Softkeys for Channel and Adjacent-Channel Power Measurements	
	Predefined CP/ACLR Standards	
•	Optimized Settings for CP/ACLR Test Parameters	207

About Channel Power Measurements

Measuring channel power and adjacent channel power is one of the most important tasks in the field of digital transmission for a signal analyzer with the necessary test routines. While, theoretically, channel power could be measured at highest accuracy with a power meter, its low selectivity means that it is not suitable for measuring adjacent channel power as an absolute value or relative to the transmit channel power. The power in the adjacent channels can only be measured with a selective power meter.

Measurement Functions

A signal analyzer cannot be classified as a true power meter, because it displays the IF envelope voltage. However, it is calibrated such as to correctly display the power of a pure sine wave signal irrespective of the selected detector. This calibration cannot be applied for non-sinusoidal signals. Assuming that the digitally modulated signal has a Gaussian amplitude distribution, the signal power within the selected resolution bandwidth can be obtained using correction factors. These correction factors are normally used by the signal analyzer's internal power measurement routines in order to determine the signal power from IF envelope measurements. These factors apply if and only if the assumption of a Gaussian amplitude distribution is correct.

Apart from this common method, the R&S FSV also has a true power detector, i.e. an RMS detector. It correctly displays the power of the test signal within the selected resolution bandwidth irrespective of the amplitude distribution, without additional correction factors being required. The absolute measurement uncertainty of the R&S FSV is < 1.5 dB and a relative measurement uncertainty of < 0.5 dB (each with a confidence level of 95 %).

A detailed measurement example is described in chapter 2.6.1, "Measuring Channel Power and Adjacent Channel Power", on page 29 and chapter 4.3, "Remote Control – Programming Examples", on page 845.

Measurement Methods

The channel power is defined as the integration of the power across the channel bandwidth.

The Adjacent Channel Power Ratio (ACPR), also known as the Adjacent Channel Leakage Power Ratio (ACLR), is defined as the ratio between the total power of the adjacent channel to the carrier channel's power. An ACLR measurement with several carrier (transmission) channels (TX channels) is also possible and is referred to as a "multi-carrier ACLR measurement".

There are two possible methods for measuring channel and adjacent channel power with a signal analyzer:

- IBW method (Integration Bandwidth Method)
- Zero-span method (Fast ACLR), i.e. using a channel filter

IBW method

When measuring the channel power, the R&S FSV integrates the linear power which corresponds to the levels of the pixels within the selected channel. The signal analyzer uses a resolution bandwidth which is far smaller than the channel bandwidth. When sweeping over the channel, the channel filter is formed by the passband characteristics of the resolution bandwidth (see figure 3-11).

Measurement Functions

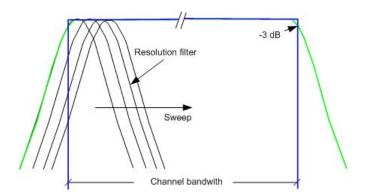


Fig. 3-11: Approximating the channel filter by sweeping with a small resolution bandwidth

The following steps are performed:

1. The linear power of all the trace pixels within the channel is calculated.

 $P_i = 10^{(Li/10)}$

where P_i = power of the trace pixel i

L_i = displayed level of trace point i

- 2. The powers of all trace pixels within the channel are summed up and the sum is divided by the number of trace pixels in the channel.
- 3. The result is multiplied by the quotient of the selected channel bandwidth and the noise bandwidth of the resolution filter (RBW).

Since the power calculation is performed by integrating the trace within the channel bandwidth, this method is called the IBW method (Integration Bandwidth method).

Fast ACLR

Using Fast ACLR, the R&S FSV sets the center frequency to the different channel center frequencies consecutively and measures the power with the selected measurement time (= sweep time/number of channels).

The RBW filters suitable for the selected standard and frequency offset are automatically used (e.g. root raised cos with IS 136).

The RMS detector is used for obtaining correct power measurement results. Therefore no software correction factors are required.

Measurement Repeatability

The repeatability of the results, especially in the narrow adjacent channels, strongly depends on the measurement time for a given resolution bandwidth. A longer sweep time may increase the probability that the measured value converges to the true value of the adjacent channel power, but obviously increases measurement time.

The integrated bandwidth method (IBW) calculates channel power and ACLR from the trace data obtained during a continuous sweep over the selected span. Most parts of this sweep are neither part of the channel itself nor the defined adjacent channels. Therefore,

Measurement Functions

most of the samples taken during the sweeptime cannot be used for channel power or ACLR calculation.

To obtain a high repeatability with short measurement times, the R&S FSV offers a "Fast ACLR" mode. In the Fast ACLR mode, the R&S FSV measures the power of each channel at the defined channel bandwidth, while being tuned to the center frequency of the channel in question. The digital implementation of the resolution bandwidths makes it possible to select filter characteristics that are precisely tailored to the signal. In case of CDMA2000, the power in the useful channel is measured with a bandwidth of 1.23 MHz and that of the adjacent channels with a bandwidth of 30 kHz. Therefore the R&S FSV changes from one channel to the other and measures the power at a bandwidth of 1.23 MHz or 30 kHz using the RMS detector. The power of the frequency range between the channels of interest is not measured in Fast ACLR mode, because it is not required for channel power or ACLR calculation. The measurement time per channel is set with the sweep time. It is equal to the selected measurement time divided by the selected number of channels.



Fig. 3-12: Measuring the channel power and adjacent channel power ratio for CDMA2000 1X signals with zero span (Fast ACP)

Assuming a measurement with five channels (1 channel plus 2 lower and 2 upper adjacent channels) and a sweep time of 100 ms, a measurement time per channel of 20 ms is required. The number of effective samples taken into account for power calculation in one channel is the product of sweeptime in channel times the selected resolution bandwidth.

Measurement Functions

Assuming a sweeptime of 100 ms, there are (30 kHz / 4.19 MHz) * 100 ms * 10 kHz \approx 7 samples. Whereas in Fast ACLR mode, there are (100 ms / 5) * 30 kHz \approx 600 samples. Comparing these numbers explains the increase of repeatability with a 95% confidence level (2 δ) from \pm 2.8 dB to \pm 0.34 dB for a sweeptime of 100 ms (as shown in figure 3-13 and).

For the same repeatability, the sweep time would have to be set to 8.5 s with the integration method. The figure 3-14 shows the standard deviation of the results as a function of the sweep time.

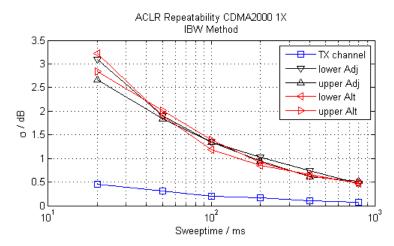


Fig. 3-13: Repeatability of adjacent channel power measurement on CDMA2000 standard signals if the integration bandwidth method is used

The figure 3-14 shows the repeatability of power measurements in the transmit channel and of relative power measurements in the adjacent channels as a function of sweep time. The standard deviation of measurement results is calculated from 100 consecutive measurements. Take scaling into account if comparing power values.

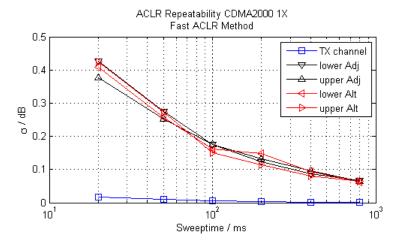
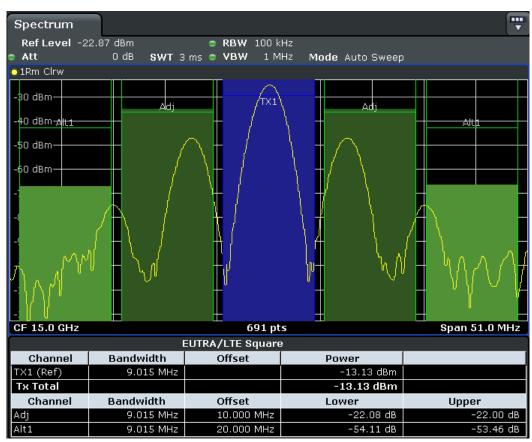



Fig. 3-14: Repeatability of adjacent channel power measurements on CDMA2000 signals in the fast ACP mode

Measurement Functions

Channel Power Measurement Results

For channel or adjacent-channel power measurements, the individual channels are indicated by different colored bars in the diagram. The height of each bar corresponds to the measured power of that channel. In addition, the name of the channel ("Adj", "Alt1", "TX1", etc. or a user-defined name) is indicated above the bar (separated by a line which has no further meaning).

Results are provided for the TX channel and the number of defined adjacent channels above and below the TX channel. If more than one TX channel is defined, the carrier channel to which the relative adjacent-channel power values should be referenced must be defined.

The measured power values for the TX and adjacent channels are also output as a table in the second screen. Which powers are measured depends on the number of configured channels, see "# of Adj Chan" on page 197.

For each channel, the following values are displayed:

Label	Description
Channel	Channel name as specified in the "Channel Settings" (see "Names" on page 200).
Bandwidth	Configured channel bandwidth (see "Bandwidth" on page 198)

Measurement Functions

Label	Description
Offset	Offset of the channel to the TX channel (Configured channel spacing, see "Spacing" on page 199)
Power (Lower/Upper)	The measured power values for the TX and lower and upper adjacent channels. The powers of the transmission channels are output in dBm or dBm/Hz, or in dBc, relative to the specified reference TX channel.

Retrieving Results via Remote Control

All or specific channel power measurement results can be retrieved using the CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult? command from a remote computer.

Alternatively, the results can be output as channel power density, i.e. in reference to the measurement bandwidth (see CALCulate<n>:MARKer<m>:FUNCtion:POWer: RESult:PHZ on page 559).

Furthermore, the measured power values of the displayed trace can be retrieved as usual using the TRAC: DATA? commands (see TRACe<n>[:DATA]? on page 732). In this case, the measured power value for each sweep point (max. 691) is returned.

Configuring and Performing Channel Power Measurements

Predefined standards contain the main measurement settings for standard measurements. When such a standard is loaded, the required channel settings are automatically set on the R&S FSV. However, the settings can be changed, and measurements with user-defined configurations are also possible.

Once the channels have been set up, other instrument settings such as the used filter bandwidths, frequency span and detector and trace settings can be optimized automatically (see "Adjust Settings" on page 203).

For an overview of the softkeys and menus see "Softkeys for Channel and Adjacent-Channel Power Measurements" on page 195.

Selecting a Predefined Standard

Predefined standards contain the main measurement settings for standard measurements. When such a standard is loaded, the required channel settings are automatically set on the R&S FSV.

The selected standard defines the following settings:

- "Bandwidth" on page 198
- "Spacing" on page 199
- Detector, see "Optimized Settings for CP/ACLR Test Parameters" on page 207
- Trace averaging, see "Average Mode" on page 128
- RBW, see "Optimized Settings for CP/ACLR Test Parameters" on page 207
- "Weighting Filter" on page 200

Measurement Functions

► Select a predefined standard via the CP/ACLR Standard softkey.

Setting up the Channels

Channel definition is the basis for measuring power levels in certain frequency ranges. Usually, the power levels in one or more carrier (TX) channels and possibly the adjacent channels are of interest. Up to 18 carrier channels and up to 12 adjacent channels can be defined.

In the R&S FSV's display, only the first neighboring channel of the carrier (TX) channel is labelled "Adj" (adjacent) channel; all others are labelled "Alt" (alternate) channels. In this manual, "adjacent" refers to both adjacent and alternate channels.

When an ACLR measurement is started by pressing the "Ch Power ACLR" softkey, all settings including the channel bandwidths and channel spacings are set according to the selected standard and can be adjusted afterwards.

Channel setup consists of the following settings:

- The number of transmission (TX) and adjacent channels
- The bandwidth of each channel
- For multi-carrier ACLR measurements: which TX channel is used as a reference ("ACLR Reference")
- The spacing between the individual channels
- Optionally: the names of the channels displayed in the diagram and result table
- Optionally: the influence of individual channels on the total measurement result ("Weighting Filter")
- Optionally: limits for a limit check on the measured power levels

Changes to an existing standard can be stored as a user-defined standard, see "User-Defined Configurations" on page 195.

► In the "Ch Power" menu, press Channel Setup, then press the Channel Setup softkey to configure the channels in the "Channel Setup" dialog box.

In the "Channel Setup" dialog box you define the channel settings for all channels, independent of the defined number of *used* TX or adjacent channels.

•	Defining Channel Bandwidths	92
•	Defining Channel Spacings	93
	Configuring a Limit Check	

Defining Channel Bandwidths

The transmission-channel bandwidth is normally defined by the transmission standard. The correct bandwidth is set automatically for the selected standard (see "Optimized Settings for CP/ACLR Test Parameters" on page 207).

Measurement Functions

For measurements that require channel bandwidths which deviate from those defined in the selected standard, use the IBW method (see Fast ACLR (On/Off) softkey). With the IBW method, the channel bandwidth borders are right and left of the channel center frequency. Thus, you can visually check whether the entire power of the signal under test is within the selected channel bandwidth.

► In the "Channel Setup" dialog box, select the "Bandwidth" tab to define the channel bandwidths.

The value entered for any TX channel is automatically also defined for all subsequent TX channels. Thus, only one value needs to be entered if all TX channels have the same bandwidth.

The value entered for any ADJ or ALT channel is automatically also defined for all alternate (ALT) channels. Thus, only one value needs to be entered if all adjacent channels have the same bandwidth.

Defining Channel Spacings

Channel spacings are normally defined by the selected standard but can be changed.

If the spacings are not equal, the channel distribution according to the center frequency is as follows:

Odd number of TX channels	The middle TX channel is centered to center frequency.
Even number of TX channels	The two TX channels in the middle are used to calculate the frequency between those two channels. This frequency is aligned to the center frequency.

► In the "Channel Setup" dialog box, select the "Spacing" tab to define the channel spacings.

The value entered for any TX channel is automatically also defined for all subsequent TX channels. Thus, only one value needs to be entered if all TX channels have the same spacing.

If the channel spacing for the adjacent or an alternate channel is changed, all higher alternate channel spacings are multiplied by the same factor (new spacing value/old spacing value). The lower adjacent-channel spacings remain unchanged. Only one value needs to be entered for equal channel spacing.

Example: Defining channel spacing

In the default setting, the adjacent channels have the following spacing: 20 kHz ("ADJ"), 40 kHz ("ALT1"), 60 kHz ("ALT2"), 80 kHz ("ALT3"), 100 kHz ("ALT4"), ...

If the spacing of the first adjacent channel ("ADJ") is set to 40 kHz, the spacing of all other adjacent channels is multiplied by factor 2 to result in 80 kHz ("ALT1"), 120 kHz ("ALT2"), 160 kHz ("ALT3"), ...

If, starting from the default setting, the spacing of the 5th adjacent channel ("ALT4") is set to 150 kHz, the spacing of all higher adjacent channels is multiplied by factor 1.5 to result in 180 kHz ("ALT5"), 210 kHz ("ALT6"), 240 kHz ("ALT7"), ...

Measurement Functions

For the R&S FSV, the channel spacing is defined as the distance between the center frequency of the adjacent channel and the center frequency of the transmission channel. The definition of the adjacent-channel spacing in standards IS95C and CDMA 2000 is different. These standards define the adjacent-channel spacing from the center of the transmission channel to the closest border of the adjacent channel. This definition is also used for the R&S FSV if the standards marked with an asterisk *) are selected.

Configuring a Limit Check

During an ACLR measurement, the power values can be checked whether they exceed user-defined limits. A relative or absolute limit can be defined, or both. Both limit types are considered, regardless whether the measured levels are absolute or relative values. The check of both limit values can be activated independently. If any active limit value is exceeded, the measured value is displayed in red and marked by a preceding asterisk in the result table.

W-CDMA 3GPP FWD				
Channel	Bandwidth	Offset	Power	
TX1 (Ref)	3.840 MHz		-124.39 dBm	
Tx Total			-124.39 dBm	
Channel	Bandwidth	Offset	Lower	Upper
Adj*	3.840 MHz	5.000 MHz	81.17 dB*	81.17 dB*
Alt1*	3.840 MHz	10.000 MHz	0.00 dB*	0.00 dB*

To configure a limit check

- 1. In the "Channel Setup" dialog box, select the "Limits" tab to define a limit check.
- 2. For each channel, define a relative or absolute value that should not be exceeded.
- 3. Select the channels to be included in the limit check by activating the "Check" option.
- 4. Activate limit checking for the selected channels by setting "Limit Checking" to On.

Performing a Channel Power Measurement

A channel power measurement is started automatically according to the currently selected standard when you press the "Ch Power ACLR" softkey in the MEAS menu.

► To start a new measurement after changing the settings, press the RUN SINGLE or RUN CONT hardkeys.

Alternatively, you can save your settings as a user standard (see "User-Defined Configurations" on page 195), then select that standard and start the measurement as usual by pressing the "Ch Power ACLR" softkey.

The configured measurement is performed (depending on the number of defined channels, see "# of Adj Chan" on page 197) and the results are displayed in the graphic and the result table.

Measurement Functions

User-Defined Configurations

You can define measurement configurations independently of a predefinded standard and save the current ACLR configuration as a "user standard" in an xml file. You can then load the file and thus the settings again at a later time.

User-defined standards are not supported for "Fast ACLR" and Multi-Carrier ACLR measurements.

Compatibility to R&S FSP

User standards created on an analyzer of the R&S FSP family are compatible to the R&S FSV. User standards created on an R&S FSV, however, are not necessarily compatible to the analyzers of the R&S FSP family and may not work there.

To store a user-defined configuration

- 1. Select the "User Standard" softkey in the "Ch Power" menu.
- 2. Press "Save".
- Define a file name for the user standard and select its storage location.
 By default, the xml file is stored in C:\R_S\Instr\acp_std\. However, you can define any other storage location.
- 4. Press "Save".

The following parameter definitions are saved:

- "# of Adj Chan" on page 197
- Channel spacing and adjacent-channel spacing, see "Spacing" on page 199
- Channel bandwidth of transmission (Tx), adjacent (Adj) and alternate (Alt) channels, see "Bandwidth" on page 198
- Resolution bandwidth, see "Res BW Auto" on page 109
- Video bandwidth, see "Video BW Auto" on page 110
- Detector, see "Detector" on page 126
- ACLR limits and their state, see "Limits" on page 201
- Sweep time and sweep time coupling, see "Sweep Time" on page 203
- Trace and power mode, see "Select Trace" on page 203 and "Power Mode" on page 202

To load a user-defined configuration

Press "User Standard > Load" and select the user standard file.

Softkeys for Channel and Adjacent-Channel Power Measurements

Ch Power ACLR	196
L CP/ACLR Standard	
L CP/ACLR Settings	
L # of TX Chan	
L # of Adj Chan	
L Channel Setup	
L Bandwidth	198

Measurement Functions

L ACLR Reference	199
L Spacing	199
L Names	
L Weighting Filter	
L Limits	
Limit Checking	
L Relative Limit	
L Absolute Limit	
L Check	
L Chan Pwr/Hz	
L Power Mode	
L Clear/Write	
L Max Hold	
L Select Trace	
L ACLR (Abs/Rel)	
L Adjust Settings	
L Sweep Time	
L Fast ACLR (On/Off)	
L Set CP Reference	
L User Standard	
L Load	
L Save	
L Delete	
L Noise Correction	205 206

Ch Power ACLR

Activates the active channel or adjacent-channel power measurement either for a single carrier signal or for several carrier signals, depending on the current measurement configuration, and opens a submenu to configure the channel power measurement. With default settings the measurement is performed by integrating the powers at the display points within the specified channels (IBW method).

If several TX cannnels (carriers) are activated, the number of measured values is increased to ensure that adjacent-channel powers are measured with adequate accuracy.

For general information on performing channel or adjacent-channel power measurements, see chapter 3.3.5.2, "Measuring Channel Power and Adjacent-Channel Power", on page 185.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:POWer:SELect on page 560
CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult? on page 557
CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe] on page 561
```

CP/ACLR Standard ← **Ch Power ACLR**

Opens an edit dialog box to select the settings according to predefined standards. For details on the available standards see "Predefined CP/ACLR Standards" on page 206. By default no standard is set.

Measurement Functions

The selection of the standard influences the following parameters (see "Optimized Settings for CP/ACLR Test Parameters" on page 207):

- · channel spacing and adjacent-channel spacing
- channel bandwidth, adjacent-channel bandwidth, and type of filtering
- resolution bandwidth
- video bandwidth
- detector
- # of adjacent channels
- trace averaging (switched off)

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:PRESet on page 556

CP/ACLR Settings ← **Ch Power ACLR**

Opens a submenu to configure the channel power and adjacent channel power measurement independently of the predefined standards (for details see also "Predefined CP/ACLR Standards" on page 206 and "Optimized Settings for CP/ACLR Test Parameters" on page 207).

of TX Chan ← CP/ACLR Settings ← Ch Power ACLR

Opens an edit dialog box to enter the number of carrier signals to be taken into account in channel and adjacent-channel power measurements. Values from 1 to 18 are allowed.

Remote command:

[SENSe:] POWer: ACHannel: TXCHannel: COUNt on page 697

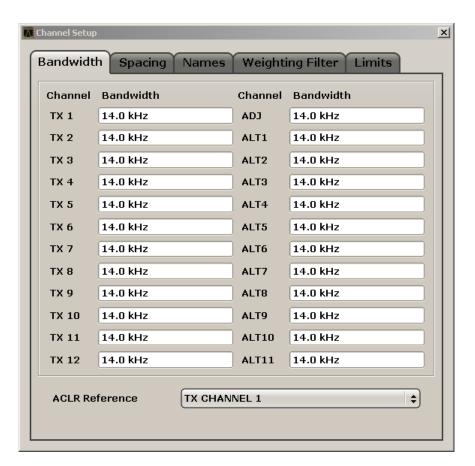
of Adj Chan ← CP/ACLR Settings ← Ch Power ACLR

Opens an edit dialog box to enter the number of adjacent channels to be considered in the adjacent-channel power measurement. Values from 0 to 12 are allowed.

The following measurements are performed depending on the number of the channels:

0	Only the channel powers are measured.	
1	The channel powers and the power of the upper and lower adjacent channel are measured.	
2	The channel powers, the power of the upper and lower adjacent channel, and of the next high and lower channel (alternate channel 1) are measured.	
3	The channel power, the power of the upper and lower adjacent channel, the power of the next higher and lower channel (alternate channel 1), and of the next but one higher and lower adjacent channel (alternate channel 2) are measured.	

12	The channel power, the power of the upper and lower adjacent channel, and the power of the all higher and lower channels (alternate channel 1 to 11) are measured.	


Remote command:

[SENSe:] POWer: ACHannel: ACPairs on page 690

Channel Setup ← CP/ACLR Settings ← Ch Power ACLR

Opens a dialog to define the channel settings for all channels, independant of the defined number of *used* TX or adjacent channels.

Measurement Functions

The dialog contains the following tabs:

- "Bandwidth" on page 198
- "Spacing" on page 199
- "Names" on page 200
- "Weighting Filter" on page 200
- "Limits" on page 201

Bandwidth ← Channel Setup ← CP/ACLR Settings ← Ch Power ACLR

Define the channel bandwidths for the transmission channels and the adjacent channels. "TX" is only available for the multi-carrier ACLR measurement. When you change the bandwidth for one channel, the value is automatically also defined for all subsequent channels of the same type.

The transmission-channel bandwidth is normally defined by the transmission standard. The correct bandwidth is set automatically for the selected standard (see "Optimized Settings for CP/ACLR Test Parameters" on page 207).

- Measurements in zero span (see Fast ACLR (On/Off) softkey) are performed in the zero span mode. The channel limits are indicated by vertical lines. For measurements requiring channel bandwidths deviating from those defined in the selected standard the IBW method is to be used.
- With the IBW method (see Fast ACLR (On/Off) softkey), the channel bandwidth limits
 are marked by two vertical lines right and left of the channel center frequency. Thus
 you can visually check whether the entire power of the signal under test is within the
 selected channel bandwidth.

Measurement Functions

If measuring according to the IBW method ("Fast ACLR Off"), the bandwidths of the different adjacent channels are to be entered numerically. Since all adjacent channels often have the same bandwidth, the other alternate channels are set to the bandwidth of the adjacent channel when it is changed. Thus, only one value needs to be entered in case of equal adjacent channel bandwidths.

For details on available channel filters see chapter 3.2.6.3, "Selecting the Appropriate Filter Type", on page 114.

Remote command:

```
[SENSe:]POWer:ACHannel:BANDwidth|BWIDth[:CHANnel<channel>]
on page 690
[SENSe:]POWer:ACHannel:BANDwidth|BWIDth:ACHannel on page 690
[SENSe:]POWer:ACHannel:BANDwidth|BWIDth:ALTernate<channel>
on page 691
```

$\textbf{ACLR Reference} \leftarrow \textbf{Bandwidth} \leftarrow \textbf{Channel Setup} \leftarrow \textbf{CP/ACLR Settings} \leftarrow \textbf{Ch Power ACLR}$

Select the transmission channel to which the relative adjacent-channel power values should be referenced.

TX Channel 1	Transmission channel 1 is used.	
Min Power TX Channel	The transmission channel with the lowest power is used as a reference channel.	
Max Power TX Channel	The transmission channel with the highest power is used as a reference channel.	
Lowest & Highest Channel	The outer left-hand transmission channel is the reference channel for the lower adjacent channels, the outer right-hand transmission channel that for the upper adjacent channels.	

Remote command:

```
[SENSe:] POWer: ACHannel: REFerence: TXCHannel: MANual on page 696 [SENSe:] POWer: ACHannel: REFerence: TXCHannel: AUTO on page 695
```

Spacing ← Channel Setup ← CP/ACLR Settings ← Ch Power ACLR Define the channel spacings for the TX channels and for the adjacent channels.

TX channels (left column)

TX1-2	spacing between the first and the second carrier	
TX2-3	X2-3 spacing between the second and the third carrier	

The spacings between all adjacent TX channels can be defined separately. When you change the spacing for one channel, the value is automatically also defined for all subsequent TX channels in order to set up a system with equal TX channel spacing quickly. For different spacings, a setup from top to bottom is necessary.

If the spacings are not equal, the channel distribution according to the center frequency is as follows:

Measurement Functions

Odd number of TX channels	The middle TX channel is centered to center frequency.	
Even number of TX channels	The two TX channels in the middle are used to calculate the frequency between those two channels. This frequency is aligned to the center frequency.	

Adjacent channels (right column)

Since all the adjacent channels often have the same distance to each other, the modification of the adjacent-channel spacing (ADJ) causes a change in all higher adjacent-channel spacings (ALT1, ALT2, ...): they are all multiplied by the same factor (new spacing value/old spacing value). Thus only one value needs to be entered in case of equal channel spacing. A modification of a higher adjacent-channel spacing (ALT1, ALT2, ...) causes a change by the same factor in all higher adjacent-channel spacings, while the lower adjacent-channel spacings remain unchanged.

Example:

In the default setting, the adjacent channels have the following spacing: 20 kHz ("ADJ"), 40 kHz ("ALT1"), 60 kHz ("ALT2"), 80 kHz ("ALT3"), 100 kHz ("ALT4"), ... If the spacing of the first adjacent channel ("ADJ") is set to 40 kHz, the spacing of all other adjacent channels is multiplied by factor 2 to result in 80 kHz ("ALT1"), 120 kHz ("ALT2"), 160 kHz ("ALT3"), ...

If, starting from the default setting, the spacing of the 5th adjacent channel ("ALT4") is set to 150 kHz, the spacing of all higher adjacent channels is multiplied by factor 1.5 to result in 180 kHz ("ALT5"), 210 kHz ("ALT6"), 240 kHz ("ALT7"), ...

If a ACLR or MC-ACLR measurement is started, all settings according to the standard including the channel bandwidths and channel spacings are set and can be adjusted afterwards.

Remote command:

```
[SENSe:]POWer:ACHannel:SPACing:CHANnel<channel> on page 697
[SENSe:]POWer:ACHannel:SPACing[:ACHannel] on page 696
[SENSe:]POWer:ACHannel:SPACing:ALTernate<channel> on page 697
```

Names ← Channel Setup ← CP/ACLR Settings ← Ch Power ACLR

Define user-specific channel names for each channel. The names defined here are displayed in the result diagram and result table.

Remote command:

```
[SENSe:]POWer:ACHannel:NAME:ACHannel on page 693
[SENSe:]POWer:ACHannel:NAME:ALTernate<channel> on page 694
[SENSe:]POWer:ACHannel:NAME:CHANnel<channel> on page 694
```

Weighting Filter ← Channel Setup ← CP/ACLR Settings ← Ch Power ACLR

Define weighting filters for all channels. Weighting filters are not available for all supported standards and cannot always be defined manually where they are available.

The dialog contains the following fields:

Measurement Functions

Field	Description
Channel	 TX 1-18: TX channels ADJ: Adjacent channel ALT1-11: Alternate channels
Active	Activates/Deactivates the weighting filter for the selected and any subsequent channels of the same type
Alpha	Defines the alpha value for the weighting filter for the selected and any subsequent channels of the same type

Remote command:

```
POW:ACH:FILT:CHAN1 ON, see [SENSe:]POWer:ACHannel:FILTer[:STATe]: CHANnel<channel> on page 693
```

Activates the weighting filter for TX channel 1.

```
POW:ACH:FILT:ALPH:CHAN1 0,35 see [SENSe:]POWer:ACHannel:FILTer: ALPHa:CHANnel<channel> on page 692
```

Sets the alpha value for the weighting filter for TX channel 1 to 0,35.

```
POW:ACH:FILT:ACH ON see [SENSe:]POWer:ACHannel:FILTer[:STATe]:
ACHannel on page 692
```

Activates the weighting filter for the adjacent channel.

```
POW:ACH:FILT:ALPH:ACH 0,35 see [SENSe:]POWer:ACHannel:FILTer: ALPHa:ACHannel on page 691
```

Sets the alpha value for the weighting filter for the adjacent channel to 0,35.

```
POW:ACH:FILT:ALT1 ON see [SENSe:]POWer:ACHannel:FILTer[:STATe]: ALTernate<channel> on page 692
```

Activates the alpha value for the weighting filter for the alternate channel 1.

```
POW:ACH:FILT:ALPH:ALT1 0,35 see [SENSe:]POWer:ACHannel:FILTer: ALPHa:ALTernate<channel> on page 691
```

Sets the alpha value for the weighting filter for the alternate channel 1 to 0,35.

Limits ← Channel Setup ← CP/ACLR Settings ← Ch Power ACLR Activate and define the limits for the ACLR measurement.

 $\label{limit Checking Limits Limits Limits Limit Checking Limit$

The following rules apply for the limits:

- A separate limit can be defined for each adjacent channel. The limit applies to both the upper and the lower adjacent channel.
- A relative and/or absolute limit can be defined. The check of both limit values can be activated independently.
- The R&S FSV checks adherence to the limits irrespective of whether the limits are absolute or relative or whether the measurement is carried out with absolute or rel-

Measurement Functions

ative levels. If both limits are active and if the higher of both limit values is exceeded, the measured value is marked by a preceding asterisk.

Remote command:

```
CALCulate<n>:LIMit<k>:ACPower[:STATe] on page 501
CALCulate<n>:LIMit<k>:ACPower:ACHannel:RESult on page 504
CALCulate<n>:LIMit<k>:ACPower:ALTernate<channel>[:RELative]
on page 504
```

Relative Limit ← Limits ← Channel Setup ← CP/ACLR Settings ← Ch Power ACLR Defines a limit relative to the carrier signal.

Remote command:

```
CALC:LIM:ACP ON, See CALCulate<n>:LIMit<k>:ACPower[:STATe]
on page 501
CALC:LIM:ACP:<adjacent-channel> 0dBc, 0dBc
CALC:LIM:ACP:<adjacent-channel>:STAT ON
```

Absolute Limit ← **Limits** ← **Channel Setup** ← **CP/ACLR Settings** ← **Ch Power ACLR** Defines an absolute limit.

Remote command:

```
CALC:LIM:ACP ON, see CALCulate<n>:LIMit<k>:ACPower[:STATe]
on page 501
CALC:LIM:ACP:<adjacent-channel>:ABS -10dBm, -10dBm
CALC:LIM:ACP:<adjacent-channel>:ABS:STAT ON, see CALCulate<n>:
LIMit<k>:ACPower:ACHannel:ABSolute:STATe on page 503
```

Check \leftarrow Limits \leftarrow Channel Setup \leftarrow CP/ACLR Settings \leftarrow Ch Power ACLR Activate or deactivate the limit to be considered during a limit check. The check of both limit values can be activated independently.

Chan Pwr/Hz ← CP/ACLR Settings ← Ch Power ACLR

If deactivated, the channel power is displayed in dBm. If activated, the channel power density is displayed instead. Thus, the absolute unit of the channel power is switched from dBm to dBm/Hz. The channel power density in dBm/Hz corresponds to the power inside a bandwidth of 1 Hz and is calculated as follows:

"channel power density = channel power – log₁₀(channel bandwidth)"

By means of this function it is possible e.g. to measure the signal/noise power density or use the additional functions "ACLR (Abs/Rel)" on page 203 and "ACLR Reference" on page 199 to obtain the signal to noise ratio.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult:PHZ on page 559
```

Power Mode ← CP/ACLR Settings ← Ch Power ACLR

Opens a submenu to select the power mode.

Measurement Functions

Clear/Write ← Power Mode ← CP/ACLR Settings ← Ch Power ACLR

If this mode is activated, the channel power and the adjacent channel powers are calculated directly from the current trace (default mode).

Remote command:

CALC:MARK:FUNC:POW:MODE WRIT, see CALCulate<n>:MARKer<m>:FUNCtion:POWer:MODE on page 555

Max Hold ← Power Mode ← CP/ACLR Settings ← Ch Power ACLR

If this mode is activated, the power values are calculated from the current trace and compared with the previous power value using a maximum algorithm. The higher value is retained. If activated, the enhancement label "Pwr Max" is displayed.

Remote command:

CALC:MARK:FUNC:POW:MODE MAXH, see CALCulate<n>:MARKer<m>:FUNCtion: POWer:MODE on page 555

Select Trace ← CP/ACLR Settings ← Ch Power ACLR

Opens an edit dialog box to enter the trace number on which the CP/ACLR measurement is to be performed. Only activated traces can be selected.

For details on trace modes see chapter 3.2.8.4, "Trace Mode Overview", on page 134.

Remote command:

[SENSe:] POWer:TRACe on page 699

ACLR (Abs/Rel) ← CP/ACLR Settings ← Ch Power ACLR

Switches between absolute and relative power measurement in the adjacent channels.

Abs	The absolute power in the adjacent channels is displayed in the unit of the y-axis, e.g. in dBm, dB μ V.	
Rel	The level of the adjacent channels is displayed relative to the level of the transmission channel in dBc.	

Remote command:

[SENSe:] POWer: ACHannel: MODE on page 693

Adjust Settings ← CP/ACLR Settings ← Ch Power ACLR

Automatically optimizes all instrument settings for the selected channel configuration (channel bandwidth, channel spacing) within a specific frequency range (channel bandwidth). The adjustment is carried out only once. If necessary, the instrument settings can be changed later.

For details on the settings of span, resolution bandwidth, video bandwidth, detector and trace averaging see "Optimized Settings for CP/ACLR Test Parameters" on page 207.

Remote command:

[SENSe:] POWer: ACHannel: PRESet on page 694

Sweep Time ← Ch Power ACLR

Opens an edit dialog box to enter the sweep time. With the RMS detector, a longer sweep time increases the stability of the measurement results.

Measurement Functions

The function of this softkey is identical to the Sweeptime Manual softkey in the "Bandwidth" menu.

Remote command:

[SENSe:] SWEep:TIME on page 705

Fast ACLR (On/Off) ← Ch Power ACLR

Switches between the IBW method ("Fast ACLR Off") and the zero span method ("Fast ACLR On").

When switched on, the R&S FSV sets the center frequency consecutively to the different channel center frequencies and measures the power with the selected measurement time (= sweep time/number of channels). The RBW filters suitable for the selected standard and frequency offset are automatically used (e.g. root raised cos with IS 136). For details on available channel filters see chapter 3.2.6.3, "Selecting the Appropriate Filter Type", on page 114.

The RMS detector is used for obtaining correct power measurement results. Therefore this requires no software correction factors.

Measured values are output as a list. The powers of the transmission channels are output in dBm, the powers of the adjacent channels in dBm.

The sweep time is selected depending on the desired reproducibility of results. Reproducibility increases with sweep time since power measurement is then performed over a longer time period. As a general approach, it can be assumed that approx. 500 non-correlated measured values are required for a reproducibility of 0.5 dB (99 % of the measurements are within 0.5 dB of the true measured value). This holds true for white noise. The measured values are considered as non-correlated if their time interval corresponds to the reciprocal of the measured bandwidth.

With IS 136 the measurement bandwidth is approx. 25 kHz, i.e. measured values at an interval of 40 μ s are considered as non-correlated. A measurement time of 40 ms is thus required per channel for 1000 measured values. This is the default sweep time which the R&S FSV sets in coupled mode. Approx. 5000 measured values are required for a reproducibility of 0.1 dB (99 %), i.e. the measurement time is to be increased to 200 ms.

Remote command:

[SENSe:] POWer: HSPeed on page 698

Set CP Reference ← Ch Power ACLR

Defines the currently measured channel power as the reference value if channel power measurement is activated. The reference value is displayed in the "Tx1 (Ref) Power" field; the default value is 0 dBm.

The softkey is available only for multi carrier ACLR measurements.

In adjacent-channel power measurement with one or several carrier signals, the power is always referenced to a transmission channel, i.e. no value is displayed for "Tx1 (Ref) Power".

Remote command:

[SENSe:] POWer: ACHannel: REFerence: AUTO ONCE on page 695

User Standard ← Ch Power ACLR

Opens a submenu to configure customized standards.

Measurement Functions

Load ← User Standard ← Ch Power ACLR

Opens a dialog to select and load a user defined ACLR standard.

Note: Compatibility to R&S FSP. User standards created on an analyzer of the R&S FSP family are compatible to the R&S FSV. User standards created on an R&S FSV, however, are not necessarily compatible to the analyzers of the R&S FSP family and may not work there.

Remote command:

Querying available standards:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:CATalog?

on page 561

Loading a standard:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:PRESet on page 556

Save ← User Standard ← Ch Power ACLR

Saves the current ACLR configuration in an xml file in order for you to use it again at a later time. You can define the drive, path and file name in the corresponding dialog. The default location is $C:\R_S\Instr\acp_std$.

Note that the ACLR user standard is not supported by Fast ACLR and Multi Carrier ACLR measurements.

If you create your own standard, you can customize the following parameters:

- number of adjacent channels
- channel bandwidth of transmission (Tx), adjacent (Adj) and alternate (Alt) channels
- channel spacings
- resolution and video bandwidth
- · ACLR limits and their state
- sweep time and sweep time coupling
- detector
- trace mode

Remote command:

Configuring channels:

see "SENSe:POWer Subsystem" on page 689

Saving custom channel configurations:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:SAVE on page 562

Delete ← User Standard ← Ch Power ACLR

Deletes the user standard that you select in the corresponding dialog box. Note that the R&S FSV deletes the file without further notice.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:DELete on page 562

Noise Correction ← Ch Power ACLR

If activated, the results are corrected by the instrument's inherent noise, which increases the dynamic range.

Measurement Functions

"ON" A reference measurement of the instrument's inherent noise is carried

out. The noise power measured is then subtracted from the power in

the channel that is being examined.

The inherent noise of the instrument depends on the selected center frequency, resolution bandwidth and level setting. Therefore, the correction function is disabled whenever one of these parameters is changed. A disable message is displayed on the screen. Noise corrections of the screen is corrected to the screen in the screen in the screen is corrected to the screen in the screen is corrected to the screen in the screen is corrected to the screen in the screen in the screen is corrected to the screen in the screen in the screen is corrected to the screen in the screen in the screen is corrected to the screen in the s

tion must be switched on again manually after the change.

"OFF" No noise correction is performed.

"AUTO" Noise correction is performed. After a parameter change, noise correc-

tion is restarted automatically and a new correction measurement is

performed.

Remote command:

[SENSe:] POWer: NCORrection on page 698

Adjust Ref LvI ← Ch Power ACLR

Adjusts the reference level to the measured channel power. This ensures that the settings of the RF attenuation and the reference level are optimally adjusted to the signal level without overloading the R&S FSV or limiting the dynamic range by a too small S/N ratio.

For details on manual settings see "Optimized Settings for CP/ACLR Test Parameters" on page 207.

The reference level is not influenced by the selection of a standard. To achieve an optimum dynamic range, the reference level has to be set in a way that places the signal maximum close to the reference level without forcing an overload message. Since the measurement bandwidth for channel power measurements is significantly lower than the signal bandwidth, the signal path may be overloaded although the trace is still significantly below the reference level.

Remote command:

[SENSe:] POWer: ACHannel: PRESet: RLEVel on page 695

Predefined CP/ACLR Standards

When using predefined standards for ACLR measurement, the test parameters for the channel and adjacent-channel measurements are configured automatically. The available standards are listed below.

Predefined standards are selected using the "CP/ACLR Standard" softkey or the CALC: MARK: FUNC: POW: PRES command.

Standard	GUI-Parameter	SCPI-Parameter
EUTRA/LTE Square	EUTRA/LTE Square	EUTRa
EUTRA/LTE Square/RRC	EUTRA/LTE Square/RRC	REUTRa
W-CDMA 3.84 MHz forward	W-CDMA 3GPP FWD	FW3G
W-CDMA 3.84 MHz reverse	W-CDMA 3GPP REV	RW3G

Measurement Functions

Standard	GUI-Parameter	SCPI-Parameter
CDMA IS95A forward	CDMA IS95A FWD	F8CD FIS95a
CDMA IS95A reverse	CDMA IS95A REV	R8CD RIS95a
CDMA IS95C Class 0 forward*)	CDMA IS95C Class 0 FWD	FIS95c0
CDMA IS95C Class 0 reverse*)	CDMA IS95C Class 0 REV	RIS95c0
CDMA J-STD008 forward	CDMA J-STD008 FWD	F19C FJ008
CDMA J-STD008 reverse	CDMA J-STD008 REV	R19C RJ008
CDMA IS95C Class 1 forward*)	CDMA IS95C Class 1 FWD	FIS95c1
CDMA IS95C Class 1 reverse*)	CDMA IS95C Class 1 REV	RIS95c1
CDMA 2000	CDMA 2000	S2CD
TD-SCDMA forward	TD SCDMA FWD	FTCD TCDMa
TD-SCDMA reverse	TD SCDMA REV	RTCD
WLAN 802.11A	WLAN 802.11A	AWLan
WLAN 802.11B	WLAN 802.11B	BWLan
WiMAX	WiMAX	WiMAX
WIBRO	WIBRO	WIBRO
GSM	GSM	GSM
RFID 14443	RFID 14443	RFID14443
TETRA	TETRA	TETRA
PDC	PDC	PDC
PHS	PHS	PHS
CDPD	CDPD	CDPD
APCO-25 Phase 2	APCO-25 P2	PAPCo25

For the R&S FSV, the channel spacing is defined as the distance between the center frequency of the adjacent channel and the center frequency of the transmission channel. The definition of the adjacent-channel spacing in standards IS95C and CDMA 2000 is different. These standards define the adjacent-channel spacing from the center of the transmission channel to the closest border of the adjacent channel. This definition is also used for the R&S FSV if the standards marked with an asterisk *) are selected.

Optimized Settings for CP/ACLR Test Parameters

The "Adjust Settings" softkey (see "Adjust Settings" on page 203) automatically optimizes all instrument settings for the selected channel configuration, as described in the following:

Frequency span

The frequency span must at least cover the channels to be measured plus a measurement margin of approx. 10 %.

Measurement Functions

If the frequency span is large in comparison to the channel bandwidth (or the adjacent-channel bandwidths) being examined, only a few points on the trace are available per channel. This reduces the accuracy of the waveform calculation for the channel filter used, which has a negative effect on the measurement accuracy. It is therefore strongly recommended that the formulas mentioned be taken into consideration when selecting the frequency span.

For channel power measurements the Adjust Settings softkey sets the frequency span as follows:

"(No. of transmission channels -1) x transmission channel spacing +2 x transmission channel bandwidth + measurement margin"

For adjacent-channel power measurements, the Adjust Settings softkey sets the frequency span as a function of the number of transmission channels, the transmission channel spacing, the adjacent-channel spacing, and the bandwidth of one of adjacent-channels ADJ, ALT1 or ALT2, whichever is furthest away from the transmission channels:

"(No. of transmission channels -1) x transmission channel spacing +2 x (adjacent-channel spacing + adjacent-channel bandwidth) + measurement margin" The measurement margin is approx. 10 % of the value obtained by adding the channel spacing and the channel bandwidth.

Resolution bandwidth (RBW)

To ensure both, acceptable measurement speed and required selection (to suppress spectral components outside the channel to be measured, especially of the adjacent channels), the resolution bandwidth must not be selected too small or too large. As a general approach, the resolution bandwidth is to be set to values between 1% and 4% of the channel bandwidth.

A larger resolution bandwidth can be selected if the spectrum within the channel to be measured and around it has a flat characteristic. In the standard setting, e.g. for standard IS95A REV at an adjacent channel bandwidth of 30 kHz, a resolution bandwidth of 30 kHz is used. This yields correct results since the spectrum in the neighborhood of the adjacent channels normally has a constant level.

With the exception of the IS95 CDMA standards, the Adjust Settings softkey sets the resolution bandwidth (RBW) as a function of the channel bandwidth:

"RBW ≤ 1/40 of channel bandwidth"

The maximum possible resolution bandwidth (with respect to the requirement RBW ≤ 1/40) resulting from the available RBW steps (1, 3) is selected.

Video bandwidth (VBW)

For a correct power measurement, the video signal must not be limited in bandwidth. A restricted bandwidth of the logarithmic video signal would cause signal averaging and thus result in a too low indication of the power (-2.51 dB at very low video bandwidths). The video bandwidth should therefore be selected at least three times the resolution bandwidth:

"VBW ≥ 3 x RBW"

The Adjust Settings softkey sets the video bandwidth (VBW) as a function of the channel bandwidth (see formula above) and the smallest possible VBW with regard to the available step size will be selected.

Detector

The Adjust Settings softkey selects the RMS detector. This detector is selected since it correctly indicates the power irrespective of the characteristics of the signal to be measured. The whole IF envelope is used to calculate the power for each measure-

Measurement Functions

ment point. The IF envelope is digitized using a sampling frequency which is at least five times the resolution bandwidth which has been selected. Based on the sample values, the power is calculated for each measurement point using the following formula:

$$P_{\text{RMS}} = \sqrt{\frac{1}{N} \cdot \sum_{i=1}^{N} s_i^2}$$

where:

"s_i = linear digitized video voltage at the output of the A/D converter"

"N = number of A/D converter values per measurement point"

"P_{RMS} = power represented by a measurement point"

When the power has been calculated, the power units are converted into decibels and the value is displayed as a measurement point.

In principle, the sample detector would be possible as well. Due to the limited number of measurement points used to calculate the power in the channel, the sample detector would yield less stable results.

• Trace averaging

The Adjust Settings softkey switches off this function. Averaging, which is often performed to stabilize the measurement results, leads to a too low level indication and should therefore be avoided. The reduction in the displayed power depends on the number of averages and the signal characteristics in the channel to be measured.

• Reference level

The Adjust Settings softkey does not influence the reference level. It can be adjusted separately using the "Adjust Ref Lvl" softkey (see "Adjust Ref Lvl" on page 206).

3.3.5.3 Measuring the Carrier-to-Noise Ratio

The R&S FSV can easily determine the carrier-to-noise ratio, also normalized to a 1 Hz bandwidth.

The largest signal in the frequency span is the carrier. It is searched when the C/N or C/NO function is activated (see "C/N, C/No" on page 211) and is marked using a fixed reference marker ("FXD").

To determine the noise power, a channel at the defined center frequency is examined. The bandwidth of the channel is defined by the "Channel Bandwidth" setting. The power within this channel is integrated to obtain the noise power level. (If the carrier is within this channel, an extra step is required to determine the correct noise power level, see below.)

The noise power of the channel is subtracted from the maximum carrier signal level, and in the case of a C/NO measurement, it is referred to a 1 Hz bandwidth.

For this measurement, the RMS detector is activated.

The carrier-to-noise measurements are only available in the frequency domain (span >0).

There are two methods to measure the carrier-to-noise ratio:

Measurement Functions

• The carrier is outside the examined channel: In this case, it is sufficient to switch on the desired measurement function and to set the channel bandwidth. The carrier/noise ratio is displayed on the screen.

- The carrier is inside the examined channel: In this case, the measurement must be performed in two steps:
 - First, perform the reference measurement by switching on either the C/N or the C/NO measurement and waiting for the end of the next measurement run. The fixed reference marker is set to the maximum of the measured carrier signal.
 - Then, switch off the carrier so that only the noise of the test setup is active in the channel. The carrier-to-noise ratio is displayed after the subsequent measurement has been completed.

The frequency span should be set to approximately 4 times the channel bandwidth in order to measure the carrier-to-noise ratio correctly. This setting is defined automatically by the "Adjust Settings" function.

To determine the carrier-to-noise ratio

- 1. Press the "C/N, C/NO" softkey to configure the carrier-to-noise ratio measurement.
- To change the channel bandwidth to be examined, press the "Channel Bandwidth" softkey.
- 3. To optimize the settings for the selected channel configuration, press the "Adjust Settings" softkey.
- To activate the measurements without reference to the bandwidth, press the "C/N" softkey.
 - To activate the measurements with reference to the bandwidth, press the "C/NO" softkey .
- If the carrier signal is located within the examined channel bandwidth, switch off the carrier signal so that only the noise is displayed in the channel and perform a second measurement.

The carrier-to-noise ratio is displayed after the measurement has been completed.

Measurement results

As a result of the carrier-to-noise measurement the evaluated bandwidth and the calculated C/N ratio are indicated beneath the diagram.

You can also query the determined carrier-to-noise ratio via the remote command CALC:MARK:FUNC:POW:RES? CN or CALC:MARK:FUNC:POW:RES? CN0, see CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult? on page 557.

Softkeys for Carrier-to-Noise Ratio Measurements

C/N	, C/No	21	1
O/14	· · · · · · · · · · · · · · · · · · ·		

Measurement Functions

L C/N	211
L C/No	211
L Channel Bandwidth	211
L Adjust Settings	211

C/N, C/No

Opens a submenu to configure the carrier/noise ratio measurement. Measurements without (C/N) and measurements with reference to the bandwidth (C/No) are possible.

Carrier-to-noise measurements are not available in zero span mode.

For general information on performing carrier-to-noise ratio measurements see chapter 3.3.5.3, "Measuring the Carrier-to-Noise Ratio", on page 209.

C/N ← C/N, C/No

Switches the measurement of the carrier/noise ratio on or off. If no marker is active, marker 1 is activated.

The measurement is performed on the trace that marker 1 is assigned to. To shift marker 1 and measure another trace, use the Marker to Trace softkey in the "Marker To" menu.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:POWer:SELect on page 560
CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult? on page 557
CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe] on page 561
```

C/No ← C/N, C/No

Switches the measurement of the carrier/noise ratio with reference to a 1 Hz bandwidth on or off. If no marker is active, marker 1 is activated.

The measurement is performed on the trace that marker 1 is assigned to. To shift marker 1 and measure another trace, use the Marker to Trace softkey in the "Marker To" menu.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:POWer:SELect on page 560
CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult? on page 557
CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe] on page 561
```

Channel Bandwidth ← C/N, C/No

Opens an edit dialog box to enter the measurement channel bandwidth for each channel.

The default setting is 14 kHz.

Remote command:

```
[SENSe:] POWer: ACHannel: ACPairs on page 690
```

Adjust Settings ← C/N, C/No

Enables the RMS detector (see also chapter 3.2.8.6, "Detector Overview", on page 137) and adjusts the span to the selected channel bandwidth according to:

"4 x channel bandwidth + measurement margin"

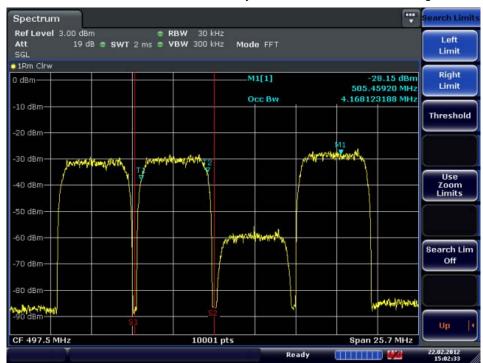
The adjustment is performed once; if necessary, the setting can be changed later on.

Remote command:

```
[SENSe:] POWer: ACHannel: PRESet on page 694
```

Measurement Functions

3.3.5.4 Measuring the Occupied Bandwidth


An important characteristic of a modulated signal is its occupied bandwidth. In a radio communications system for instance the occupied bandwidth must be limited to enable distortion-free transmission in adjacent channels. The occupied bandwidth is defined as the bandwidth containing a defined percentage of the total transmitted power. A percentage between 10 % and 99.9 % can be set.

The measurement principle is the following: The bandwidth containing 99% of the signal power is to be determined, for example. The routine first calculates the total power of all displayed points of the trace. In the next step, the points from the right edge of the trace are summed up until 0.5 % of the total power is reached. Auxiliary marker 1 is positioned at the corresponding frequency. Then the points from the left edge of the trace are summed up until 0.5 % of the power is reached. Auxiliary marker 2 is positioned at this point. 99 % of the power is now between the two markers. The distance between the two frequency markers is the occupied bandwidth which is displayed in the marker field.

New: OBW now also possible within defined search limits - multi-carrier OBW measurement in one sweep

As of R&S FSV firmware version 1.71, the occupied bandwidth of the signal can be determined within defined search limits instead of for the entire signal. Thus, only a single sweep is required to determine the OBW for a multi-carrier signal. To do so, search limits are defined for an individual carrier and the OBW measurement is restricted to the frequency range contained within those limits. Then the search limits are adapted for the next carrier and the OBW is automatically re-calculated for the new range.

The OBW measurement uses the same search limits as defined for marker search (see "Search Limits" on page 174). However, only the left and right limits are considered.

Measurement Functions

To ensure correct power measurement, especially for noise signals, and to obtain the correct occupied bandwidth, the following prerequisites and settings are necessary:

- Only the signal to be measured is displayed on the screen. An additional signal would falsify the measurement.
- RBW << occupied bandwidth (approx. 1/20 of occupied bandwidth, for voice communication type 300 Hz or 1 kHz)
- VBW ≥ 3 x RBW
- RMS detector
- Span ≥ 2 to 3 x occupied bandwidth

Some of the measurement specifications (e.g. PDC, RCR STD-27B) require measurement of the occupied bandwidth using a peak detector. The detector setting of the R&S FSV has to be changed accordingly then.

A remote control programming example is described in chapter 4.3.5, "Occupied Bandwidth Measurement", on page 862.

To determine the occupied bandwidth

- Press the OBW softkey to activate the measurement of the occupied bandwidth.
 The corresponding submenu is displayed.
- 2. Press the "% Power Bandwidth" softkey to enter the percentage of power (see "% Power Bandwidth (span > 0)" on page 214).
- 3. To change the channel bandwidth for the transmission channel, press the "Channel Bandwidth" softkey (see "Channel Bandwidth (span > 0)" on page 214).
- To optimize the settings for the selected channel configuration, press the Adjust Settings softkey. For details see also "Optimized Settings for CP/ACLR Test Parameters" on page 207.
- 5. To adjust the reference level to the measured total power after the first sweep, press the Adjust Ref Lvl softkey.

Measurement results

As a result of the OBW measurement the occupied bandwidth ("Occ BW") is indicated in the marker results. Furthermore, the marker at the center frequency and the temporary markers are indicated.

The OBW calculation is repeated if the Search Limits are changed, without performing a new sweep. Thus, the OBW for a multi-carrier signal can be determined using only one sweep.

The determined occupied bandwidth can also be queried using the remote command CALC: MARK: FUNC: POW: RES? OBW or CALC: MARK: FUNC: POW: RES? AOBW. While the OBW parameter returns only the occupied bandwidth, the AOBW parameter also returns

Measurement Functions

the position and level of the temporary markers T1 and T2 used to calculate the occupied bandwidth.

Softkeys for Occupied Bandwidth (OBW) Measurements

OBW	214
	0)214
L Channel Bandwidth (span >	0)214
L Adjust Ref LvI (span > 0)	214
L Adjust Settings	215

OBW

Activates measurement of the occupied bandwidth according to the current configuration and opens a submenu to configure the measurement. The occupied bandwidth is displayed in the marker display field and marked on the trace by temporary markers. For details see chapter 3.3.5.4, "Measuring the Occupied Bandwidth", on page 212.

This measurement is not available in zero span.

The measurement is performed on the trace with marker 1. In order to evaluate another trace, marker 1 must be placed on another trace (see the Marker to Trace softkey in the "Marker" menu).

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:POWer:SELect on page 560
CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult? on page 557
CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe] on page 561
```

% Power Bandwidth (span > 0) ← OBW

Opens an edit dialog box to enter the percentage of total power in the displayed frequency range which defines the occupied bandwidth. Values from 10% to 99.9% are allowed.

Remote command:

[SENSe:] POWer:BANDwidth|BWIDth on page 698

Channel Bandwidth (span > 0) ← OBW

Opens an edit dialog box to enter the channel bandwidth for the transmission channel. The specified channel bandwidth is used for optimization of the test parameters (for details see "Optimized Settings for CP/ACLR Test Parameters" on page 207). The default setting is 14 kHz.

For measurements in line with a specific transmission standard, the bandwidth specified by the standard for the transmission channel must be entered.

Remote command:

```
[SENSe:]POWer:ACHannel:BANDwidth|BWIDth[:CHANnel<channel>]
on page 690
```

Adjust Ref LvI (span > 0) ← OBW

Adjusts the reference level to the measured total power of the signal. the softkey is activated after the first sweep with active measurement of the occupied bandwidth has been completed and the total power of the signal is thus known.

Measurement Functions

Adjusting the reference level ensures that the signal path will not be overloaded and the dynamic range not limited by too low a reference level. Since the measurement bandwidth for channel power measurements is significantly lower than the signal bandwidth, the signal path may be overloaded although the trace is distinctly below the reference level. If the measured channel power is equal to the reference level, the signal path cannot be overloaded.

Remote command:

[SENSe:] POWer: ACHannel: PRESet: RLEVel on page 695

Adjust Settings ← OBW

Automatically optimizes all instrument settings for the selected channel configuration (channel bandwidth, channel spacing) within a specific frequency range (channel bandwidth). The adjustment is carried out only once. If necessary, the instrument settings can be changed later.

For details on the settings of span, resolution bandwidth, video bandwidth, detector and trace averaging see "Optimized Settings for CP/ACLR Test Parameters" on page 207.

Remote command:

[SENSe:] POWer: ACHannel: PRESet on page 694

3.3.5.5 Measuring with Spectrum Emission Masks

The Spectrum Emission Mask (SEM) measurement defines a measurement that monitors compliance with a spectral mask. The SEM measurement is used to measure the excess emissions of a TX channel that would interfere to other channels or to other systems.

The SEM measurement of the base unit allows a flexible definition of all parameters in the SEM measurement. It is performed using the Spectrum Emission Mask softkey in the "Measurement" menu. Most parameters are defined in the "Sweep List" dialog box (see "Sweep List dialog box" on page 218). After a preset, the sweep list contains a set of default ranges and parameters. For each range, you can change the parameters. For information on other SEM settings, see the description of the corresponding softkeys ("Spectrum Emission Mask" on page 217).

If you want a parameter set to be available permanently, you can create an XML file for this configuration and, if necessary, export this file to another application (for details refer to "Format Description of Spectrum Emission Mask XML Files" on page 235 and "ASCII File Export Format (Spectrum Emission Mask)" on page 240).

Some predefined XML files are provided that contain ranges and parameters according to the selected standard (see "Provided XML Files for the Spectrum Emission Mask Measurement" on page 232).

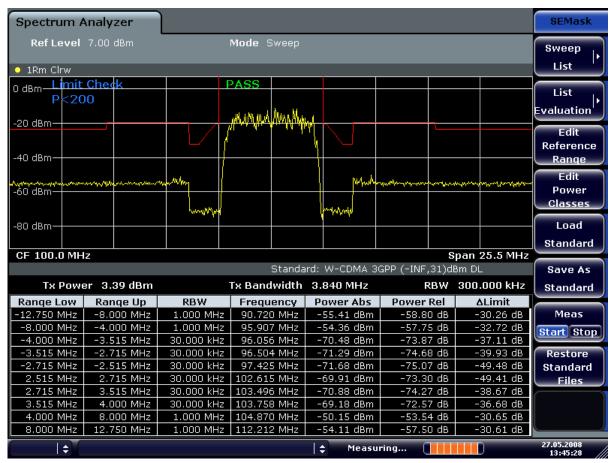
In order to improve the performance of the FSV for spectrum emission mask measurements, a "Fast SEM" mode is available. For details see "Fast Spectrum Emission Mask Measurements" on page 241.

Monitoring compliance of the spectrum is supported by a special limit check for SEM measurements, see "Working with Limit Lines in SEM Measurements" on page 230.

A remote control programming example is described in chapter 4.3.12, "Spectrum Emission Mask Measurement", on page 873.

Softkeys for Spectrum Emission Mask (SEM) Measurements	216
Result Evaluation	227
Ranges and Range Settings	229
Working with Limit Lines in SEM Measurements	230
Provided XML Files for the Spectrum Emission Mask Measurement	232
Format Description of Spectrum Emission Mask XML Files	235
ASCII File Export Format (Spectrum Emission Mask)	
Fast Spectrum Emission Mask Measurements	
act openium Emission mast moasaroneme	
Softkeys for Spectrum Emission Mask (SEM) Measurements	
Spectrum Emission Mask	217
L Sweep List.	218
L Sweep List dialog box	
Range Start / Range Stop	
L Fast SEM	
L Filter Type	
L RBW	
L VBW	
L Sweep Time Mode	
L Sweep Time	
L Ref. Level	
L RF Att. Mode	
L RF Attenuator	
L Preamp	
L Transd. Factor	
L Limit Check 1-4	
L Abs Limit Start	
L Abs Limit Stop	
L Rel Limit Start	
L Rel Limit Stop	
L Close Sweep List	
L Insert before Range	
L Insert after Range	
L Delete Range	
L Symmetric Setup	
L Edit Reference Range	
List Evaluation	
List Evaluation (On/Off)	
L Margin	
L Show Peaks	
L Save Evaluation List	
L ASCII File Export	223 223

Measurement Functions


L Decim Sep	224
L Edit Reference Range	224
L Edit Power Classes	
L Used Power Classes	
L PMin/PMax	226
L Sweep List	
L Add/Remove	
Load Standard	226
L Save As Standard	
L Meas Start/Stop	
L Restore Standard Files	227

Spectrum Emission Mask

Opens a submenu to configure the Spectrum Emission Mask measurement.

The Spectrum Emission Mask (SEM) measurement defines a measurement that monitors compliance with a spectral mask. The SEM measurement of the base unit allows a flexible definition of all parameters in the SEM measurement.

For general information on performing SEM measurements, see chapter 3.3.5.5, "Measuring with Spectrum Emission Masks", on page 215.

Remote command:

SENS: SWE: MODE ESP, see [SENSe:] SWEep: MODE on page 704

Measurement Functions

Sweep List ← Spectrum Emission Mask

Opens a submenu to edit the sweep list and displays the "Sweep List" dialog box.

Sweep List dialog box ← Sweep List ← Spectrum Emission Mask

After a preset, the sweep list contains a set of default ranges and parameters. For each range, you can change the parameters listed below. To insert or delete ranges, use the "Insert Before Range", "Insert After Range", "Delete Range" softkeys. The measurement results are not updated during editing but on closing the dialog box ("Edit Sweep List/ Close Sweep List" softkey, see "Close Sweep List" on page 221).

The changes of the sweep list are only kept until you load another parameter set (by pressing PRESET or by loading an XML file). If you want a parameter set to be available permanently, create an XML file for this configuration (for details refer to "Format Description of Spectrum Emission Mask XML Files" on page 235).

If you load one of the provided XML files ("Load Standard" softkey, see "Load Standard" on page 226), the sweep list contains ranges and parameters according to the selected standard. For further details refer also to "Provided XML Files for the Spectrum Emission Mask Measurement" on page 232.

Note: If you edit the sweep list, always follow the rules and consider the limitations described in "Ranges and Range Settings" on page 229.

Range Start / Range Stop \leftarrow Sweep List dialog box \leftarrow Sweep List \leftarrow Spectrum Emission Mask

Sets the start frequency/stop frequency of the selected range. Follow the rules described in "Ranges and Range Settings" on page 229.

In order to change the start/stop frequency of the first/last range, select the appropriate span with the SPAN key. If you set a span that is smaller than the overall span of the ranges, the measurement includes only the ranges that lie within the defined span and have a minimum span of 20 Hz. The first and last ranges are adapted to the given span as long as the minimum span of 20 Hz is not violated.

Frequency values for each range have to be defined relative to the center frequency. The reference range has to be centered on the center frequency. The minimum span of the reference range is given by the current TX Bandwidth.

Remote command:

```
[SENSe:]ESPectrum:RANGe<range>[:FREQuency]:STARt on page 649
[SENSe:]ESPectrum:RANGe<range>[:FREQuency]:STOP on page 650
```

Fast SEM ← Sweep List dialog box ← Sweep List ← Spectrum Emission Mask Activates "Fast SEM" mode for all ranges in the sweep list. For details see "Fast Spectrum Emission Mask Measurements" on page 241.

Note: If "Fast SEM" mode is deactivated while Symmetric Setup mode is on, "Symmetrical Setup" mode is automatically also deactivated.

If "Fast SEM" mode is activated while "Symmetrical Setup" mode is on, not all range settings can be set automatically.

Remote command:

```
[SENSe:] ESPectrum: HighSPeed on page 646
```

Measurement Functions

Filter Type ← Sweep List dialog box ← Sweep List ← Spectrum Emission Mask Sets the filter type for this range. For details on filters see also chapter 3.2.6.3, "Selecting the Appropriate Filter Type", on page 114.

Remote command:

[SENSe:]ESPectrum:RANGe<range>:FILTer:TYPE on page 649

 $RBW \leftarrow Sweep \ List \ dialog \ box \leftarrow Sweep \ List \leftarrow Spectrum \ Emission \ Mask \ Sets \ the \ RBW \ value \ for \ this \ range.$

Remote command:

[SENSe:]ESPectrum:RANGe<range>:BANDwidth[:RESolution] on page 647

VBW ← Sweep List dialog box ← Sweep List ← Spectrum Emission Mask Sets the VBW value for this range.

Remote command:

[SENSe:]ESPectrum:RANGe<range>:BANDwidth:VIDeo on page 648

Sweep Time Mode \leftarrow Sweep List dialog box \leftarrow Sweep List \leftarrow Spectrum Emission Mask

Activates or deactivates the auto mode for the sweep time.

Remote command:

[SENSe:]ESPectrum:RANGe<range>:SWEep:TIME:AUTO on page 654

Sweep Time \leftarrow Sweep List dialog box \leftarrow Sweep List \leftarrow Spectrum Emission Mask Sets the sweep time value for the range.

Remote command:

[SENSe:]ESPectrum:RANGe<range>:SWEep:TIME on page 654

Ref. Level \leftarrow Sweep List dialog box \leftarrow Sweep List \leftarrow Spectrum Emission Mask Sets the reference level for the range.

Remote command:

[SENSe:]ESPectrum:RANGe<range>:RLEVel on page 653

RF Att. Mode ← Sweep List dialog box ← Sweep List ← Spectrum Emission Mask Activates or deactivates the auto mode for RF attenuation.

Remote command:

[SENSe:]ESPectrum:RANGe<range>:INPut:ATTenuation:AUTO on page 650

RF Attenuator \leftarrow Sweep List dialog box \leftarrow Sweep List \leftarrow Spectrum Emission Mask Sets the attenuation value for that range.

Remote command:

[SENSe:]ESPectrum:RANGe<range>:INPut:ATTenuation on page 650

 $\label{eq:continuous_preservation} \textbf{Preamp} \leftarrow \textbf{Sweep List dialog box} \leftarrow \textbf{Sweep List} \leftarrow \textbf{Spectrum Emission Mask} \\ \textbf{Switches the preamplifier on or off.}$

Remote command:

[SENSe:]ESPectrum:RANGe<range>:INPut:GAIN:STATe on page 651

Measurement Functions

Transd. Factor ← Sweep List dialog box ← Sweep List ← Spectrum Emission Mask Sets a transducer for the specified range. You can only choose a transducer that fulfills the following conditions:

- The transducer overlaps or equals the span of the range.
- The x-axis is linear.
- The unit is dB.

Remote command:

[SENSe:]ESPectrum:RANGe<range>:TRANsducer on page 654

Limit Check 1-4 ← Sweep List dialog box ← Sweep List ← Spectrum Emission Mask Sets the type of limit check for all ranges.

For details on limit checks see "Working with Limit Lines in SEM Measurements" on page 230.

For details on limit checks see the base unit description "Working with Lines in SEM".

The limit state affects the availability of all limit settings ("Abs Limit Start" on page 220, "Abs Limit Stop" on page 220, "Rel Limit Start" on page 220, "Rel Limit Stop" on page 221).

Depending on the number of active power classes (see "Power Class" dialog box), the number of limits that can be set varies. Up to four limits are possible. The sweep list is extended accordingly.

Remote command:

```
[SENSe:]ESPectrum:RANGe<range>:LIMit<source>:STATe on page 653
CALCulate<n>:LIMit<k>:FAIL? on page 498
```

Abs Limit Start ← Sweep List dialog box ← Sweep List ← Spectrum Emission Mask Sets an absolute limit value at the start frequency of the range [dBm].

This parameter is only available if the limit check is set accordingly (see "Limit Check 1-4" on page 220).

Remote command:

```
[SENSe:]ESPectrum:RANGe<range>:LIMit<source>:ABSolute:STARt
on page 651
```

Abs Limit Stop ← **Sweep List dialog box** ← **Sweep List** ← **Spectrum Emission Mask** Sets an absolute limit value at the stop frequency of the range [dBm].

This parameter is only available if the limit check is set accordingly (see "Limit Check 1-4" on page 220).

Remote command:

```
[SENSe:]ESPectrum:RANGe<range>:LIMit<source>:ABSolute:STOP on page 652
```

Rel Limit Start ← Sweep List dialog box ← Sweep List ← Spectrum Emission Mask Sets a relative limit value at the start frequency of the range [dBc].

Measurement Functions

This parameter is only available if the limit check is set accordingly (see "Limit Check 1-4" on page 220).

Remote command:

[SENSe:]ESPectrum:RANGe<range>:LIMit<source>:RELative:STARt on page 652

Rel Limit Stop ← Sweep List dialog box ← Sweep List ← Spectrum Emission Mask Sets a relative limit value at the stop frequency of the range [dBc].

This parameter is only available if the limit check is set accordingly (see "Sweep List dialog box" on page 218).

Remote command:

[SENSe:]ESPectrum:RANGe<range>:LIMit<source>:RELative:STOP on page 652

Close Sweep List ← Sweep List ← Spectrum Emission Mask

Closes the "Sweep List" dialog box and updates the measurement results.

Insert before Range ← Sweep List ← Spectrum Emission Mask

Inserts a new range to the left of the currently focused range. The range numbers of the currently focused range and all higher ranges are increased accordingly. The maximum number of ranges is 20.

For further details refer to "Ranges and Range Settings" on page 229.

Remote command:

ESP:RANG3:INS BEF, **see** [SENSe:]ESPectrum:RANGe<range>:INSert on page 651

Insert after Range ← Sweep List ← Spectrum Emission Mask

Inserts a new range to the right of the currently focused range. The range numbers of all higher ranges are increased accordingly. The maximum number of ranges is 20.

For further details refer to "Ranges and Range Settings" on page 229.

Remote command:

ESP:RANG1:INS AFT, see [SENSe:]ESPectrum:RANGe<range>:INSert
on page 651

Delete Range ← **Sweep List** ← **Spectrum Emission Mask**

Deletes the currently focused range, if possible. The range numbers are updated accordingly. For further details refer to "Ranges and Range Settings" on page 229.

Remote command:

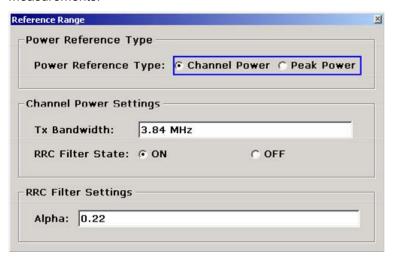
[SENSe:]ESPectrum:RANGe<range>:DELete on page 648

Symmetric Setup ← Sweep List ← Spectrum Emission Mask

If activated, the current sweep list configuration is changed to define a symmetrical setup regarding the reference range. The number of ranges to the left of the reference range is reflected to the right, i.e. any missing ranges on the right are inserted, while superfluous ranges are removed. The values in the ranges to the right of the reference range are adapted symmetrically to those in the left ranges.

Measurement Functions

Any changes to the range settings in active "Symmetric Setup" mode lead to symmetrical changes in the other ranges (where possible). In particular, this means:


- Inserting ranges: a symmetrical range is inserted on the other side of the reference range
- Deleting ranges: the symmetrical range on the other side of the reference range is also deleted
- Editing range settings: the settings in the symmetrical range are adapted accordingly

Note: If "Fast SEM" mode is deactivated while "Symmetric Setup" mode is on, "Sym Setup" mode is automatically also deactivated.

If "Fast SEM" mode is activated while "Symmetric Setup" mode is on, not all range settings can be set automatically.

Edit Reference Range ← Sweep List ← Spectrum Emission Mask

Opens the "Reference Range" dialog box to edit the additional settings used for SEM measurements.

Two different power reference types are supported:

"Peak Power"

Measures the highest peak within the reference range.

"Channel Power"

Measures the channel power within the reference range (integral bandwidth method). If the "Channel Power" reference power type is activated, the dialog box is extended to define additional settings:

"Tx Bandwidth"

Defines the bandwidth used for measuring the channel power: minimum span ≤ value ≤ span of reference range

"RRC Filter State"

Activates or deactivates the use of an RRC filter.

"RRC Filter Settings"

Sets the alpha value of the RRC filter. This window is only available if the RRC filter is activated.

Measurement Functions

For further details refer to "Ranges and Range Settings" on page 229.

Remote command:

```
[SENSe:]ESPectrum:RTYPe on page 655
[SENSe:]ESPectrum:BWID on page 645
[SENSe:]ESPectrum:FILTer[:RRC][:STATe] on page 645
[SENSe:]ESPectrum:FILTer[:RRC]:ALPHa on page 646
```

List Evaluation ← **Spectrum Emission Mask**

Opens a submenu to edit the list evaluation settings.

List Evaluation (On/Off) ← List Evaluation ← Spectrum Emission Mask

Activates or deactivates the list evaluation.

Remote command:

Turning list evaluation on and off:

CALCulate<n>: PEAKsearch | PSEarch: AUTO on page 586

Querying list evaluation results:

TRACe<n>[:DATA]? on page 732

Margin ← List Evaluation ← Spectrum Emission Mask

Opens an edit dialog box to enter the margin used for the limit check/peak search.

Remote command:

CALCulate<n>: PEAKsearch | PSEarch: MARGin on page 586

Show Peaks ← List Evaluation ← Spectrum Emission Mask

In the diagram, marks all peaks with blue squares that have been listed during an active list evaluation.

Remote command:

CALCulate<n>:ESPectrum:PSEarch|:PEAKsearch:PSHow on page 495

Save Evaluation List ← List Evaluation ← Spectrum Emission Mask

Opens the "ASCII File Export Name" dialog box to save the result in ASCII format to a specified file and directory. For further details refer also to the "ASCII File Export" softkey ("ASCII File Export" on page 166).

Remote command:

MMEMory:STORe<n>:LIST on page 623

ASCII File Export \leftarrow Save Evaluation List \leftarrow List Evaluation \leftarrow Spectrum Emission Mask

Opens the "ASCII File Export Name" dialog box and saves the active peak list in ASCII format to the specified file and directory.

The file consists of the header containing important scaling parameters and a data section containing the marker data. For details on an ASCII file see chapter 3.2.8.7, "ASCII File Export Format", on page 138.

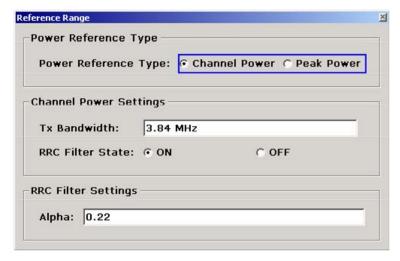
Measurement Functions

This format can be processed by spreadsheet calculation programs, e.g. MS-Excel. It is necessary to define ';' as a separator for the data import. Different language versions of evaluation programs may require a different handling of the decimal point. It is therefore possible to select between separators '.' (decimal point) and ',' (comma) using the "Decim Sep" softkey (see "Decim Sep" on page 71).

An example of an output file for Spectrum Emission Mask measurements is given in "ASCII File Export Format (Spectrum Emission Mask)" on page 240.

Remote command:

FORMat:DEXPort:DSEParator on page 609
MMEMory:STORe<n>:LIST on page 623


Decim Sep ← **Save Evaluation List** ← **List Evaluation** ← **Spectrum Emission Mask** Selects the decimal separator with floating-point numerals for the ASCII Trace export to support evaluation programs (e.g. MS-Excel) in different languages. The values '.' (decimal point) and ',' (comma) can be set.

Remote command:

FORMat: DEXPort: DSEParator on page 609

Edit Reference Range ← Spectrum Emission Mask

Opens the "Reference Range" dialog box to edit the additional settings used for SEM measurements.

Two different power reference types are supported:

- "Peak Power"
 - Measures the highest peak within the reference range.
- "Channel Power"

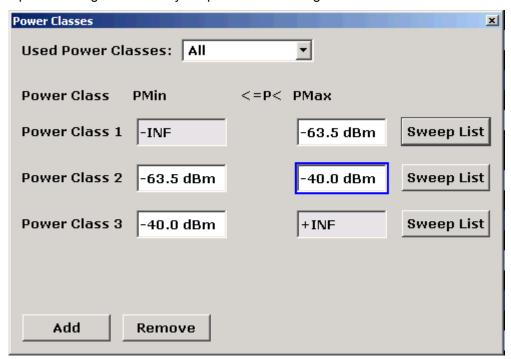
Measures the channel power within the reference range (integral bandwidth method). If the "Channel Power" reference power type is activated, the dialog box is extended to define additional settings:

- "Tx Bandwidth"
 - Defines the bandwidth used for measuring the channel power: minimum span ≤ value ≤ span of reference range
- "RRC Filter State"

Activates or deactivates the use of an RRC filter.

Measurement Functions

"RRC Filter Settings"
 Sets the alpha value of the RRC filter. This window is only available if the RRC filter is activated.


For further details refer to "Ranges and Range Settings" on page 229.

Remote command:

```
[SENSe:]ESPectrum:RTYPe on page 655
[SENSe:]ESPectrum:BWID on page 645
[SENSe:]ESPectrum:FILTer[:RRC][:STATe] on page 645
[SENSe:]ESPectrum:FILTer[:RRC]:ALPHa on page 646
```

Edit Power Classes ← Spectrum Emission Mask

Opens a dialog box to modify the power class settings.

Used Power Classes ← Edit Power Classes ← Spectrum Emission Mask

Choose the power classes to be used from this dropdown menu. It is only possible to select either one of the defined power classes or all of the defined power classes together.

Only power classes for which limits are defined are available for selection.

If "All" is selected, the power class that corresponds to the currently measured power in the reference range is used. The limits assigned to that power class are applied (see "PMin/PMax" on page 226).

Remote command:

```
CALCulate<n>:LIMit<k>:ESPectrum:PCLass<Class>[:EXCLusive]
on page 512
To define all limits in one step:
CALCulate<n>:LIMit<k>:ESPectrum:PCLass<Class>:LIMit[:STATe]
on page 513
```

Measurement Functions

PMin/PMax ← Edit Power Classes ← Spectrum Emission Mask

Defines the level limits for each power class. The range always starts at -200 dBm (-INF) and always stops at 200 dBm (+INF). These fields cannot be modified. If more than one Power Class is defined, the value of "PMin" must be equal to the value of "PMax" of the last Power Class and vice versa.

Note that the power level may be equal to the lower limit, but must be lower than the upper limit:

P_{min}≦P<P_{max}

Remote command:

CALCulate<n>:LIMit<k>:ESPectrum:PCLass<Class>:MINimum on page 514 CALCulate<n>:LIMit<k>:ESPectrum:PCLass<Class>:MAXimum on page 514

Sweep List ← Edit Power Classes ← Spectrum Emission Mask

See "Sweep List" on page 218

Add/Remove ← Edit Power Classes ← Spectrum Emission Mask

Activates or deactivates power classes to be defined. Up to four power classes can be defined. The number of active power classes affects the availability of the items of the Used Power Classes dropdown menu.

Remote command:

CALCulate<n>:LIMit<k>:ESPectrum:PCLass<Class>[:EXCLusive]
on page 512

Load Standard ← **Spectrum Emission Mask**

Opens a dialog box to select an XML file which includes the desired standard specification. For details on the provided XML files refer to "Provided XML Files for the Spectrum Emission Mask Measurement" on page 232.

Remote command:

[SENSe:]ESPectrum:PRESet[:STANdard] on page 647

Save As Standard ← Spectrum Emission Mask

Opens the "Save As Standard" dialog box, in which the currently used SEM settings and parameters can be saved and exported into an *.xml file. Enter the name of the file in the "File name" field. For details on the structure and contents of the XML file refer to "Format Description of Spectrum Emission Mask XML Files" on page 235.

Remote command:

[SENSe:] ESPectrum: PRESet: STORe on page 647

Meas Start/Stop ← Spectrum Emission Mask

Aborts/restarts the current measurement and displays the status:

"Start" The measurement is currently running.

"Stop" The measurement has been stopped, or, in single sweep mode, the end

of the sweep has been reached.

Remote command:

ABORt on page 474

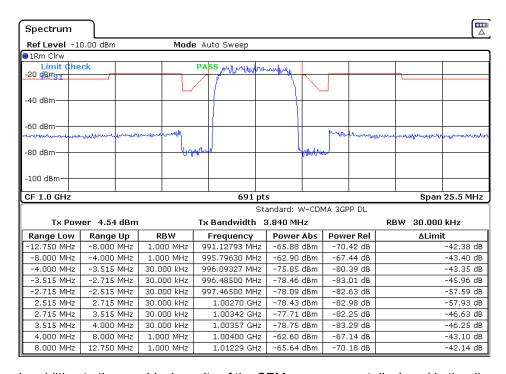
INITiate<n>:ESPectrum on page 611

Measurement Functions

Restore Standard Files Spectrum Emission Mask

Copies the XML files from the $C:\R_S\$ backup folder to the $C:\R$ S\instr\sem std folder. Files of the same name are overwritten.

Remote command:


[SENSe:] ESPectrum: PRESet: RESTore on page 647

Result Evaluation

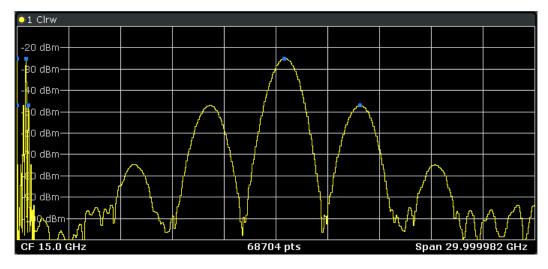
As a result of the Spectrum Emission Mask measurement, the measured signal levels, the result of the limit check (mask monitoring) and the defined limit line are displayed in a diagram (see also "Working with Limit Lines in SEM Measurements" on page 230). Furthermore, the TX channel power "P" is indicated in relation to the defined power class ranges.

Example:

For example, "P<31" is indicated if the lowest power class is defined from infinity to 31 and the power is currently 17 dBm.

In addition to the graphical results of the SEM measurement displayed in the diagram, a result table is displayed to evaluate the limit check results (see also "Working with Limit Lines in SEM Measurements" on page 230).

The following information is provided in the result table:


Label	Description
General Information	
Standard	Loaded standard settings
Tx Power	Tx channel power

Measurement Functions

Label	Description
Tx Bandwidth	Tx channel bandwidth
RBW	RBW for the Tx channel
Range results	
Range Low	Frequency range start for range the peak value belongs to
Range Up	Frequency range stop for range the peak value belongs to
RBW	RBW of the range
Frequency	Frequency
Power Abs	Absolute power level
Power Rel	Power level relative to the TX channel power
ΔLimit	Deviation of the power level from the defined limit

In which detail the data is displayed in the result table can be defined in the List Evaluation menu. By default, one peak per range is displayed. However, you can change the settings to display only peaks that exceed a threshold ("Margin").

In addition to listing the peaks in the list evaluation, detected peaks can be indicated by blue squares in the diagram ("Show Peaks").

Furthermore, you can save the evaluation list to a file ("Save Evaluation List").

Retrieving Results via Remote Control

The measurement results of the spectrum emission mask test can be retrieved using the CALCulate < n > : LIMit < k > : FAIL? command from a remote computer.

The power result for the reference range can be queried using

CALC: MARK: FUNC: POW: RES? CPOW, the peak power for the reference range using CALC: MARK: FUNC: POW: RES? PPOW.

Measurement Functions

For details see CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult? on page 557.

Ranges and Range Settings

In the Spectrum Emission Mask measurements, a range defines a segment for which you can define the following parameters separately:

- Start and stop frequency
- RBW
- VBW
- Sweep time
- Sweep points
- Reference level
- Attenuator settings
- Limit values

Via the sweep list, you define the ranges and their settings. For details on settings refer to "Sweep List dialog box" on page 218.

For details on defining the limits (masks) see "Working with Limit Lines in SEM Measurements" on page 230.

For details on defining the limits (masks) see the base unit description "Working with Lines in SEM".

The following rules apply to ranges:

- The minimum span of a range is 20 Hz.
- The individual ranges must not overlap (but need not directly follow one another).
- The maximum number of ranges is 20.
- A minimum of three ranges is mandatory.
- The reference range cannot be deleted (it is marked in blue color).
- The reference range has to be centered on the center frequency.
- The minimum span of the reference range is given by the current TX Bandwidth.
- Frequency values for each range have to be defined relative to the center frequency.

In order to change the start frequency of the first range or the stop frequency of the last range, select the appropriate span with the SPAN key. If you set a span that is smaller than the overall span of the ranges, the measurement includes only the ranges that lie within the defined span and have a minimum span of 20 Hz. The first and last ranges are adapted to the given span as long as the minimum span of 20 Hz is not violated.

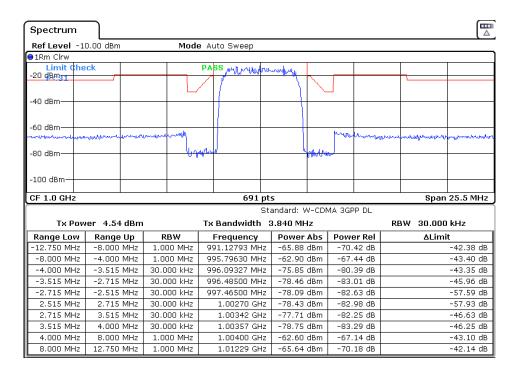
Measurement Functions

Symmetrical ranges

You can easily define a sweep list with symmetrical range settings, i.e. the ranges to the left and right of the center range are defined symmetrically. In the "Sweep List" menu, select the "Symmetrical Setup" softkey to activate symmetrical setup mode. The current sweep list configuration is changed to define a symmetrical setup regarding the reference range. The number of ranges to the left of the reference range is reflected to the right, i.e. any missing ranges on the right are inserted, while superfluous ranges are removed. The values in the ranges to the right of the reference range are adapted symmetrically to those in the left ranges.

For details see "Symmetric Setup" on page 221.

Symmetrical ranges fulfull the conditions required for "Fast SEM" mode (see "Fast Spectrum Emission Mask Measurements" on page 241).

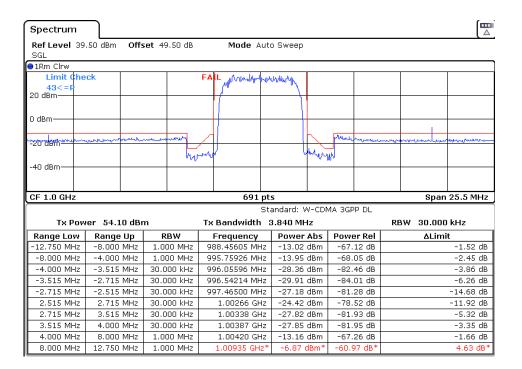

Working with Limit Lines in SEM Measurements

Using the R&S FSV, the spectrum emission mask is defined using limit lines. Limit lines allow you to check the measured data against specified limit values. Generally, it is possible to define limit lines for any measurement in Spectrum mode using the LINES key. For SEM measurements, however, special limit lines are available via the "Sweep List", and it is strongly recommended that you use only these limit line definitions.

In the "Sweep List" you can define a limit line for each power class that varies its level according to the specified frequency ranges. Distinguished limit lines ("_SEM_LINE_ABS<0...3>"/"_SEM_LINE_REL<0...3>") are automatically defined for each power class according to the current "Sweep List" settings every time the settings change.

The limit line defined for the current power class is indicated by a red line in the display, and the result of the limit check is indicated at the top of the diagram. Note that only "Pass" or "Fail" is indicated; a "margin" function as for general limit lines is not available.

Measurement Functions



The indicated limit line depends on the settings in the "Sweep List". Several types of limit checks are possible:

Limit check type	Pass/fail criteria	Indicated limit line
Absolute	Absolute power levels may not exceed limit line	Defined by the "Abs Limit Start"/ "Abs Limit Stop" values for each range
Relative	Power deviations relative to the TX channel power may not exceed limit line	Defined by the "Rel Limit Start"/ "Rel Limit Stop" values (relative to the center frequency) for each range
Abs and Rel	Only if the power exceeds both the absolute and the relative limits, the check fails.	The less strict (higher) limit line is displayed for each range.
Abs or Rel	If the power exceeds either the absolute or the relative limits, the check fails.	The stricter (lower) limit line is displayed for each range.

The largest deviations of the power from the limit line for each range are displayed in the evaluation list. Furthermore, the absolute powers for those values, as well as the relative deviation from the TX channel power are displayed. Values that exceed the limit are indicated in red and by an asterisk (*).

Measurement Functions

Although a margin functionality is not available for the limit check, a margin (threshold) for the peak values to be displayed in the evaluation list can be defined in the list evaluation settings. For details see "Result Evaluation" on page 227.

Provided XML Files for the Spectrum Emission Mask Measurement

You can change the settings manually or via XML files. The XML files offer a quick way to change the configuration. A set of ready-made XML files for different standards is already provided. For details see table 3-6. You can also create and use your own XML files (for details see "Format Description of Spectrum Emission Mask XML Files" on page 235). All XML files are stored under "C: \r_s\instr\sem_std". Use the "Load Standard" softkey for quick access to the available XML files (see "Load Standard" on page 226).

Table 3-6: Provided XML files

Path	XML file name	Displayed standard characteristics*
cdma2000\DL	default0.xml	CDMA2000 BC0 DL
	default1.xml	CDMA2000 BC1 DL
cdma2000\UL	default0.xml	CDMA2000 BC0 UL
	default1.xml	CDMA2000 BC1 UL
WCDMA\3GPP\DL	PowerClass_31_39.xml	W-CDMA 3GPP (31,39)dBm DL
	PowerClass_39_43.xml	W-CDMA 3GPP (39,43)dBm DL
	PowerClass_43_INF.xml	W-CDMA 3GPP (43,INF)dBm DL

Path	XML file name	Displayed standard characteristics*
	PowerClass_negINF_31.xml	W-CDMA 3GPP (-INF,31)dBm DL
WIBRO\DL	PowerClass_29_40.xml	WiBro TTA (29,40)dBm DL
	PowerClass_40_INF.xml	WiBro TTA (40,INF)dBm DL
	PowerClass_negINF_29.xml	WiBro TTA (-INF,29)dBm DL
WIBRO\UL	PowerClass_23_INF.xml	WiBro TTA (23,INF)dBm UL
	PowerClass_negINF_23.xml	WiBro TTA (23,INF)dBm UL
WIMAX\DL\ETSI\MHz (1.75 MHz, 2.00 MHz, 3.5 MHz, 7.00 MHz, 14.00 MHz, 28 MHz)	System_Type_E.xml	WIMAX System Type E DL
	System_Type_F.xml	WIMAX System Type F DL
	System_Type_G.xml	WIMAX System Type G DL
WIMAX\DL\IEEE	10MHz.xml	WIMAX 10MHz DL
	20MHz.xml	WIMAX 20MHz DL
WIMAX\UL\ETSIMHz (1.75 MHz, 2.00 MHz, 3.5 MHz, 7.00 MHz, 14.00 MHz, 28 MHz)	System_Type_E.xml	WIMAX System Type E UL
	System_Type_F.xml	WIMAX System Type F UL
	System_Type_G.xml	WIMAX System Type G UL
WIMAX\UL\IEEE	10MHz.xml	WIMAX 10MHz UL
	20MHz.xml	WIMAX 20MHz UL
WLAN\802_11_TURBO	ETSI.xml	IEEE 802.11
	IEEE.xml	IEEE 802.11
WLAN\802_11a	ETSI.xml	IEEE 802.11a
	IEEE.xml	IEEE 802.11a
WLAN\802_11b	IEEE.xml	IEEE 802.11b
WLAN\802_11j_10MHz	ETSI.xml	IEEE.802.11j
	IEEE.xml	IEEE.802.11j
WLAN\802_11j_20MHz	ETSI.xml	IEEE 802.11j
	IEEE.xml	IEEE 802.11j
EUTRA-LTE\DL\CategoryA\	BW_01_4_MHzCFhigher1GHz.xm	LTE Cat. A >1GHz DL
EUTRA-LTE\DL\CategoryA\	BW_01_4_MHzCFlower1GHz.xml	LTE Cat. A <1GHz DL
EUTRA-LTE\DL\CategoryA\	BW_03_0_MHzCFhigher1GHz.xm	LTE Cat. A >1GHz DL
EUTRA-LTE\DL\CategoryA\	BW_03_0_MHzCFlower1GHz.xml	LTE Cat. A <1GHz DL

Measurement Functions

Path	XML file name	Displayed standard characteristics*
EUTRA-LTE\DL\CategoryA\	BW_05_0_MHzCFhigher1GHz.xm	LTE Cat. A >1GHz DL
EUTRA-LTE\DL\CategoryA\	BW_05_0_MHzCFlower1GHz.xml	LTE Cat. A <1GHz DL
EUTRA-LTE\DL\CategoryA\	BW_10_0_MHzCfhigher1GHz.xml	LTE Cat. A >1GHz DL
EUTRA-LTE\DL\CategoryA\	BW_10_0_MHzCflower1GHz.xml	LTE Cat. A >1GHz DL
EUTRA-LTE\DL\CategoryA\	BW_15_0_MHzCFhigher1GHz.xm	LTE Cat. A >1GHz DL
EUTRA-LTE\DL\CategoryA\	BW_15_0_MHzCFlower1GHz.xml	LTE Cat. A <1GHz DL
EUTRA-LTE\DL\CategoryA\	BW_20_0_MHzCFhigher1GHz.xm	LTE Cat. A >1GHz DL
EUTRA-LTE\DL\CategoryA\	BW_20_0_MHzCFlower1GHz.xml	LTE Cat. A <1GHz DL
EUTRA-LTE\DL\CategoryB\	BW_01_4_MHzCFhigher1GHz.xm	LTE Cat. B >1GHz DL
EUTRA-LTE\DL\CategoryB\	BW_01_4_MHzCFlower1GHz.xml	LTE Cat. B <1GHz DL
EUTRA-LTE\DL\CategoryB\	BW_03_0_MHzCFhigher1GHz.xm	LTE Cat. B >1GHz DL
EUTRA-LTE\DL\CategoryB\	BW_03_0_MHzCFlower1GHz.xml	LTE Cat. B <1GHz DL
EUTRA-LTE\DL\CategoryB\	BW_05_0_MHzCFhigher1GHz.xm	LTE Cat. B >1GHz DL
EUTRA-LTE\DL\CategoryB\	BW_05_0_MHzCFlower1GHz.xml	LTE Cat. B <1GHz DL
EUTRA-LTE\DL\CategoryB\	BW_10_0_MHzCfhigher1GHz.xml	LTE Cat. B >1GHz DL
EUTRA-LTE\DL\CategoryB\	BW_10_0_MHzCflower1GHz.xml	LTE Cat. B >1GHz DL
EUTRA-LTE\DL\CategoryB\	BW_15_0_MHzCFhigher1GHz.xm	LTE Cat. B >1GHz DL
EUTRA-LTE\DL\CategoryB\	BW_15_0_MHzCFlower1GHz.xml	LTE Cat. B <1GHz DL
EUTRA-LTE\DL\CategoryB\	BW_20_0_MHzCFhigher1GHz.xm	LTE Cat. B >1GHz DL
EUTRA-LTE\DL\CategoryB\	BW_20_0_MHzCFlower1GHz.xml	LTE Cat. B <1GHz DL
EUTRA-LTE\UL\Standard\	BW_05_0_MHz.xml	LTE UL
EUTRA-LTE\UL\Standard\	BW_10_0_MHz.xml	LTE UL
EUTRA-LTE\UL\Standard\	BW_15_0_MHz.xml	LTE UL
EUTRA-LTE\UL\Standard\	BW_20_0_MHz.xml	LTE UL

*Used abbreviations:

BC: band class

UL: uplink
DL: downlink

Measurement Functions

TTA: Telecommunications Technology Association

Format Description of Spectrum Emission Mask XML Files

The files for importing range settings are in XML format and therefore obey the rules of the XML standard. Below, the child nodes, attributes, and structure defined for the data import is described. Build your own XML files according to these conventions because the R&S FSV can only interpret XML files of a known structure. For example files look in the C:\r s\instr\sem std directory.

Spectrum Emi	ssion Mask	ion Mask Standard: W-CDMA 3GPP (39,43)dBm DL				
Tx Powe	r -47.93 dBm	1	Tx Bandwidth 3	.840 MHz	RBW 3	0.000 kHz
Range Low	Range Up	RBW	Frequency	Power Abs	Power Rel	ΔLimit
-12.750 MHz	-8.000 MHz	1.000 MHz	14.99094 GHz*	-74.76 dBm*	-26.83 dB*	27.67 dB*
-8.000 MHz	-4.000 MHz	1.000 MHz	14.99598 GHz	-36.79 dBm	11.14 dB	-25.29 dB
-4.000 MHz	-3.515 MHz	30.000 kHz	14.99628 GHz	-100.18 dBm	-52.25 dB	-75.68 dB
-3.515 MHz	-2.715 MHz	30.000 kHz	14.99648 GHz	-103.55 dBm	-55.63 dB	-79.05 dB
-2.715 MHz	-2.515 MHz	30.000 kHz	14.99747 GHz	-108.91 dBm	-60.98 dB	-96.41 dB
2.515 MHz	2.715 MHz	30.000 kHz	15.00251 GHz	-48.25 dBm	-0.32 dB	-35.75 dB
2.715 MHz	3.515 MHz	30.000 kHz	15.00272 GHz	-52.48 dBm	-4.56 dB	-39.98 dB
3.515 MHz	4.000 MHz	30.000 kHz	15.00398 GHz	-74.53 dBm	-26.60 dB	-50.03 dB
4.000 MHz	8.000 MHz	1.000 MHz	15.00769 GHz	-74.76 dBm	-26.83 dB	-63.26 dB
8.000 MHz	12.750 MHz	1.000 MHz	15.01273 GHz*	-36.79 dBm*	11.14 dB*	65.64 dB*

Fig. 3-15: Example Spectrum emission mask standard file (PowerClass_39_43.xml)

Be sure to follow the structure exactly as shown below or else the R&S FSV is not able to interpret the XML file and error messages are shown on the screen. Therefore, we recommend you make a copy of an existing file (see Save As Standard softkey) and edit the copy of the file.

Alternatively, edit the settings using the "Spectrum Emission Mask" softkey and the Sweep List dialog box and save the XML file with the Save As Standard softkey afterwards. This way, no modifications have to be done in the XML file itself.

Basically, the file consists of three elements that can be defined:

- The "BaseFormat" element
- The "PowerClass" element
- The "Range" element

The "BaseFormat" element

It carries information about basic settings. In this element only the "ReferencePower" child node has any effects on the measurement itself. The other attributes and child nodes are used to display information about the Spectrum Emission Mask Standard on the measurement screen. The child nodes and attributes of this element are shown in table 3-7.

In the example above (PowerClass_39_43.xml under C:\r_s\instr\sem_std\WCDMA\3GPP, see figure 3-15), these attributes are defined as follows:

- Standard="W-CDMA 3GPP"
- LinkDirection="DL"

Measurement Functions

PowerClass="(39,43)dBm"

The "PowerClass" element

It is embedded in the "BaseFormat" element and contains settings information about the power classes. Up to four different power classes can be defined. For details refer to the "Sweep List" softkey ("Sweep List" on page 218) and the corresponding parameter description. The child nodes and attributes of this element are shown in table 3-8.

The "Range" element

This element is embedded in the "PowerClass" element. It contains the settings information of the range. There have to be at least three defined ranges: one reference range and at least one range to either side of the reference range. The maximum number of ranges is 20. Note that the R&S FSV uses the same ranges in each power class. Therefore, the contents of the ranges of each defined power class have to be identical to the first power class. An exception are the Start and Stop values of the two Limit nodes that are used to determine the power class. Note also, that there are two Limit nodes to be defined: one that gives the limit in absolute values and one in relative values. Make sure units for the Start and Stop nodes are identical for each Limit node.

For details refer to the "Sweep List" softkey ("Sweep List" on page 218) and the corresponding parameter description. The child nodes and attributes of this element are shown in table 3-9.

The following tables show the child nodes and attributes of each element and show if a child node or attribute is mandatory for the R&S FSV to interpret the file or not. Since the hierarchy of the XML can not be seen in the tables, either view one of the default files already stored on the R&S FSV in the "C: $\r_s\s$ instr \s directory or check the structure as shown below.

Below, a basic example of the structure of the file is shown, containing all mandatory attributes and child nodes. Note that the "PowerClass" element and the range element are themselves elements of the "BaseFormat" element and are to be inserted where noted. The separation is done here simply for reasons of a better overview. Also, no example values are given here to allow a quick reference to the tables above. Italic font shows the placeholders for the values.

- The "BaseFormat" element is structured as follows:
 - <RS_SEM_ACP_FileFormat Version=""1.0.0.0"">
 - <Name>"Standard"</Name>
 - <Instrument>
 - <Type>"Instrument Type"</Type>
 - <Application>"Application"</Application>
 - /Instrument>
 - <LinkDirection Name=""Name"">
 - <ReferencePower>
 - <Method>"Method"</Method>
 - </ReferencePower>
 - <PowerClass Index=""n"">
 - <!-- For contents of the PowerClass node see

table 3-8 -->

```
<!-- Define up to four PowerClass nodes -->
   </PowerClass>
   </LinkDirection>
   </RS_SEM_ACP_File>
The "PowerClass" element is structured as follows:
   <PowerClass Index=""n"">
   <StartPower Unit=""dBm"" InclusiveFlag=""true"" Value=""StartPowerValue""/>
   <StopPower Unit=""dBm"" InclusiveFlag=""false"" Value=""StopPowerValue""/>
   <DefaultLimitFailMode>"Limit Fail Mode"/DefaultLimitFailMode>
   <Range Index=""n"">
   <!-- For contents of the Range node see table 3-9 -->
   <!-- Define up to twenty Range nodes -->
   </Range>
   ...
   </PowerClass>
The "Range" element is structured as follows:
- <Range Index=""n"">
   <Name=""Name"">
   <ChannelType>"Channel Type"
   <WeightingFilter>
   <Type>"FilterType"</Type>
   <RollOffFactor>"Factor"</RollOffFactor>
   <Bandwith>"Bandwidth"</Bandwidth>
   </WeightingFilter>
   <FrequencyRange>
   <Start>"RangeStart"</Start>
   <Stop>"RangeStop"</Stop>
   </FrequencyRange>
   <Limit>
   <Start Unit=""Unit"" Value=""Value""/>
   <Stop Unit=""Unit"" Value=""Value""/>
   </Limit>
   <Limit>
   <Start Unit=""Unit"" Value=""Value""/>
   <Stop Unit=""Unit"" Value=""Value""/>
   </Limit>
   <RBW Bandwidth=""Bandwidth"" Type=""FilterType""/>
   < VBW Bandwidth=""Bandwidth""/>
   <Detector>"Detector"</Detector>
   <Sweep Mode=""SweepMode"" Time=""SweepTime""/>
   <Amplitude>
   <ReferenceLevel Unit=""dBm"" Value=""Value""/>
   <RFAttenuation Mode=""Auto"" Unit=""dB"" Value=""Value""/>
   <Pre><Preamplifier State=""State""/>
   </Amplitude>
   </Range>
```

Table 3-7: Attributes and child nodes of the BaseFormat element

Child Node	Attribute	Value	Parameter Description	Mand.
	FileFormatVersion	1.0.0.0		Yes
	Date	YYYY-MM-DD HH:MM:SS	Date in ISO 8601 format	No
Name		<string></string>	Name of the standard	Yes
Instrument	Туре	FSL	Name of the instrument	No
	Application	SA K72 K82	Name of the application	No
LinkDirection	Name	Downlink Uplink None		Yes
	ShortName	DL UL		No
Reference- Power				Yes
Method	TX Channel Power TX Channel Peak Power			Yes
Reference- Channel	<string></string>			No

Table 3-8: Attributes and child nodes of the PowerClass element

Child Node	Attribute	Value	Parameter Description	Mand.
StartPower	Value	<power dbm="" in=""></power>	The start power must be equal to the stop power of the previous power class. The Start-Power value of the first range is -200	Yes
	Unit	dBm		Yes
	InclusiveFlag	true		Yes
StopPower	Value	<power dbm="" in=""></power>	The stop power must be equal to the start power of the next power class. The StopPower value of the last range is 200	Yes
	Unit	dBm		
	InclusiveFlag	false		Yes
DefaultLimitFailMode		Absolute Relative Absolute and Rela- tive Absolute or Relative		Yes

Table 3-9: Attributes and child nodes of the Range element (normal ranges)

Child Node	Attribute	Value	Parameter Description	Mand.
	Index	019	Inde XE s are continuous and have to start with 0	Yes
	Name	<string></string>	Name of the range	Only if Referen- ceChannel con- tains a name and the range is the reference range
	Short- Name	<string></string>	Short name of the range	No
ChannelType		TX Adjacent		Yes
WeightingFilter				Only if ReferencePower method is TX Channel Power and the range is the reference range
Туре		RRC CFilter	Type of the weighting filter	Yes
Roll Off Factor		01	Excess bandwidth of the filter	Only if the filter type is RRC
Bandwidth		<bandwidth hz="" in=""></bandwidth>	Filter bandwidth	Only if the filter type is RRC
FrequencyRange				Yes
Start		<frequency hz="" in=""></frequency>	Start value of the range	Yes
Stop		<frequency hz="" in=""></frequency>	Stop value of the range	Yes
Limit		dBm/Hz dBm dBc dBr dB	A Range must contain exactly two limit nodes; one of the limit nodes has to have a relative unit (e.g. dBc), the other one must have an absolute unit (e.g. dBm)	Yes
Start	Value	<numeric_value></numeric_value>	Power limit at start frequency	Yes
	Unit	dBm/Hz dBm dBc dBr dB	Sets the unit of the start value	
Stop	Value	<numeric_value></numeric_value>	Power limit at stop frequency	
	Unit	dBm/Hz dBm dBc dBr dB	Sets the unit of the stop value	
LimitFailMode		Absolute Relative Absolute and Rela- tive Absolute or Relative	If used, it has to be identical to DefaultLimitFailMode	No
RBW	Bandwidth	<bandwidth hz="" in=""></bandwidth>	"RBW" on page 219	Yes
	Туре	NORM PULS CFIL RRC		No
VBW	Bandwidth	<bandwidth hz="" in=""></bandwidth>	"VBW" on page 219	Yes

Measurement Functions

Child Node	Attribute	Value	Parameter Description	Mand.
Detector		NEG POS SAMP RMS AVER QUAS	If used, it has to be identical in all ranges.	No
Sweep	Mode	Manual Auto	"Sweep Time Mode" on page 219	Yes
	Time	<time in="" sec=""></time>	"Sweep Time" on page 219	No
Amplitude				No
ReferenceLevel	Value	<power dbm="" in=""></power>	"Ref. Level" on page 219	Yes, if the ReferenceLevel child node is used
	Unit	dBm	Defines dBm as unit	Yes, if the ReferenceLevel node is used
RFAttenuation	Mode	Manual Auto	"RF Att. Mode" on page 219	Yes, if the ReferenceLevel child node is used
Preamplifier		ON OFF	"Preamp" on page 219	Yes

ASCII File Export Format (Spectrum Emission Mask)

The first part of the file lists information about the signal analyzer and the general setup. For a detailed description refer to chapter 3.2.8.7, "ASCII File Export Format", on page 138.

File contents	Description
RefType; CPOWER; TxBandwidth;9540000;Hz Filter State; ON; Alpha;0.22;	reference range setup, for details see "Edit Reference Range" on page 222
PeaksPerRange;1; Values;4;	evaluation list information
0;-22500000;-9270000;1000000;2986455000;-74.762840 270996094; -10.576210021972656;-45.762840270996094;PASS; 1;-9270000;-4770000;100000;2991405000;-100.1769561 7675781; -35.990325927734375;-1.490325927734375;PASS 3;4770000;9270000;100000;3005445000;-100.17695617 675781; -35.990325927734375;-1.490325927734375;PASS; 4;9270000;22500000;1000000;3018225000;-74.7628402 70996094; -10.576210021972656;-45.762840270996094;PASS;	information about each peak: <range number="">; <start frequency="">; <stop frequency="">; <resolution bandwidth="" of="" range="">; <frequency of="" peak="">; <absolute dbm="" in="" of="" peak="" power="">; <relative (related="" channel="" dbc="" in="" of="" peak="" power="" power)="" the="" to="">; <distance (positive="" above="" db="" in="" limit="" limit)="" line="" means="" the="" to="" value="">; </distance></relative></absolute></frequency></resolution></stop></start></range>

Measurement Functions

Fast Spectrum Emission Mask Measurements

In order to improve the performance of the R&S FSV for spectrum emission mask measurements, a "Fast SEM" mode is available. If this mode is activated, several consecutive ranges with identical sweep settings are combined to one sweep internally, which makes the measurement considerably more efficient. The displayed results remain unchanged and still consist of several ranges. Thus, measurement settings that apply only to the results, such as limits or transducer factors, can nevertheless be defined individually for each range.

Prerequisites

"Fast SEM" mode is available if the following criteria apply:

- The frequency ranges are consecutive, without frequency gaps
- The following sweep settings are identical:
 - "Filter Type", see "Filter Type" on page 219
 - "RBW", see "RBW" on page 219
 - "VBW", see "VBW" on page 219
 - "Sweep Time Mode", see "Sweep Time Mode" on page 219
 - "Ref Level", see "Ref. Level" on page 219
 - "Rf Att. Mode", see "RF Att. Mode" on page 219
 - "RF Attenuator", see "RF Att. Mode" on page 219
 - "Preamp", see "Preamp" on page 219

Activating Fast SEM mode

"Fast SEM" mode is activated in the sweep list (see "Fast SEM" on page 218) or using a remote command. Activating the mode for one range automatically activates it for all ranges in the sweep list.

In the provided XML files for the Spectrum Emission Mask measurement, "Fast SEM" mode is activated by default.

SCPI command:

[SENSe:] ESPectrum: HighSPeed on page 646

Consequences

When the "Fast SEM" mode is activated, the ranges for which these criteria apply are displayed as one single range. The sweep time is defined as the sum of the individual sweep times, initially, but can be changed. When the "Fast SEM" mode is deactivated, the originally defined individual sweep times are reset.

If "Symmetrical Setup" mode is active when "Fast SEM" mode is activated, not all sweep list settings can be configured symmetrically automatically (see also "Symmetric Setup" on page 221).

Measurement Functions

Any other changes to the sweep settings of the combined range are applied to each included range and remain changed even after deactivating "Fast SEM" mode.

Example

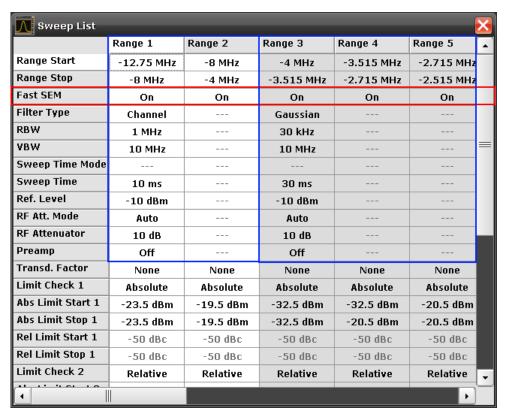


Fig. 3-16: Sweep list using Fast SEM mode

In figure 3-16, a sweep list is shown for which Fast SEM is activated. The formerly 5 separately defined ranges are combined to 2 sweep ranges internally.

3.3.5.6 Measuring Spurious Emissions

The Spurious Emissions measurement defines a measurement that monitors unwanted RF products outside the assigned frequency band generated by an amplifier. The spurious emissions are usually measured across a wide frequency range. The Spurious Emissions measurement allows a flexible definition of all parameters. A result table indicates the largest deviations of the absolute power from the limit line for each range, and the results can be checked against defined limits automatically.

Measurement Functions

Spurious Emissions measurements are performed using the "Spurious Emissions" softkey in the "Measurement" menu (see "Spurious Emissions" on page 248).

Most parameters are defined in the "Sweep List" dialog box (see "Sweep List dialog box" on page 248). For information on other parameters, see the corresponding softkeys ("Spurious Emissions" on page 248).

Conditions for ranges

The following rules apply to ranges:

- The minimum span of a range is 20 Hz.
- The individual ranges must not overlap (but need not directly follow one another).
- The maximum number of ranges is 20.
- The maximum number of sweep points in all ranges is limited to 100001.

In order to change the start/stop frequency of the first/last range, select the appropriate span with the SPAN key. If you set a span that is smaller than the overall span of the ranges, the measurement includes only the ranges that lie within the defined span and have a minimum span of 20 Hz. The first and last ranges are adapted to the given span as long as the minimum span of 20 Hz is not violated.

Measurement Functions

Defining ranges by remote control

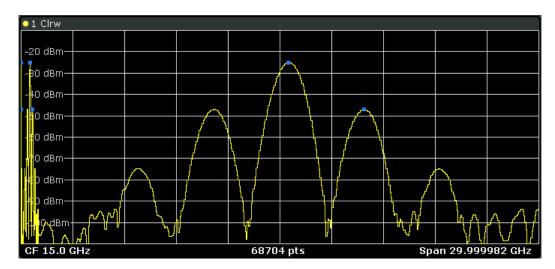
In Spurious Emissions measurements, there are no remote commands to insert new ranges between existing ranges directly. However, you can delete or re-define the existing ranges to create the required order.

A remote command example for defining parameters and ranges in spurious emissions measurements can be found in chapter 7 "Remote Control – Programming Examples" of the Operating manual on the CD-ROM.

Result Evaluation

In addition to the graphical results of the spurious measurement displayed in the diagram, a result table can be displayed to evaluate the limit check results (see also "Working with Limit Lines in Spurious Measurements" on page 245). Which data is displayed in the evaluation list can be defined in the "List Evaluation" menu (see "List Evaluation" on page 251).

The following information is provided in the evaluation list:


Column	Description
Range Low	Frequency range start for range the peak value belongs to
Range Up	Frequency range stop for range the peak value belongs to
RBW	RBW of the range
Frequency	Frequency at the peak value
Power Abs	Absolute power level at the peak value
ΔLimit	Deviation of the absolute power level from the defined limit for the peak value

By default, one peak per range is displayed. However, you can change the settings to:

- Display all peaks ("Details ON")
- Display a certain number of peaks per range ("Details ON" + "Peaks per Range")
- Display only peaks that exceed a threshold ("Margin")

In addition to listing the peaks in the list evaluation, detected peaks can be indicated by blue squares in the diagram ("Show Peaks").

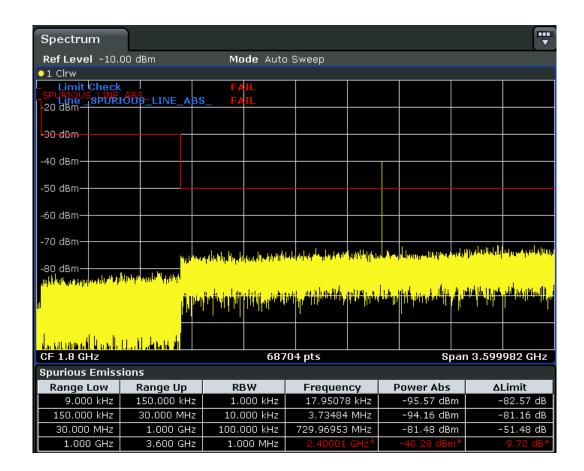
Measurement Functions

Furthermore, you can save the evaluation list to a file ("Save Evaluation List").

Retrieving Results via Remote Control

The spurious measurement results can be retrieved using the CALC: PSE? command from a remote computer (see CALCulate<n>: PEAKsearch | PSEarch [: IMMediate] for a detailed description).

Alternatively, the measured spurious values of the displayed trace can be retrieved using the TRAC: DATA? SPUR command (see TRACe<n>[:DATA]? on page 732).


Working with Limit Lines in Spurious Measurements

Limit lines allow you to check the measured data against specified limit values. Generally, it is possible to define limit lines for any measurement in Spectrum mode using the LINES key. For Spurious measurements, however, a special limit line is available via the "Sweep List", and it is strongly recommended that you use only this limit line definition.

In the "Sweep List" you can define a limit line that varies its level according to the specified frequency ranges. A distinguished limit line ("_SPURIOUS_LINE_ABS") is automatically defined according to the current "Sweep List" settings every time the settings change.

If a limit check is activated in the "Sweep List", the "_SPURIOUS_LINE_ABS" limit line is indicated by a red line in the display, and the result of the limit check is indicated at the top of the diagram. Note that only "Pass" or "Fail" is indicated; a "margin" function as for general limit lines is not available. Also, only absolute limits can be checked, not relative ones.

Measurement Functions

As for general limit lines, the results of each limit line check are displayed (here: "_SPU-RIOUS_LINE_ABS"), as well as the combined result for all defined limit lines ("Limit Check").

In addition to the limit line itself, the largest deviations of the absolute power from the limit line for each range are displayed in the evaluation list if the limit check is activated. Values that exceed the limit are indicated in red and by an asterisk (*).

Although a margin functionality is not available for the limit check, a margin (threshold) for the peak values to be displayed in the evaluation list can be defined in the list evaluation settings. Furthermore, you can define how many peaks per range are listed. For details see "Result Evaluation" on page 244.

To define a limit check for spurious measurements

The limit check is defined in the "Sweep List" dialog box, see "Sweep List dialog box" on page 248 for details.

- 1. Press the MEAS CONFIG key to open the main "Spurious" menu.
- Press the "Sweep List" softkey to open the "Sweep List" dialog box.

Measurement Functions

- 3. In the "Sweep List" dialog box, define the limit line for each range using the "Abs Limit Start" and "Abs Limit Stop" settings.
 - The limit values are absolute values for the absolute power level.
- 4. Set the "Limit Check" setting to "Absolute" to activate the limit check.
- 5. Close the "Sweep List" dialog box.
 - The limit line and the result of the limit check are displayed in the diagram and the result table displays the largest deviations from the limit for each range.
- To reduce the number of displayed delta values, change the margin (threshold) for peak detection in the list evaluation. By default, this value is very high (200 dB), so that initially all peaks are detected.
 - In the "Spurious" menu, press "List Evaluation > Margin" and enter a value in dB. Only delta values that exceed this margin are displayed in the result table.

Softkeys for Spurious Emissions Measurement

Spurious Emissions	248
L Sweep List	248
L Sweep List dialog box	
L Range Start / Range Stop	248
L Filter Type	
L RBW	
L VBW	249
L Sweep Time Mode	249
L Sweep Time	249
L Detector	249
L Ref. Level	249
L RF Att. Mode	249
L RF Attenuator	249
L Preamp	250
L Sweep Points	250
L Stop After Sweep	250
L Transd. Factor	250
Limit Check 1-4	250
L Abs Limit Start	250
L Abs Limit Stop	251
L Close Sweep List	251
L Insert before Range	251
L Insert after Range	251
L Delete Range	
L Adjust Ref LvI (span > 0)	251
L Adjust X-Axis	
List Evaluation	251
List Evaluation (On/Off)	252
L Details On/Off	252
L Margin	252
L Peaks per Range	
L Show Peaks	252
L Save Evaluation List	252

Measurement Functions

L ASCII File Export	252
L Decim Sep	
L Adjust Ref LvI (span > 0)	
L Adjust X-Axis	253
L Meas Start/Stop.	

Spurious Emissions

Opens a submenu to configure the Spurious Emissions measurement and immediately starts a measurement.

For general information on performing Spurious Emissions measurements see chapter 3.3.5.6, "Measuring Spurious Emissions", on page 242.

Remote command:

[SENSe:] SWEep: MODE on page 704

Sweep List ← Spurious Emissions

Opens a submenu to edit the sweep list and displays the "Sweep List" dialog box.

Note: If you edit the sweep list, always follow the rules described in chapter 3.3.5.6, "Measuring Spurious Emissions", on page 242.

Sweep List dialog box ← Sweep List ← Spurious Emissions

After a preset, the sweep list contains a set of default ranges and parameters. For each range, you can change the parameters listed below. To insert or delete ranges, use the "Insert Before Range", "Insert After Range", "Delete Range" softkeys. The measurement results are not updated during editing but on closing the dialog box.

For details and limitations regarding spurious emissions configuration, see chapter 3.3.5.6, "Measuring Spurious Emissions", on page 242.

Range Start / Range Stop \leftarrow Sweep List dialog box \leftarrow Sweep List \leftarrow Spurious Emissions

Sets the start frequency/stop frequency of the selected range. Follow the rules described in chapter 3.3.5.6, "Measuring Spurious Emissions", on page 242.

In order to change the start/stop frequency of the first/last range, select the appropriate span with the SPAN key. If you set a span that is smaller than the overall span of the ranges, the measurement includes only the ranges that lie within the defined span and have a minimum span of 20 Hz. The first and last ranges are adapted to the given span as long as the minimum span of 20 Hz is not violated.

Frequency values for each range have to be defined relative to the center frequency. The reference range has to be centered on the center frequency. The minimum span of the reference range is given by the current TX Bandwidth.

Remote command:

```
[SENSe:]LIST:RANGe<range>[:FREQuency]:STARt on page 666
[SENSe:]LIST:RANGe<range>[:FREQuency]:STOP on page 667
```

Measurement Functions

Filter Type ← Sweep List dialog box ← Sweep List ← Spurious Emissions

Sets the filter type for this range. For details on filters see also chapter 3.2.6.3, "Selecting the Appropriate Filter Type", on page 114.

Remote command:

[SENSe:]LIST:RANGe<range>:FILTer:TYPE on page 667

RBW \leftarrow Sweep List dialog box \leftarrow Sweep List \leftarrow Spurious Emissions Sets the RBW value for this range.

Remote command:

[SENSe:]LIST:RANGe<range>:BANDwidth[:RESolution] on page 664

VBW ← Sweep List dialog box ← Sweep List ← Spurious Emissions Sets the VBW value for this range.

Remote command:

[SENSe:]LIST:RANGe<range>:BANDwidth:VIDeo on page 665

Sweep Time Mode ← Sweep List dialog box ← Sweep List ← Spurious Emissions Activates or deactivates the auto mode for the sweep time.

Remote command:

[SENSe:]LIST:RANGe<range>:SWEep:TIME:AUTO on page 671

Sweep Time \leftarrow Sweep List dialog box \leftarrow Sweep List \leftarrow Spurious Emissions Sets the sweep time value for the range.

Remote command:

[SENSe:]LIST:RANGe<range>:SWEep:TIME on page 670

Detector ← **Sweep List dialog box** ← **Sweep List** ← **Spurious Emissions**Sets the detector for the range. For details refer to chapter 3.2.8.6, "Detector Overview", on page 137.

Remote command:

[SENSe:]LIST:RANGe<range>:DETector on page 666

Ref. Level \leftarrow Sweep List dialog box \leftarrow Sweep List \leftarrow Spurious Emissions Sets the reference level for the range.

Remote command:

[SENSe:]LIST:RANGe<range>:RLEVel on page 670

RF Att. Mode ← Sweep List dialog box ← Sweep List ← Spurious Emissions Activates or deactivates the auto mode for RF attenuation.

Remote command:

[SENSe:]LIST:RANGe<range>:INPut:ATTenuation:AUTO on page 668

RF Attenuator \leftarrow Sweep List dialog box \leftarrow Sweep List \leftarrow Spurious Emissions Sets the attenuation value for that range.

Remote command:

[SENSe:]LIST:RANGe<range>:INPut:ATTenuation on page 668

Measurement Functions

Preamp \leftarrow Sweep List dialog box \leftarrow Sweep List \leftarrow Spurious Emissions Switches the preamplifier on or off.

Remote command:

[SENSe:]LIST:RANGe<range>:INPut:GAIN:STATe on page 669

Sweep Points ← Sweep List dialog box ← Sweep List ← Spurious Emissions Sets the number of sweep points for the specified range.

Remote command:

[SENSe:]LIST:RANGe<range>:POINts on page 670

Stop After Sweep \leftarrow Sweep List dialog box \leftarrow Sweep List \leftarrow Spurious Emissions This command configures the sweep behavior.

"ON" The R&S FSV stops after one range is swept and continues only if you

confirm (a message box is displayed).

"OFF" The R&S FSV sweeps all ranges in one go.

Remote command:

[SENSe:]LIST:RANGe<range>:BREak on page 665

Transd. Factor ← Sweep List dialog box ← Sweep List ← Spurious Emissions
Sets a transducer for the specified range. You can only choose a transducer that fulfills the following conditions:

- The transducer overlaps or equals the span of the range.
- The x-axis is linear.
- The unit is dB.

Remote command:

[SENSe:]LIST:RANGe<range>:TRANsducer on page 671

Limit Check 1-4 \leftarrow Sweep List dialog box \leftarrow Sweep List \leftarrow Spurious Emissions Sets the type of limit check for all ranges. Possible states are:

Absolute	Checks the absolute limits defined.
None	No limit check performed.

The limit settings are only available if limit check is activated ("Absolute"). If activated, the limit line and the results of the check are indicated in the diagram.

Remote command:

```
[SENSe:]LIST:RANGe<range>:LIMit:STATe on page 669
CALCulate<n>:LIMit<k>:FAIL? on page 498
```

Abs Limit Start ← Sweep List dialog box ← Sweep List ← Spurious Emissions Sets an absolute limit value at the start frequency of the range [dBm].

This parameter is only available if the limit check is set to "Absolute" (see "Limit Check 1-4" on page 250).

Remote command:

```
[SENSe:]LIST:RANGe<range>:LIMit:STARt on page 669
```

Measurement Functions

Abs Limit Stop ← Sweep List dialog box ← Sweep List ← Spurious Emissions Sets an absolute limit value at the stop frequency of the range [dBm].

This parameter is only available if the limit check is set to "Absolute" (see "Limit Check 1-4" on page 250).

Remote command:

[SENSe:]LIST:RANGe<range>:LIMit:STOP on page 669

Close Sweep List ← Sweep List ← Spurious Emissions

Closes the "Sweep List" dialog box and updates the measurement results.

Insert before Range ← Sweep List ← Spurious Emissions

Inserts a new range to the left of the currently focused range. The range numbers of the currently focused range and all higher ranges are increased accordingly. The maximum number of ranges is 20.

For further details refer to "Ranges and Range Settings" on page 229.

Insert after Range ← Sweep List ← Spurious Emissions

Inserts a new range to the right of the currently focused range. The range numbers of all higher ranges are increased accordingly. The maximum number of ranges is 20.

For further details refer to "Ranges and Range Settings" on page 229.

Delete Range ← **Sweep List** ← **Spurious Emissions**

Deletes the currently focused range, if possible. The range numbers are updated accordingly. For further details refer to "Ranges and Range Settings" on page 229.

Remote command:

[SENSe:]LIST:RANGe<range>:DELete on page 666

Adjust Ref LvI (span > 0) ← Sweep List ← Spurious Emissions

Adjusts the reference level to the measured total power of the signal. The softkey is activated after the first sweep with active measurement of the occupied bandwidth has been completed and the total power of the signal is thus known.

Adjusting the reference level ensures that the signal path will not be overloaded and the dynamic range not limited by too low a reference level. Since the measurement bandwidth for channel power measurements is significantly lower than the signal bandwidth, the signal path may be overloaded although the trace is distinctly below the reference level. If the measured channel power is equal to the reference level, the signal path cannot be overloaded.

Remote command:

[SENSe:] POWer: ACHannel: PRESet: RLEVel on page 695

Adjust X-Axis ← Sweep List ← Spurious Emissions

Adjusts the frequency axis of measurement diagram automatically so that the start frequency matches the start frequency of the first sweep range, and the stop frequency of the last sweep range.

List Evaluation ← Spurious Emissions

Opens a submenu to edit the list evaluation settings.

Measurement Functions

For more information on list evaluation see "Result Evaluation" on page 244.

List Evaluation (On/Off) ← **List Evaluation** ← **Spurious Emissions**

Activates or deactivates the list evaluation.

Remote command:

CALCulate<n>: PEAKsearch | PSEarch: AUTO on page 586 TRACe<n>[:DATA]? on page 732

Details On/Off ← List Evaluation ← Spurious Emissions

Configures the list contents.

On	Displays the whole list contents.
Off	Displays only the highest peaks (one peak per range).

Margin ← List Evaluation ← Spurious Emissions

Opens an edit dialog box to enter the margin used for the limit check/peak search. Only peaks that exceed the limit and are larger than the specified margin are indicated in the evaluation list.

Remote command:

CALCulate<n>:PEAKsearch|PSEarch:MARGin on page 586

Peaks per Range ← List Evaluation ← Spurious Emissions

Opens an edit dialog box to enter the number of peaks per range that are stored in the list. Once the selected number of peaks has been reached, the peak search is stopped in the current range and continued in the next range. The maximum value is 50.

Remote command:

CALCulate<n>: PEAKsearch | PSEarch: SUBRanges on page 587

Show Peaks ← List Evaluation ← Spurious Emissions

In the diagram, marks all peaks with blue squares that have been listed during an active list evaluation.

Remote command:

CALCulate<n>: PEAKsearch | PSEarch: PSHow on page 587

Save Evaluation List ← List Evaluation ← Spurious Emissions

Opens the "ASCII File Export Name" dialog box and a submenu to save the result in ASCII format to a specified file and directory.

Remote command:

MMEMory:STORe<n>:LIST on page 623

ASCII File Export \leftarrow **Save Evaluation List** \leftarrow **List Evaluation** \leftarrow **Spurious Emissions** Saves the evaluation list in ASCII format to a specified file and directory.

Remote command:

MMEMory:STORe<n>:LIST on page 623

Measurement Functions

Decim Sep ← Save Evaluation List ← List Evaluation ← Spurious Emissions

Selects the decimal separator with floating-point numerals for the ASCII Trace export to support evaluation programs (e.g. MS-Excel) in different languages. The values '.' (decimal point) and ',' (comma) can be set.

Remote command:

FORMat: DEXPort: DSEParator on page 609

Adjust Ref LvI (span > 0) ← Spurious Emissions

Adjusts the reference level to the measured total power of the signal. The softkey is activated after the first sweep with active measurement of the occupied bandwidth has been completed and the total power of the signal is thus known.

Adjusting the reference level ensures that the signal path will not be overloaded and the dynamic range not limited by too low a reference level. Since the measurement bandwidth for channel power measurements is significantly lower than the signal bandwidth, the signal path may be overloaded although the trace is distinctly below the reference level. If the measured channel power is equal to the reference level, the signal path cannot be overloaded.

Remote command:

[SENSe:] POWer: ACHannel: PRESet: RLEVel on page 695

Adjust X-Axis ← Spurious Emissions

Adjusts the frequency axis of measurement diagram automatically so that the start frequency matches the start frequency of the first sweep range, and the stop frequency of the last sweep range.

Meas Start/Stop ← Spurious Emissions

Aborts/restarts the current measurement and displays the status:

"Start" The measurement is currently running.

"Stop" The measurement has been stopped, or, in single sweep mode, the end

of the sweep has been reached.

3.3.5.7 Measuring the Power in Zero Span

Using the power measurement function, the R&S FSV determines the power of the signal in zero span by summing up the power at the individual measurement points and dividing the result by the number of measurement points. Thus it is possible to measure the power of TDMA signals during transmission, for example, or during the muting phase. Both the mean power and the RMS power can be measured.

For this measurement, the sample detector is activated.

Measurement results

Several different power results can be determined simultaneously:

Measurement Functions

Mode	Description
Peak	Peak value from the points of the displayed trace or a segment thereof.
RMS	RMS value from the points of the displayed trace or a segment thereof.
Mean	Mean value from the points of the displayed trace or a segment thereof. The linear mean value of the equivalent voltages is calculated. For example to measure the mean power during a GSM burst
Std Dev	The standard deviation of the measurement points from the mean value.

The result is displayed in the marker results, indicated by "Power" and the selected power mode, e.g. "RMS". The measured values are updated after each sweep or averaged over a user-defined number of sweeps (trace averaging).

The results can also be queried using the remote commands described in "CALCulate:MARKer:FUNCtion:SUMMary Subsystem" on page 570.

Restricting the measurement range using limit lines

The range of the measured signal to be evaluated for the power measurement can be restricted using limit lines. The left and right limit lines (S1, S2) define the evaluation range and are indicated by vertical red lines in the diagram. If activated, the power results are only calculated from the levels within the limit lines.

For example, if both the on and off phase of a burst signal are displayed, the measurement range can be limited to the transmission or to the muting phase. The ratio between signal and noise power of a TDMA signal for instance can be measured using a measurement as a reference value and then varying the measurement range.

To measure the power in the time domain

- 1. Press the "Time Domain Power" softkey to activate the power measurement.
- 2. Select the type of power measurement using the "Peak", "Mean", "RMS" or "Std Dev" softkeys.
- 3. To limit the power evaluation range, switch on the limits ("Limits (On/Off)" softkey) and enter the limits using the "Left Limit" and "Right Limit" softkeys.

Softkeys for Time Domain Power Measurements

Time Domain Power	255
L Peak	255
L RMS	
L Mean	255
L Std Dev	255
L Limits (On/Off)	255
L Left Limit	
L Right Limit	256

Measurement Functions

Time Domain Power

Activates the power measurement in zero span and opens a submenu to configure the power measurement. For more details see also chapter 3.3.5.7, "Measuring the Power in Zero Span", on page 253.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:SUMMary[:STATe] on page 582
```

Peak ← **Time Domain Power**

Activates the calculation of the peak value from the points of the displayed trace or a segment thereof.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PPEak[:STATe] on page 577
CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PPEak:RESult? on page 577
```

RMS ← Time Domain Power

Activates the calculation of the RMS value from the points of the displayed trace or a segment thereof.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:RMS[:STATe] on page 580 CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:RMS:RESult? on page 579
```

Mean ← Time Domain Power

Activates the calculation of the mean value from the points of the displayed trace or a segment thereof. The linear mean value of the equivalent voltages is calculated.

This can be used for instance to measure the mean power during a GSM burst.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:MEAN[:STATe] on page 575
CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:MEAN:RESult? on page 574
```

Std Dev ← Time Domain Power

Activates the calculation of the standard deviation of measurement points from the mean value and displays them as measured value. The measurement of the mean power is automatically switched on at the same time.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:SDEViation[:STATe]
on page 582
CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:SDEViation:RESult?
on page 581
```

Limits (On/Off) ← Time Domain Power

Switches the limitation of the evaluation range on or off. Default setting is off.

Measurement Functions

If switched off, the evaluation range is not limited. If switched on, the evaluation range is defined by the left and right limit. If only one limit is set, it corresponds to the left limit and the right limit is defined by the stop frequency. If the second limit is also set, it defines the right limit.

Remote command:

CALCulate<n>:MARKer<m>:X:SLIMits[:STATe] on page 532

Left Limit ← **Time Domain Power**

Opens an edit dialog box to enter a value for line 1.

Remote command:

CALCulate<n>:MARKer<m>:X:SLIMits:LEFT on page 532

Right Limit ← Time Domain Power

Opens an edit dialog box to enter a value for line 2.

Remote command:

CALCulate<n>:MARKer<m>:X:SLIMits:RIGHT on page 533

3.3.5.8 Calculating Signal Amplitude Statistics

To measure the amplitude distribution, the R&S FSV has simple measurement functions to determine both the APD = Amplitude Probability Distribution and CCDF = Complementary Cumulative Distribution Function.

To determine the amplitude distribution

► To activate and configure the measurement of the amplitude probability distribution (APD), press the "APD" softkey (see "APD" on page 184).
To activate and configure the measurement of the complementary cumulative distribution (CCDF), press the "CCDF" softkey (see "CCDF" on page 184).

Only one of the signal statistic functions can be switched on at a time. When a statistic function is switched on, the R&S FSV is set into zero span mode automatically. The R&S FSV measures the statistics of the signal applied to the RF input with the defined resolution bandwidth. To avoid affecting the peak amplitudes the video bandwidth is automatically set to 10 times the resolution bandwidth. The sample detector is used for detecting the video voltage.

About the Statistical Measurements	256
Result Evaluation	258
Softkeys for APD Measurements	260
Softkeys for CCDF Measurements	265
Defining Gated Triggering for APD and CCDF	271

About the Statistical Measurements

Digital modulated signals are similar to white noise within the transmit channel, but are different in their amplitude distribution. In order to transmit the modulated signal without

Measurement Functions

distortion all amplitudes of the signal have to be transmitted linearly, e.g. from the output power amplifier. Most critical are the peak amplitude values. Degradation in transmit quality caused by a transmitter two port network is dependent on the amplitude of the peak values as well as on their probability.

If modulation types are used that do not have a constant zero span envelope, the transmitter has to handle peak amplitudes that are greater than the average power. This includes all modulation types that involve amplitude modulation, QPSK for example. CDMA transmission modes in particular may have power peaks that are large compared to the average power.

For signals of this kind, the transmitter must provide large reserves for the peak power to prevent signal compression and thus an increase of the bit error rate at the receiver. The peak power or the crest factor of a signal is therefore an important transmitter design criterion. The crest factor is defined as the peak power/mean power ratio or, logarithmically, as the peak level minus the average level of the signal. To reduce power consumption and cut costs, transmitters are not designed for the largest power that could ever occur, but for a power that has a specified probability of being exceeded (e.g. 0.01%).

The probability of amplitude values can be measured with the APD function (Amplitude Probability Distribution). During a selectable measurement time all occurring amplitude values are assigned to an amplitude range. The number of amplitude values in the specific ranges is counted and the result is displayed as a histogram.

Alternatively, the Complementary Cumulative Distribution Function (CCDF) can be displayed. It shows the probability that the mean signal power amplitude will be exceeded in percent.

Bandwidth selection

When the amplitude distribution is measured, the resolution bandwidth must be set so that the complete spectrum of the signal to be measured falls within the bandwidth. This is the only way of ensuring that all the amplitudes will pass through the IF filter without being distorted. If the selected resolution bandwidth is too small for a digitally modulated signal, the amplitude distribution at the output of the IF filter becomes a Gaussian distribution according to the central limit theorem and thus corresponds to a white noise signal. The true amplitude distribution of the signal therefore cannot be determined.

Selecting the number of samples

For statistics measurements with the R&S FSV, the number of samples to be measured is defined instead of the sweep time. Since only statistically independent samples contribute to statistics, the acquisition or sweep time is calculated automatically and displayed in the channel bar (AQT). The samples are statistically independent if the time difference is at least 1/RBW. The acquisition time AQT is, therefore, expressed as follows:

 $AQT = N_{Samples}/RBW$

Measurement Functions

Statistic measurements on pulsed signals

Statistic measurements on pulsed signals can be performed using a gated trigger. An external frame trigger is required as a time (frame) reference. For details see "Defining Gated Triggering for APD and CCDF" on page 271.

Measurement examples are described in chapter 2.6.2, "Amplitude Distribution Measurements", on page 37.

Result Evaluation

Amplitude Probability Distribution (APD)

As a result of the APD function (Amplitude Probability Distribution), the probability of measured amplitude values is displayed. During a selectable measurement time all occurring amplitude values are assigned to an amplitude range. The number of amplitude values in the specific ranges is counted and the result is displayed as a histogram. Each bar of the histogram represents the percentage of measured amplitudes within the specific amplitude range. The x-axis is scaled in absolute values in dBm.

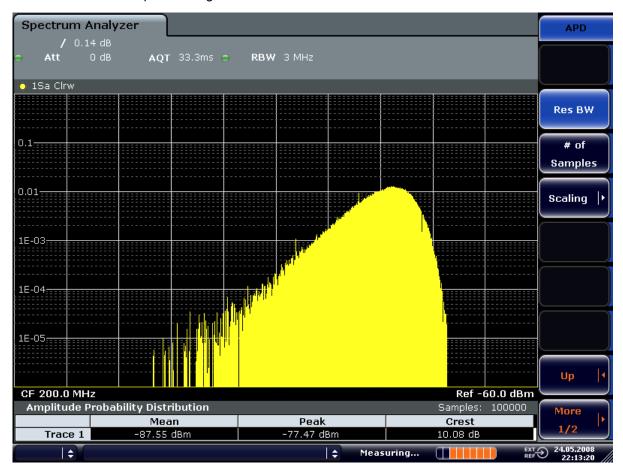


Fig. 3-17: Amplitude probability distribution of white noise

Measurement Functions

In addition to the histogram, a result table is displayed containing the following information:

- Number of samples used for calculation
- For each displayed trace:
 - Mean amplitude
 - Peak amplitude
 - Crest factor

Complementary Cumulative Distribution Function (CCDF)

The Complementary Cumulative Distribution Function (CCDF) shows the probability that the mean signal power amplitude will be exceeded in percent. The level above the mean power is plotted along the x-axis of the graph. The origin of the axis corresponds to the mean power level. The probability that a level will be exceeded is plotted along the y-axis.

Fig. 3-18: CCDF of white noise

A red line indicates the ideal Gaussian distribution for the measured amplitude range (white noise).

The displayed amplitude range is indicated as "Mean Pwr + <x dB>"

Measurement Functions

In addition to the histogram, a result table is displayed containing the following information:

- Number of samples used for calculation
- For each displayed trace:

Mean	Mean power
Peak	Peak power
Crest	Crest factor (peak power – mean power)
0,01 %	Level values over 0,01 % above mean power
0,1 %	Level values over 0,1 % above mean power
1 %	Level values over 1 % above mean power
10 %	Level values over 10 % above mean power

Softkeys for APD Measurements

APD	260
L Res BW	
L # of Samples	261
L Scaling	
L x-Axis Ref Level	
L x-Axis Range	
L Range Log 100 dB	
L Range Log 50 dB	262
L Range Log 10 dB	
L Range Log 5 dB	
L Range Log 1 dB	
L Range Log Manual	263
L Range Linear %	263
L Range Lin. Unit	263
L y-Axis Max Value	263
L y-Axis Min Value	264
L y-Unit % / Abs	
L Default Settings	
L Adjust Settings	264
L Gated Trigger (On/Off)	
L Gate Ranges	
L Adjust Settings	

APD

Activates the function to measure the amplitude probability density (APD) and opens a submenu.

For general information on calculating signal statistics see chapter 3.3.5.8, "Calculating Signal Amplitude Statistics", on page 256.

Remote command:

CALCulate<n>:STATistics:APD[:STATe] on page 591

Measurement Functions

Res BW ← APD

Opens an edit dialog box to set the resolution bandwidth directly.

For correct measurement of the signal statistics the resolution bandwidth has to be wider than the signal bandwidth in order to measure the actual peaks of the signal amplitude correctly. In order not to influence the peak amplitudes the video bandwidth is automatically set to 10 MHz. The sample detector is used for detecting the video voltage.

Remote command:

[SENSe:]BANDwidth|BWIDth[:RESolution] on page 634

of Samples ← APD

Opens an edit dialog box to set the number of power measurements that are taken into account for the statistics.

Apart from the number of measurements the overall measurement time depends also on the set resolution bandwidth as the resolution bandwidth directly influences the sampling rate.

For details see "Selecting the number of samples" on page 257.

Remote command:

CALCulate<n>:STATistics:NSAMples on page 592

Scaling ← APD

Opens a submenu to change the scaling parameters of x- and y-axis.

x-Axis Ref Level ← Scaling ← APD

Opens an edit dialog box to enter the reference level in the currently active unit (dBm, dB μ V, etc). The function of this softkey is identical to the "Ref Level" softkey in the "Amplitude" menu (see "Ref Level" on page 97).

For the APD function this value is mapped to the right diagram border. For the CCDF function there is no direct representation of this value on the diagram as the x-axis is scaled relatively to the measured mean power.

Remote command:

CALCulate<n>:STATistics:SCALe:X:RLEVel on page 595

$x\text{-}Axis\ Range \leftarrow Scaling \leftarrow APD$

Opens the "Range" submenu to select a value for the level range to be covered by the statistics measurement selected.

Remote command:

CALCulate<n>:STATistics:SCALe:X:RANGe on page 594

Measurement Functions

```
Range Log 100 dB ← x-Axis Range ← Scaling ← APD
```

Sets the level display range to 100 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:

SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 100DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]
on page 603

Range Log 50 dB ← x-Axis Range ← Scaling ← APD

Sets the level display range to 50 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y: SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 50DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 603

Range Log 10 dB ← x-Axis Range ← Scaling ← APD

Sets the level display range to 10 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:
SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 10DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 603

Range Log 5 dB ← x-Axis Range ← Scaling ← APD

Sets the level display range to 5 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y: SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 5DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]
on page 603

Measurement Functions

Range Log 1 dB ← x-Axis Range ← Scaling ← APD

Sets the level display range to 1 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:

SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 1DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]
on page 603

Range Log Manual \leftarrow x-Axis Range \leftarrow Scaling \leftarrow APD

Opens an edit dialog box to define the display range of a logarithmic level axis manually.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:
SPACing on page 603

Display range:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 603

Range Linear % ← x-Axis Range ← Scaling ← APD

Selects linear scaling for the level axis in %.

The grid is divided into decadal sections.

Markers are displayed in the selected unit ("Unit" softkey). Delta markers are displayed in % referenced to the voltage value at the position of marker 1. This is the default setting for linear scaling.

Remote command:

DISP:TRAC:Y:SPAC LIN, see DISPlay[:WINDow<n>]:TRACe<t>:Y:SPACing
on page 603

Range Lin. Unit ← x-Axis Range ← Scaling ← APD

Selects linear scaling in dB for the level display range, i.e. the horizontal lines are labeled in dB.

Markers are displayed in the selected unit ("Unit" softkey). Delta markers are displayed in dB referenced to the power value at the position of marker 1.

Remote command:

 $\label{low-n} $$ DISP:TRAC:Y:SPAC \ LDB, $$ see \ DISPlay[:WINDow<n>]:TRACe<t>:Y:SPACing on page 603 \\$

y-Axis Max Value ← Scaling ← APD

Opens an edit dialog box to define the upper limit of the displayed probability range. Values on the y-axis are normalized which means that the maximum value is 1.0. The y-axis scaling is defined via the y-Unit % / Abs softkey. The distance between max and min value must be at least one decade.

Remote command:

CALCulate<n>:STATistics:SCALe:Y:UPPer on page 596

Measurement Functions

y-Axis Min Value ← Scaling ← APD

Opens an edit dialog box to define the lower limit of the displayed probability range. Values in the range $1e^{-9} < value < 0.1$ are allowed. The y-axis scaling is defined via the y-Unit % / Abs softkey. The distance between max and min value must be at least one decade.

Remote command:

CALCulate<n>:STATistics:SCALe:Y:LOWer on page 595

y-Unit % / Abs ← Scaling ← APD

Defines the scaling type of the y-axis. The default value is absolute scaling.

Remote command:

CALCulate<n>:STATistics:SCALe:Y:UNIT on page 595

Default Settings ← Scaling ← APD

Resets the x- and y-axis scalings to their preset values.

x-axis ref level:	-10 dBm
x-axis range APD:	100 dB
x-axis range CCDF:	20 dB
y-axis upper limit:	1.0
y-axis lower limit:	1E-6

Remote command:

CALCulate<n>:STATistics:PRESet on page 593

Adjust Settings ← Scaling ← APD

Adjusts the level settings according to the measured difference between peak and minimum power for APD measurement or peak and mean power for CCDF measurement in order to obtain maximum power resolution. Adjusts the reference level to the current input signal. For details see also the Adjust Ref Lvl softkey.

Remote command:

CALCulate<n>:STATistics:SCALe:AUTO ONCE on page 594

Gated Trigger (On/Off) ← APD

Activates and deactivates the gating for statistics functions for the ACP and the CCDF channel. The trigger source is changed to "EXTERN" if this function is switched on. The gate ranges are defined using the "Gate Ranges" on page 264 softkey.

Remote command:

```
[SENSe:]SWEep:EGATe on page 700
[SENSe:]SWEep:EGATe:SOURce on page 701
```

Gate Ranges ← APD

Opens a dialog to configure up to 3 gate ranges for each trace.

For details on configuration, see "Defining Gated Triggering for APD and CCDF" on page 271.

Measurement Functions

Gate Ranges						
	Trace 1	Trace 2	Trace 3	Trace 4	Trace 5	Trace 6
Comment	SlotA					
Period	8 ms					
Range 1 Start	1 ms	1 µs	1 µs	1 µs	1 µs	1 μs
Range 1 Stop	3 ms	1 µs				
Range 1 Use	On	Off	Off	Off	Off	Off
Range 2 Start	1 μs	1 µs	1 µs	1 µs	1 µs	1 μs
Range 2 Stop	1 μs					
Range 2 Use	Off	Off	Off	Off	Off	Off
Range 3 Start	1 μs	1 μs	1 μs	1 μs	1 µs	1 μs
Range 3 Stop	1 μs	1 μs	1 μs	1 µs	1 μs	1 μs
Range 3 Use	Off	Off	Off	Off	Off	Off

Remote command:

SWE:EGAT ON (see [SENSe:] SWEep:EGATe on page 700)

Switches on the external gate mode.

SWE:EGAT:TRAC1:COMM "SlotA" (see [SENSe:]SWEep:EGATe:TRACe<k>:

COMMent on page 702)

Adds a comment to trace 1.

SWE:EGAT:TRAC1:STAT1 ON (see [SENSe:]SWEep:EGATe:TRACe<k>[:

STATe<range>] on page 702)

Activates tracing for range 1 of trace 1.

SWE:EGAT:TRAC1:STAR1 3ms (See [SENSe:]SWEep:EGATe:TRACe<k>:

STARt<range> on page 702)

Sets the starting point for range 1 on trace 1 at 3 ms.

SWE:EGAT:TRAC1:STop1 5ms (see [SENSe:]SWEep:EGATe:TRACe<k>:

STOP<range> on page 703)

Sets the stopping point for range 1 on trace 1 at 5 ms.

SWE:EGAT:TRAC1:PER 5ms (see [SENSe:]SWEep:EGATe:TRACe<k>: PERiod
on page 703)

Defines the period for gated triggering to 5 ms.

Adjust Settings ← APD

Adjusts the level settings according to the measured difference between peak and minimum power for APD measurement or peak and mean power for CCDF measurement in order to obtain maximum power resolution. Adjusts the reference level to the current input signal. For details see also the Adjust Ref Lvl softkey.

Remote command:

CALCulate<n>:STATistics:SCALe:AUTO ONCE on page 594

Softkeys for CCDF Measurements

CCD)F	266
	L Percent Marker	
	L Res BW	
	L # of Samples	
	L Scaling	
	L x-Axis Ref Level	267

Measurement Functions

└ x-Axis Range	267
L Range Log 100 dB	
L Range Log 50 dB	268
L Range Log 10 dB	268
L Range Log 5 dB	
L Range Log 1 dB	269
L Range Log Manual	
L Range Linear %	269
L Range Lin. Unit	269
L y-Axis Max Value	269
L y-Axis Min Value	
L y-Unit % / Abs	
L Default Settings	
L Adjust Settings	
L Gated Trigger (On/Off)	
L Gate Ranges	270
L Adjust Settings	271

CCDF

Activates the function to measure the complementary cumulative distribution function (CCDF) and opens a submenu.

After a CCDF measurement, the results are displayed in a table beneath the diagram.

Mean	Mean power
Peak	Peak power
Crest	Crest factor (peak power – mean power)
0,01 %	Level values over 0,01 % above mean power
0,1 %	Level values over 0,1 % above mean power
1 %	Level values over 1 % above mean power
10 %	Level values over 10 % above mean power

In addition, a red reference line indicating the calculated Gauss distribution is displayed.

Remote command:

CALCulate<n>:STATistics:CCDF[:STATe] on page 592

Activates the CCDF measurement.

CALCulate<n>:STATistics:CCDF:X<Trace> on page 592

Reads out the level values for 1 % probability.

Percent Marker ← **CCDF**

Opens an edit dialog box to enter a probability value and to position marker 1. Thus, the power which is exceeded with a given probability can be determined very easily. If marker 1 is deactivated, it will be switched on automatically.

As all markers, the percent marker can be moved simply by touching it with a finger or mouse cursor and dragging it to the desired position.

Remote command:

CALCulate<n>:MARKer<m>:Y:PERCent on page 535

Measurement Functions

$\textbf{Res BW} \leftarrow \textbf{CCDF}$

Opens an edit dialog box to set the resolution bandwidth directly.

For correct measurement of the signal statistics the resolution bandwidth has to be wider than the signal bandwidth in order to measure the actual peaks of the signal amplitude correctly. In order not to influence the peak amplitudes the video bandwidth is automatically set to 10 MHz. The sample detector is used for detecting the video voltage.

Remote command:

[SENSe:]BANDwidth|BWIDth[:RESolution] on page 634

of Samples ← CCDF

Opens an edit dialog box to set the number of power measurements that are taken into account for the statistics.

Apart from the number of measurements the overall measurement time depends also on the set resolution bandwidth as the resolution bandwidth directly influences the sampling rate.

For details see "Selecting the number of samples" on page 257.

Remote command:

CALCulate<n>:STATistics:NSAMples on page 592

Scaling ← CCDF

Opens a submenu to change the scaling parameters of x- and y-axis.

x-Axis Ref Level ← Scaling ← CCDF

Opens an edit dialog box to enter the reference level in the currently active unit (dBm, dB μ V, etc). The function of this softkey is identical to the "Ref Level" softkey in the "Amplitude" menu (see "Ref Level" on page 97).

For the APD function this value is mapped to the right diagram border. For the CCDF function there is no direct representation of this value on the diagram as the x-axis is scaled relatively to the measured mean power.

Remote command:

CALCulate<n>:STATistics:SCALe:X:RLEVel on page 595

$\textbf{x-Axis Range} \leftarrow \textbf{Scaling} \leftarrow \textbf{CCDF}$

Opens the "Range" submenu to select a value for the level range to be covered by the statistics measurement selected.

Remote command:

CALCulate<n>:STATistics:SCALe:X:RANGe on page 594

Measurement Functions

```
\textbf{Range Log 100 dB} \leftarrow \textbf{x-Axis Range} \leftarrow \textbf{Scaling} \leftarrow \textbf{CCDF}
```

Sets the level display range to 100 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:

SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 100DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]
on page 603

Range Log 50 dB ← x-Axis Range ← Scaling ← CCDF

Sets the level display range to 50 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y: SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 50DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 603

Range Log 10 dB ← x-Axis Range ← Scaling ← CCDF

Sets the level display range to 10 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:
SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 10DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 603

Range Log 5 dB ← x-Axis Range ← Scaling ← CCDF

Sets the level display range to 5 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y: SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 5DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]
on page 603

Measurement Functions

Range Log 1 dB ← x-Axis Range ← Scaling ← CCDF

Sets the level display range to 1 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:

SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 1DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]
on page 603

Range Log Manual \leftarrow x-Axis Range \leftarrow Scaling \leftarrow CCDF

Opens an edit dialog box to define the display range of a logarithmic level axis manually.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:
SPACing on page 603

Display range:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 603

Range Linear % ← x-Axis Range ← Scaling ← CCDF

Selects linear scaling for the level axis in %.

The grid is divided into decadal sections.

Markers are displayed in the selected unit ("Unit" softkey). Delta markers are displayed in % referenced to the voltage value at the position of marker 1. This is the default setting for linear scaling.

Remote command:

DISP:TRAC:Y:SPAC LIN, see DISPlay[:WINDow<n>]:TRACe<t>:Y:SPACing
on page 603

Range Lin. Unit ← x-Axis Range ← Scaling ← CCDF

Selects linear scaling in dB for the level display range, i.e. the horizontal lines are labeled in dB.

Markers are displayed in the selected unit ("Unit" softkey). Delta markers are displayed in dB referenced to the power value at the position of marker 1.

Remote command:

 $\label{low-n} $$ DISP:TRAC:Y:SPAC \ LDB, $$ see \ DISPlay[:WINDow<n>]:TRACe<t>:Y:SPACing on page 603 \\$

y-Axis Max Value ← Scaling ← CCDF

Opens an edit dialog box to define the upper limit of the displayed probability range. Values on the y-axis are normalized which means that the maximum value is 1.0. The y-axis scaling is defined via the y-Unit % / Abs softkey. The distance between max and min value must be at least one decade.

Remote command:

CALCulate<n>:STATistics:SCALe:Y:UPPer on page 596

Measurement Functions

y-Axis Min Value ← Scaling ← CCDF

Opens an edit dialog box to define the lower limit of the displayed probability range. Values in the range $1e^{-9} < value < 0.1$ are allowed. The y-axis scaling is defined via the y-Unit % / Abs softkey. The distance between max and min value must be at least one decade.

Remote command:

CALCulate<n>:STATistics:SCALe:Y:LOWer on page 595

y-Unit % / Abs ← Scaling ← CCDF

Defines the scaling type of the y-axis. The default value is absolute scaling.

Remote command:

CALCulate<n>:STATistics:SCALe:Y:UNIT on page 595

Default Settings ← **Scaling** ← **CCDF**

Resets the x- and y-axis scalings to their preset values.

x-axis ref level:	-10 dBm
x-axis range APD:	100 dB
x-axis range CCDF:	20 dB
y-axis upper limit:	1.0
y-axis lower limit:	1E-6

Remote command:

CALCulate<n>:STATistics:PRESet on page 593

Adjust Settings ← Scaling ← CCDF

Adjusts the level settings according to the measured difference between peak and minimum power for APD measurement or peak and mean power for CCDF measurement in order to obtain maximum power resolution. Adjusts the reference level to the current input signal. For details see also the Adjust Ref Lvl softkey.

Remote command:

CALCulate<n>:STATistics:SCALe:AUTO ONCE on page 594

Gated Trigger (On/Off) ← CCDF

Activates and deactivates the gating for statistics functions for the ACP and the CCDF channel. The trigger source is changed to "EXTERN" if this function is switched on. The gate ranges are defined using the "Gate Ranges" on page 264 softkey.

Remote command:

```
[SENSe:]SWEep:EGATe on page 700
[SENSe:]SWEep:EGATe:SOURce on page 701
```

Gate Ranges ← CCDF

Opens a dialog to configure up to 3 gate ranges for each trace.

For details on configuration, see "Defining Gated Triggering for APD and CCDF" on page 271.

Measurement Functions

Gate Ranges						
	Trace 1	Trace 2	Trace 3	Trace 4	Trace 5	Trace 6
Comment	SlotA					
Period	8 ms					
Range 1 Start	1 ms	1 µs	1 µs	1 µs	1 µs	1 μs
Range 1 Stop	3 ms	1 µs	1 µs	1 µs	1 µs	1 μs
Range 1 Use	On	Off	Off	Off	Off	Off
Range 2 Start	1 µs					
Range 2 Stop	1 µs	1 µs	1 µs	1 µs	1 μs	1 µs
Range 2 Use	Off	Off	Off	Off	Off	Off
Range 3 Start	1 µs	1 μs				
Range 3 Stop	1 µs	1 μs				
Range 3 Use	Off	Off	Off	Off	Off	Off

Remote command:

```
SWE: EGAT ON (see [SENSe:] SWEep: EGATe on page 700)
```

Switches on the external gate mode.

```
SWE:EGAT:TRAC1:COMM "SlotA" (see [SENSe:]SWEep:EGATe:TRACe<k>:
```

COMMent on page 702)

Adds a comment to trace 1.

```
SWE:EGAT:TRAC1:STAT1 ON (see [SENSe:]SWEep:EGATe:TRACe<k>[:
```

STATe<range>] on page 702)

Activates tracing for range 1 of trace 1.

```
SWE:EGAT:TRAC1:STAR1 3ms (see [SENSe:]SWEep:EGATe:TRACe<k>:
```

STARt<range> on page 702)

Sets the starting point for range 1 on trace 1 at 3 ms.

SWE:EGAT:TRAC1:STop1 5ms (see [SENSe:]SWEep:EGATe:TRACe<k>:
STOP<range> on page 703)

Sets the stopping point for range 1 on trace 1 at 5 ms.

SWE:EGAT:TRAC1:PER 5ms (see [SENSe:]SWEep:EGATe:TRACe<k>: PERiod
on page 703)

Defines the period for gated triggering to 5 ms.

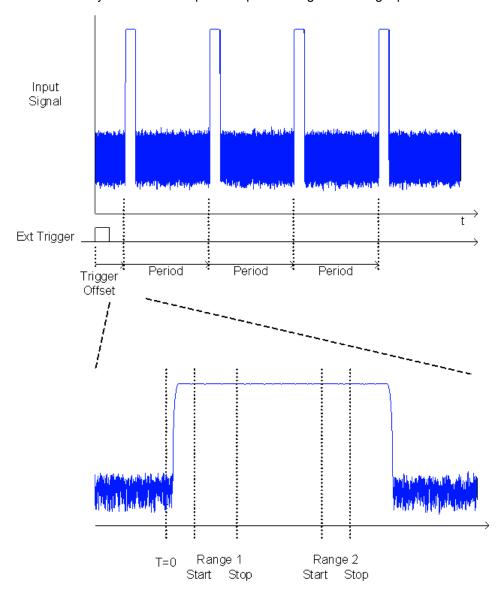
Adjust Settings ← CCDF

Adjusts the level settings according to the measured difference between peak and minimum power for APD measurement or peak and mean power for CCDF measurement in order to obtain maximum power resolution. Adjusts the reference level to the current input signal. For details see also the Adjust Ref Lvl softkey.

Remote command:

```
CALCulate<n>:STATistics:SCALe:AUTO ONCE on page 594
```

Defining Gated Triggering for APD and CCDF


Statistic measurements on pulsed signals can be performed using GATED TRIGGER. An external frame trigger is required as a time (frame) reference.

The gate ranges define the part of the I/Q capture data taken into account for the statistics calculation. These ranges are defined relative to a reference point T=0. The gate interval is repeated for each period until the end of the I/Q capture buffer.

Measurement Functions

The reference point T=0 is defined by the external trigger event and the instrument's trigger offset.

For each trace you can define up to 3 separate ranges of a single period to be traced.

Defining gated triggering

- 1. Press the "Gated Trigger" softkey to activate gated triggering (see "Gated Trigger (On/Off)" on page 264).
- 2. Press the "Gate Ranges" softkey to open the "Gate Ranges" dialog (see "Gate Ranges" on page 264).
- 3. Define the length of the period to be analyzed in the "Period" field.

Note: The period is the same for all traces. If you change the period for one trace, it is automatically changed for all traces.

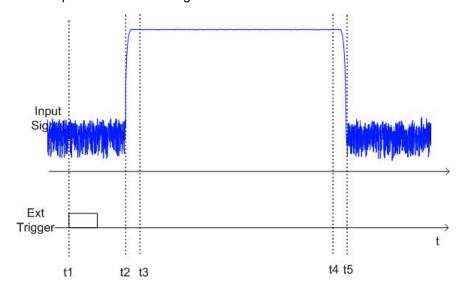
Measurement Functions

Make sure the defined period is not longer than the acquisition time of the current measurement. Keep in mind that the acquisition time depends on the bandwidth and the number of samples settings (see "Selecting the number of samples" on page 257). The current acquisition time is indicated as "AQT" in the channel bar.

- 4. Optionally, define a description of the trace in the "Comment" field.
- 5. Activate tracing for the range by selecting "On" in the "Range <number> Use" field for the corresponding range and trace.

The start and stop time edit fields are ready for input.

Note: The time values have full numerical resolution and are only rounded for display.


- 6. Define the starting point of the range within the period.
- 7. Define the stopping point for the range within the period. Make sure the value for the stopping time is smaller than the length of the period.
- 8. To define further ranges for the same period in the same trace, repeat steps 5- 7 for the same trace.

To define further ranges for the same period in a different trace, repeat steps 4-7 for a different trace.

If necessary, activate the configured traces in the "Trace" menu.

Gated statistics configuration example

A statistics evaluation has to be done over the useful part of the signal between t3 and t4. The period of the GSM signal is 4.61536 ms

- t1: External positive trigger slope
- t2: Begin of burst (after 25 μs)
- t3: Begin of useful part, to be used for statistics (after 40 µs)
- t4: End of useful part, to be used for statistics (after 578 µs)

Measurement Functions

t5: End of burst (after 602 µs)

The instrument has to be configured as follows:

Trigger Offset	t2 – t1 = 25 μs	now the gate ranges are relative to t2
Range1 Start	t3 – t2 = 15 μs	start of range 1 relative to t2
Range1 End	t4 – t2 = 553 µs	end of range 1 relative to t2

3.3.5.9 Measuring the Third Order Intercept Point (TOI)

In order to measure the third order intercept point (TOI), a two-tone signal with equal carrier levels is expected at the R&S FSV input. Marker 1 and marker 2 (both normal markers) are set to the maximum of the two signals. Marker 3 and marker 4 are placed on the intermodulation products.

The R&S FSV calculates the third order intercept point from the level difference between the first 2 markers and the markers 3 and 4 and displays it in the marker field.

The third order intercept point is measured using the "TOI" softkey, see "TOI" on page 184.

A measurement example is described in chapter 2.3.2, "Intermodulation Measurements", on page 14.

About TOI Measurement

If several signals are applied to a transmission two-port device with nonlinear characteristic, intermodulation products appear at its output at the sums and differences of the signals. The nonlinear characteristic produces harmonics of the useful signals which intermodulate at the characteristic. The intermodulation products of lower order have a special effect since their level is largest and they are near the useful signals. The intermodulation product of third order causes the highest interference. It is the intermodulation product generated from one of the useful signals and the 2nd harmonic of the second useful signal in case of two-tone modulation.

The frequencies of the intermodulation products are above and below the useful signals. The figure 3-19 shows intermodulation products P_{l1} and P^{l2} generated by the two useful signals P_{U1} and P_{U2} .

Measurement Functions

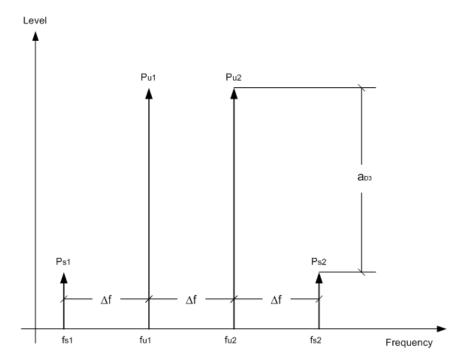


Fig. 3-19: Intermodulation products PU1 and PU2

The intermodulation product at f_{l2} is generated by mixing the 2nd harmonic of useful signal P_{U2} and signal P_{U1} , the intermodulation product at f_{l1} by mixing the 2nd harmonic of useful signal P_{U1} and signal P_{U2} .

$$f_{i1} = 2 \times f_{u1} - f_{u2}$$
 (6)

$$f_{i2} = 2 \times f_{u2} - f_{u1} (7)$$

Dependency on level of useful signals

The level of the intermodulation products depends on the level of the useful signals. If the two useful signals are increased by 1 dB, the level of the intermodulation products increases by 3 dB, which means that spacing a_{D3} between intermodulation signals and useful signals are reduced by 2 dB. This is illustrated in figure 3-20.

Measurement Functions

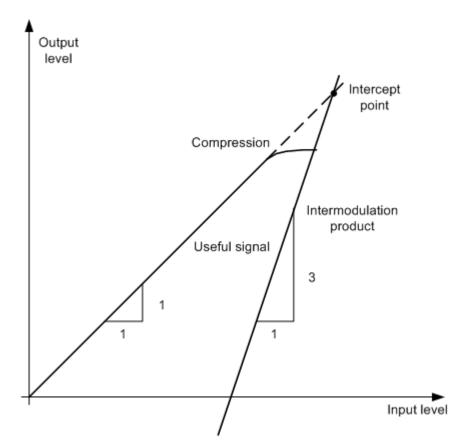


Fig. 3-20: Dependency of intermodulation level on useful signal level

The useful signals at the two-port output increase proportionally with the input level as long as the two-port is in the linear range. A level change of 1 dB at the input causes a level change of 1 dB at the output. Beyond a certain input level, the two-port goes into compression and the output level stops increasing. The intermodulation products of the third order increase three times as much as the useful signals. The intercept point is the fictitious level where the two lines intersect. It cannot be measured directly since the useful level is previously limited by the maximum two-port output power.

Calculation method

It can be calculated from the known line slopes and the measured spacing a_{D3} at a given level according to the following formula:

$$IP3 = \frac{a_{D3}}{2} + P_N$$

The 3^{rd} order intercept point (TOI), for example, is calculated for an intermodulation of 60 dB and an input level P_U of -20 dBm according to the following formula:

$$IP3 = \frac{60}{2} + (-20dBm) = 10dBm$$

Measurement Functions

Intermodulation-free dynamic range

The "Intermodulation-free dynamic range", i.e. the level range in which no internal intermodulation products are generated if two-tone signals are measured, is determined by the 3rd order intercept point, the phase noise and the thermal noise of the signal analyzer. At high signal levels, the range is determined by intermodulation products. At low signal levels, intermodulation products disappear below the noise floor, i.e. the noise floor and the phase noise of the signal analyzer determine the range. The noise floor and the phase noise depend on the resolution bandwidth that has been selected. At the smallest resolution bandwidth, the noise floor and phase noise are at a minimum and so the maximum range is obtained. However, a large increase in sweep time is required for small resolution bandwidths. It is, therefore, best to select the largest resolution bandwidth possible to obtain the range that is required. Since phase noise decreases as the carrier-offset increases, its influence decreases with increasing frequency offset from the useful signals.

The following diagrams illustrate the intermodulation-free dynamic range as a function of the selected bandwidth and of the level at the input mixer (= signal level – set RF attenuation) at different useful signal offsets.

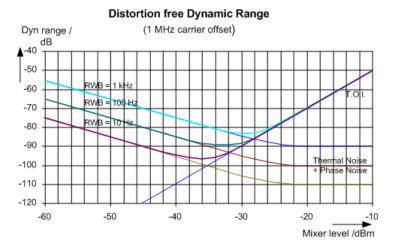


Fig. 3-21: Intermodulation-free range of the R&S FSV as a function of level at the input mixer and the set resolution bandwidth

(Useful signal offset = 1 MHz, DANL = -145 dBm/Hz, TOI = 15 dBm; typical values at 2 GHz)

The optimum mixer level, i.e. the level at which the intermodulation distance is at its maximum, depends on the bandwidth. At a resolution bandwidth of 10 Hz, it is approx. -35 dBm and at 1 kHz increases to approx. -30 dBm.

Phase noise has a considerable influence on the intermodulation-free range at carrier offsets between 10 and 100 kHz (figure 3-21). At greater bandwidths, the influence of the phase noise is greater than it would be with small bandwidths. The optimum mixer level at the bandwidths under consideration becomes almost independent of bandwidth and is approx. -40 dBm.

Measurement Functions

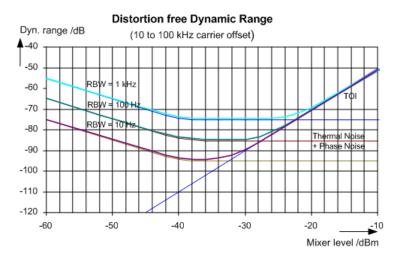


Fig. 3-22: Intermodulation-free dynamic range of the R&S FSV as a function of level at the input mixer and of the selected resolution bandwidth

(Useful signal offset = 10 to 100 kHz, DANL = -145 dBm/Hz, TOI = 15 dBm; typical values at 2 GHz).

If the intermodulation products of a DUT with a very high dynamic range are to be measured and the resolution bandwidth to be used is therefore very small, it is best to measure the levels of the useful signals and those of the intermodulation products separately using a small span. The measurement time will be reduced- in particular if the offset of the useful signals is large. To find signals reliably when frequency span is small, it is best to synchronize the signal sources and the R&S FSV.

Measurement Results

As a result of the TOI measurement, the following values are displayed in the marker area of the diagram:

Label	Description
TOI	Third-order intercept point
M1	Maximum of first useful signal
M2	Maximum of second useful signal
M3	First intermodulation product
M4	Second intermodulation product

Remote command

The TOI can also be queried using the remote command CALCulate<n>: MARKer<m>: FUNCtion: TOI: RESult? on page 550.

Measurement Functions

Softkeys for TOI Measurements

TOI		279
	L Marker 1 / Marker 2 / Marker 3 / Marker 16,/ Marker Norm/Delta	279
	L Search Signals.	279

TOI

Opens a submenu and activates the measurement of the 3rd order intercept point.

A two-tone signal with equal carrier levels is expected at the R&S FSV input. Marker 1 and marker 2 (both normal markers) are set to the maximum of the two signals. Marker 3 and marker 4 are placed on the intermodulation products.

The R&S FSV calculates the third order intercept point from the level difference between the first 2 markers and the markers 3 and 4 and displays it in the marker field.

For general information on measuring the TOI see chapter 3.3.5.9, "Measuring the Third Order Intercept Point (TOI)", on page 274.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:TOI[:STATe] on page 551
CALCulate<n>:MARKer<m>:FUNCtion:TOI:RESult? on page 550
```

Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/Delta ← TOI

The "Marker X" softkey activates the corresponding marker and opens an edit dialog box to enter a value for the marker to be set to. Pressing the softkey again deactivates the selected marker.

If a marker value is changed using the rotary knob, the step size is defined via the Stepsize Standard or Stepsize Sweep Points softkeys.

Marker 1 is always the reference marker for relative measurements. If activated, markers 2 to 16 are delta markers that refer to marker 1. These markers can be converted into markers with absolute value display using the "Marker Norm/Delta" softkey. If marker 1 is the active marker, pressing the "Marker Norm/Delta" softkey switches on an additional delta marker.

Remote command:

```
CALCulate<n>:MARKer<m>[:STATe] on page 523

CALCulate<n>:MARKer<m>:X on page 532

CALCulate<n>:MARKer<m>:Y? on page 534

CALCulate<n>:DELTamarker<m>[:STATe] on page 476

CALCulate<n>:DELTamarker<m>:X on page 486

CALCulate<n>:DELTamarker<m>:X:RELative on page 487

CALCulate<n>:DELTamarker<m>:Y? on page 487
```

Search Signals ← TOI

Activates all markers.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:TOI:SEARchsignal ONCE on page 551
```

Measurement Functions

3.3.5.10 Measuring the AM Modulation Depth

The AM modulation depth, also known as a modulation index, indicates by how much the modulated signal varies around the carrier amplitude. It is defined as:

MDepth = peak signal amplitude / unmodulated carrier amplitude

So for MDepth = 0.5, for example, the carrier amplitude varies by 50% above and below its unmodulated level, and for h = 1.0 it varies by 100%.

You can measure the modulation depth of a modulated signal using the AM Mod Depth function.

When this function is activated, marker 1 is set to the peak level, which is considered to be the carrier level. Deltamarkers 2 and 3 are automatically set symmetrically to the carrier on the adjacent peak values of the trace. The markers can be adjusted manually, if necessary.

The R&S FSV calculates the power at the marker positions from the measured levels. The AM modulation depth is calculated as the ratio between the power values at the reference marker and at the delta markers. If the powers of the two AM side bands are unequal, the mean value of the two power values is used for AM modulation depth calculation.

A remote control programming example is described in chapter 4.3.2.3, "Measuring the AM Modulation Depth", on page 856 and a example of how to perform the measurement manually in the R&S FSV Quick Start Guide in chapter "Measurement Examples".

Measurement results

The AM modulation depth in percent is displayed as a result of the measurement, indicated in the marker results as "MDepth".

It can also be queried using the remote command CALCulate<n>:MARKer<m>: FUNCtion:MDEPth:RESult? on page 544.

Softkeys for AM Modulation Depth Measurements

AM Mod Depth	280
L Marker 1 / Marker 2 / Marker 3 / Marker	
Search Signals	281

AM Mod Depth

Activates the measurement of the AM modulation depth. An AM-modulated carrier is required on the screen to ensure correct operation.

When this function is activated, marker 1 is set to the peak level, which is considered to be the carrier level. Deltamarkers 2 and 3 are automatically set symmetrically to the carrier on the adjacent peak values of the trace. An edit dialog box is displayed for deltamarker 2 in order to adjust the position manually.

When the position of deltamarker 2 is changed, deltamarker 3 is moved symmetrically with respect to the reference marker 1.

Measurement Functions

Deltamarker 3, on the other hand, can be moved for fine adjustment irrespective of marker 2.

Marker 1 can also be moved manually for re-adjustment without affecting the position of the deltamarkers.

For general information on measuring the AM modulation depth see chapter 3.3.5.10, "Measuring the AM Modulation Depth", on page 280.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:MDEPth[:STATe] on page 545
CALCulate<n>:MARKer<m>:FUNCtion:MDEPth:RESult? on page 544
```

Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/Delta ← AM Mod Depth The "Marker X" softkey activates the corresponding marker and opens an edit dialog box to enter a value for the marker to be set to. Pressing the softkey again deactivates the selected marker.

If a marker value is changed using the rotary knob, the step size is defined via the Stepsize Standard or Stepsize Sweep Points softkeys.

Marker 1 is always the reference marker for relative measurements. If activated, markers 2 to 16 are delta markers that refer to marker 1. These markers can be converted into markers with absolute value display using the "Marker Norm/Delta" softkey. If marker 1 is the active marker, pressing the "Marker Norm/Delta" softkey switches on an additional delta marker.

Remote command:

```
CALCulate<n>:MARKer<m>[:STATe] on page 523

CALCulate<n>:MARKer<m>:X on page 532

CALCulate<n>:MARKer<m>:Y? on page 534

CALCulate<n>:DELTamarker<m>[:STATe] on page 476

CALCulate<n>:DELTamarker<m>:X on page 486

CALCulate<n>:DELTamarker<m>:X:RELative on page 487

CALCulate<n>:DELTamarker<m>:Y? on page 487
```

Search Signals ← AM Mod Depth

Activates all markers.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:MDEPth:SEARchsignal ONCE
on page 545
```

3.3.5.11 Measuring Harmonic Distortion

The harmonics and their distortion can be measured using the "Harmonic Distortion" on page 185 function.

With this measurement it is possible to measure the harmonics e.g. from a VCO easily. In addition the THD (total harmonic distortion) is calculated in % and dB.

With span > 0 Hz, an automatic search for the first harmonic is carried out within the set frequency range. Also the level is adjusted. In zero span, the center frequency is unchanged.

Measurement Functions

As a result, the zero span sweeps on all harmonics are shown, as well as the RMS values and the THD (total harmonic distortion).

A measurement example is described in chapter 2.2, "Measurement of Harmonics", on page 11

About Harmonics Distortion Measurement

Measuring the harmonics of a signal is a frequent problem which can be solved best using a signal analyzer. In general, every signal contains harmonics which are larger than others. Harmonics are particularly critical regarding high-power transmitters such as transceivers because large harmonics can interfere with other radio services.

Harmonics are generated by nonlinear characteristics. They can often be reduced by low pass filters. Since the signal analyzer has a nonlinear characteristic, e.g. in its first mixer, measures must be taken to ensure that harmonics produced in the signal analyzer do not cause spurious results. If necessary, the fundamental wave must be selectively attenuated with respect to the other harmonics with a high pass filter.

Obtainable dynamic range

When harmonics are being measured, the obtainable dynamic range depends on the second harmonic intercept of the signal analyzer. The second harmonic intercept is the virtual input level at the RF input mixer at which the level of the 2nd harmonic becomes equal to the level of the fundamental wave. In practice, however, applying a level of this magnitude would damage the mixer. Nevertheless, the available dynamic range for measuring the harmonic distance of a DUT can be calculated relatively easily using the second harmonic intercept.

As shown in figure 3-23, the level of the 2nd harmonic drops by 20 dB if the level of the fundamental wave is reduced by 10 dB.

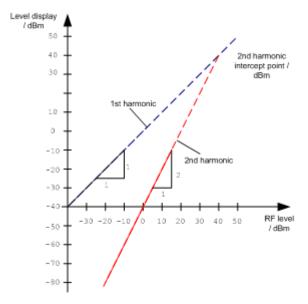


Fig. 3-23: Extrapolation of the 1st and 2nd harmonics to the 2nd harmonic intercept at 40 dBm

Measurement Functions

The following formula for the obtainable harmonic distortion d₂ in dB is derived from the straight-line equations and the given intercept point:

$$d_2 = S.H.I - P_1(1)$$

where:

d2	=	harmonic distortion
Pı	=	mixer level/dBm
S.H.I.	=	second harmonic intercept

The mixer level is the RF level applied to the RF input minus the set RF attenuation.

The formula for the internally generated level P₁ at the 2nd harmonic in dBm is:

$$P_1 = 2 * P_1 - S.H.I.$$
 (2)

The lower measurement limit for the harmonic is the noise floor of the signal analyzer. The harmonic of the measured DUT should – if sufficiently averaged by means of a video filter – be at least 4 dB above the noise floor so that the measurement error due to the input noise is less than 1 dB.

The following rules for measuring high harmonic ratios can be derived:

- Select the smallest possible IF bandwidth for a minimal noise floor.
- Select an RF attenuation which is high enough to just measure the harmonic ratio.

The maximum harmonic distortion is obtained if the level of the harmonic equals the intrinsic noise level of the receiver. The level applied to the mixer, according to (2), is:

$$P_I = \frac{P_{noise} / dBm + IP2}{2}$$

At a resolution bandwidth of 10 Hz (noise level -143 dBm, S.H.I. = 40 dBm), the optimum mixer level is – 51.5 dBm. According to (1) a maximum measurable harmonic distortion of 91.5 dB minus a minimum S/N ratio of 4 dB is obtained.

If the harmonic emerges from noise sufficiently (approx. >15 dB), it is easy to check (by changing the RF attenuation) whether the harmonics originate from the DUT or are generated internally by the signal analyzer. If a harmonic originates from the DUT, its level remains constant if the RF attenuation is increased by 10 dB. Only the displayed noise is increased by 10 dB due to the additional attenuation. If the harmonic is exclusively generated by the signal analyzer, the level of the harmonic is reduced by 20 dB or is lost in noise. If both – the DUT and the signal analyzer – contribute to the harmonic, the reduction in the harmonic level is correspondingly smaller.

Measurement Functions

High-Sensitivity Harmonics Measurements

If harmonics have very small levels, the resolution bandwidth required to measure them must be reduced considerably. The sweep time is, therefore, also increased considerably. In this case, the measurement of individual harmonics is carried out with the R&S FSV set to a small span. Only the frequency range around the harmonics will then be measured with a small resolution bandwidth.

Measurement Results

As a result of the harmonics distortion measurement, the zero span sweeps on all detected harmonics are shown in the diagram, separated by red display lines. This provides a very good overview of the measurement.

In addition, a result table is displayed providing the following information:

- 1st harmonic frequency
- THD (total harmonic distortion), relative and absolute values
- For each detected harmonic:
 - Frequency
 - RBW
 - Power

The results can also be queried using the remote commands:

THD: CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:DISTortion?
on page 552

List of harmonics: CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:LIST?
on page 553

Softkeys for Harmonic Distortion Measurements

Harmonic Distortion	284
L No. of Harmonics	
L Harmonic Sweep Time	
L Harmonic RBW Auto	285
L Adjust Settings	285

Harmonic Distortion

Opens a submenu to determine the settings for harmonics measurement and activates the harmonic distortion measurement.

With this measurement you can measure the harmonics of a signal. In addition the THD (total harmonic distortion) is calculated in % and dB.

With span > 0 Hz, an automatic search for the first harmonic is carried out within the set frequency range. Also the level is adjusted. In zero span, the center frequency is unchanged.

In the upper window, the zero span sweeps on all harmonics are shown, separated by display lines. In the lower window, the mean RMS results are displayed in numerical values. The THD values are displayed in the marker field.

Measurement Functions

For details see chapter 3.3.5.11, "Measuring Harmonic Distortion", on page 281.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:HARMonics[:STATe] on page 555

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:DISTortion? on page 552

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:LIST? on page 553
```

No. of Harmonics ← Harmonic Distortion

Sets the number of harmonics that shall be measured. The range is from 1 to 26.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:NHARmonics on page 554
```

Harmonic Sweep Time ← **Harmonic Distortion**

For details refer to the Sweeptime Manual softkey in the "Bandwidth" menu.

Harmonic RBW Auto ← Harmonic Distortion

Enables/disables the automatic adjustment of the resolution bandwidth for filter types Normal (3dB) (Gaussian) and 5-Pole filters. The automatic adjustment is carried out according to:

```
"RBW_n = RBW_1 * n"
```

If RBW_n is not available, the next higher value is used.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:BANDwidth:AUTO
on page 552
```

Adjust Settings ← **Harmonic Distortion**

Activates the frequency search in the frequency range that was set before starting the harmonic measurement (if harmonic measurement was with span > 0) and adjusts the level.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:PRESet on page 554
```

3.3.6 Measurement Configuration – MEAS CONFIG Key

The MEAS CONFIG key displays the submenu of the currently activated and running measurement function, e.g. the submenu of "TOI" or "Harmonic Distortion" (see chapter 3.3.5, "Power Measurements – MEAS Key", on page 181, for quick access to the measurement configuration. If no measurement function is activated, this key has no effect.

3.3.7 Using Limit Lines and Display Lines – LINES Key

The LINES key is used to configure limit and display lines.

Measurement Functions

To open the Lines menu

Press the LINES key.

The "Lines" menu and the "Select Limit Line" dialog box are displayed. For details on the "Select Limit Line" dialog box refer to chapter 3.3.7.5, "Selecting a Limit Line", on page 292.

Menu and softkey description

chapter 3.3.7.1, "Softkeys of the Lines Menu", on page 286

Further information

- chapter 3.3.7.2, "Display Lines", on page 290
- chapter 3.3.7.3, "Limit Lines (Frequency/Time Lines)", on page 291

Tasks

- chapter 3.3.7.4, "Working with Lines", on page 291
- chapter 3.3.7.5, "Selecting a Limit Line", on page 292
- chapter 3.3.7.6, "Creating a New Limit Line", on page 293
- chapter 3.3.7.7, "Editing an Existing Limit Line", on page 296
- chapter 3.3.7.8, "Creating a New Limit Line Based upon an Existing Limit Line", on page 296
- chapter 3.3.7.9, "Activating/Deactivating a Limit Line", on page 297

3.3.7.1 Softkeys of the Lines Menu

The following table shows all softkeys available in the "Lines" menu.

Further information

- chapter 3.3.7.2, "Display Lines", on page 290
- chapter 3.3.7.3, "Limit Lines (Frequency/Time Lines)", on page 291

Tasks

- chapter 3.3.7.4, "Working with Lines", on page 291
- chapter 3.3.7.5, "Selecting a Limit Line", on page 292
- chapter 3.3.7.6, "Creating a New Limit Line", on page 293
- chapter 3.3.7.7, "Editing an Existing Limit Line", on page 296
- chapter 3.3.7.8, "Creating a New Limit Line Based upon an Existing Limit Line", on page 296
- chapter 3.3.7.9, "Activating/Deactivating a Limit Line", on page 297

Select Traces to check	287
Deselect All	287
New	287

Measurement Functions

L Edit Name	287
L Edit Comment	
L Edit Margin	
L Edit Value	
L Insert Value	
L Delete Value	
L Save Limit Line	
Edit	
Copy to	
Delete	
X Offset	
Y Offset	
Display Lines	
L Display Line 1 / Display Line 2	
Frequency Line 1 / Frequency Line 2	
L Time Line 1 / Time Line 2	290

Select Traces to check

Opens a dialog box to activate the selected limit line for a trace. One limit line can be activated for several traces simultaneously. For details see also chapter 3.3.7.9, "Activating/Deactivating a Limit Line", on page 297.

Remote command:

```
CALCulate<n>:LIMit<k>:TRACe on page 500
CALCulate<n>:LIMit<k>:STATe on page 499
```

Deselect All

Deactivates the selected limit line for all assigned traces. For details see also chapter 3.3.7.9, "Activating/Deactivating a Limit Line", on page 297.

Remote command:

```
CALCulate<n>:LIMit<k>:STATe on page 499
```

New

Opens the "Edit Limit Line" dialog box and a submenu to define a new limit line. For details see also chapter 3.3.7.3, "Limit Lines (Frequency/Time Lines)", on page 291 and chapter 3.3.7.5, "Selecting a Limit Line", on page 292.

Edit Name ← **New**

Sets the focus on the "Name" field to enter or change the limit line name. All names must be compatible with the Windows XP conventions for file names. The limit line data are stored under this name. The instrument stores all limit lines with LIM as extension.

Remote command:

CALCulate<n>:LIMit<k>:LOWer:MODE on page 516

Edit Comment ← New

Sets the focus on the "Comment" field to enter or change a comment for the limit line. The text must not exceed 40 characters.

Remote command:

CALCulate<n>:LIMit<k>:COMMent on page 497

Measurement Functions

Edit Margin ← New

Sets the focus on the "Margin" field to enter or change a margin for the limit line. The default setting is 0 dB (i.e. no margin).

Edit Value ← New

Opens an edit dialog box to change an existing x or y value, depending on the selected column. The softkey is only available if an existing value is selected.

The desired data points are entered in ascending order (two repeated frequencies/time values are permitted).

Remote command:

```
CALCulate<n>:LIMit<k>:CONTrol[:DATA] on page 508
CALCulate<n>:LIMit<k>:UPPer[:DATA] on page 519
CALCulate<n>:LIMit<k>:LOWer[:DATA] on page 515
```

Insert Value ← New

Creates an empty line above the selected data point to enter a new data point.

It is also possible to add a data point at the end of the list, if the focus is set below the last entry line of the list.

The data points are entered in ascending order (two repeated frequencies/time values are permitted). If the entered values are not in accordance with the ascending order rule, an error message is displayed and the values are discarded.

Delete Value ← New

Deletes the selected data point (x and y value). All succeeding data points are shifted up accordingly. This softkey is only available if an existing value is selected.

Save Limit Line ← New

Saves the currently edited limit line under the name defined in the "Name" field.

Edit

Opens a submenu to edit limit lines. For details see also chapter 3.3.7.3, "Limit Lines (Frequency/Time Lines)", on page 291 and chapter 3.3.7.7, "Editing an Existing Limit Line", on page 296.

The submenu contains the same commands as the "New" menu, see "New" on page 287.

Remote command:

see chapter 4.3.3, "Limit Lines and Limit Test", on page 857

Copy to

Copies the data of the selected limit line and displays it in the "Edit Limit Line" dialog box. If the limit line is edited and saved under a new name, a new limit line can be easily generated by parallel translation or editing of an existing limit line.

For details see also chapter 3.3.7.3, "Limit Lines (Frequency/Time Lines)", on page 291 and chapter 3.3.7.8, "Creating a New Limit Line Based upon an Existing Limit Line", on page 296.

Measurement Functions

The submenu contains the same commands as the "New" menu, see "New" on page 287.

Remote command:

```
CALCulate<n>:LIMit<k>:COPY on page 497
```

Delete

Deletes the selected limit line.

Remote command:

```
CALCulate<n>:LIMit<k>:DELete on page 498
```

X Offset

Horizontally shifts a limit line that has been specified for relative frequencies or times (x-axis). The softkey opens an edit dialog box in which the value for shifting can be entered numerically or via the rotary knob.

Note: This softkey does not have any effect on limit lines that represent absolute values for the x-axis.

Remote command:

```
CALCulate<n>:LIMit<k>:CONTrol:OFFSet on page 510
```

Y Offset

Vertically shifts a limit line that has relative values for the y-axis (levels or linear units such as volt). The softkey opens an edit dialog box in which the value for shifting can be entered numerically or via the rotary knob.

Note: This softkey does not have any effect on limit lines that represent absolute values for the y-axis.

Remote command:

```
CALCulate<n>:LIMit<k>:LOWer:OFFSet on page 517
CALCulate<n>:LIMit<k>:UPPer:OFFSet on page 520
```

Display Lines

Opens a submenu to enable, disable and set display lines. Which softkeys are available depends on the display mode (frequency or time range).

For details see also chapter 3.3.7.2, "Display Lines", on page 290 and chapter 3.3.7.4, "Working with Lines", on page 291.

The submenu contains the following commands:

- "Display Line 1 / Display Line 2" on page 289
- "Display Line 1 / Display Line 2" on page 289
- "Frequency Line 1 / Frequency Line 2 " on page 290
- "Frequency Line 1 / Frequency Line 2" on page 290
- "Time Line 1 / Time Line 2" on page 290
- "Time Line 1 / Time Line 2" on page 290

Display Line 1 / Display Line 2 ← Display Lines

Enables or disables the level lines 1/2 and opens an edit dialog box to enter the position of the lines.

Measurement Functions

For details see also chapter 3.3.7.2, "Display Lines", on page 290 and chapter 3.3.7.4, "Working with Lines", on page 291.

Remote command:

```
CALCulate<n>:DLINe<k> on page 493
CALCulate<n>:DLINe<k>:STATe on page 494
```

Frequency Line 1 / Frequency Line 2 ← Display Lines

Enables or disables the frequency lines 1/2 (span > 0) and opens an edit dialog box to enter the position of the lines.

For details see also chapter 3.3.7.2, "Display Lines", on page 290 and chapter 3.3.7.4, "Working with Lines", on page 291.

Remote command:

```
CALCulate<n>:FLINe<k> on page 495
CALCulate<n>:FLINe<k>:STATe on page 496
```

Time Line 1 / Time Line 2 ← Display Lines

Enables or disables the time lines 1/2 (zero span) and opens an edit dialog box to enter the position of the lines.

For details see also chapter 3.3.7.2, "Display Lines", on page 290 and chapter 3.3.7.4, "Working with Lines", on page 291.

Remote command:

```
CALCulate<n>:TLINe<Line> on page 597
CALCulate<n>:TLINe<Line>:STATe on page 597
```

3.3.7.2 Display Lines

Display lines help to evaluate a trace – as do markers. The function of a display line is comparable to that of a ruler that can be shifted on the trace in order to mark absolute values. They are used exclusively to visually mark relevant frequencies or points in time (span = 0), as well as constant level values. It is not possible to check automatically whether the points are below or above the marked level values.

For details on setting and switching the display lines on/off see chapter 3.3.7.4, "Working with Lines", on page 291.

Two different types of display lines are provided:

- Two horizontal level lines for marking levels Display Line 1 and 2
 The level lines are continuous horizontal lines across the entire width of a diagram and can be shifted in y direction.
- Two vertical frequency or time lines for marking frequencies or points in time Frequency/Time Line 1 and 2

The frequency or time lines are continuous vertical lines across the entire height of the diagram and can be shifted in x direction.

Lables

Each line is identified by one of the following abbreviations in the display:

Measurement Functions

D1: Display Line 1

• D2: Display Line 2

F1: Frequency Line 1

• F2: Frequency Line 2

T1: Time Line 1

T2: Time Line 2

3.3.7.3 Limit Lines (Frequency/Time Lines)

Limit lines are used to define amplitude curves or spectral distribution boundaries on the display screen which are not to be exceeded. They indicate, for example, the upper limits for interference radiation or spurious waves which are allowed from a device under test (DUT). For transmission of information in TDMA systems (e.g. GSM), the amplitude of the bursts in a timeslot must adhere to a curve that falls within a specified tolerance band. The lower and upper limits may each be specified by a limit line. Then, the amplitude curve can be controlled either visually or automatically for any violations of the upper or lower limits (GO/NOGO test).

The instrument supports limit lines with a maximum of 50 data points. 8 of the limit lines stored in the instrument can be activated simultaneously. The number of limit lines stored in the instrument is only limited by the capacity of the flash disk used. Which softkeys are available depends on the display mode (frequency or time range). For details see also chapter 3.3.7.5, "Selecting a Limit Line", on page 292.

Limit lines are compatible with the current measurement settings, if the following applies:

- The x unit of the limit line has to be identical to the current setting.
- The y unit of the limit line has to be identical to the current setting with the exception of dB based units; all dB based units are compatible with each other.

At the time of entry, the R&S FSV immediately checks that all limit lines are in accordance with the following guidelines:

- The frequencies/times for each data point must be entered in ascending order, however, for any single frequency/time, two data points may be entered (vertical segment of a limit line).
- The data points are allocated in order of ascending frequency/time. Gaps are not allowed. If gaps are desired, two separate limit lines must be defined and then both enabled.
- The entered frequencies/times need not necessarily be selectable in R&S FSV. A
 limit line may also exceed the specified frequency or time range. The minimum frequency for a data point is -200 GHz, the maximum frequency is 200 GHz. For the
 time range representation, negative times may also be entered. The allowed range
 is -1000 s to +1000 s.

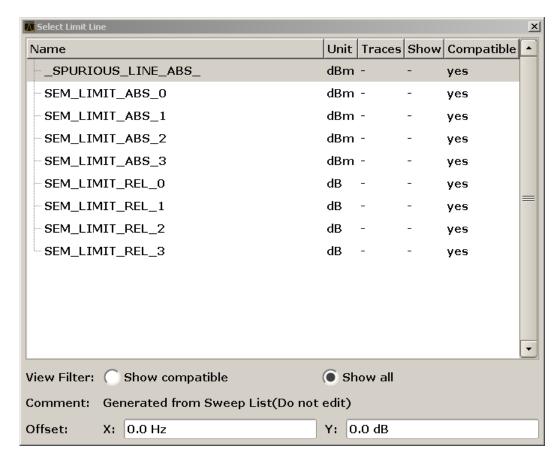
3.3.7.4 Working with Lines

If a line is switched on, the softkey is highlighted.

Measurement Functions

Switching a line on or off

- 1. Press the Display Lines softkey.
- Press the softkey for the required line, e.g. Display Line 1 / Display Line 2.
 An edit dialog box is opened to enter the position of the line. If the line was switched off, it is switched on. If it was switched on, it remains switched on.
- 3. If another softkey is pressed, the edit dialog box for the line is closed, but the line remains switched on (softkey with highlighted background).
- 4. When you press the Display Line 1 / Display Line 2 softkey for the second time, the edit dialog box for the line is opened again.
- 5. When you press the Display Line 1 / Display Line 2 softkey the third time, the line is switched off (softkey without highlighted background).


3.3.7.5 Selecting a Limit Line

To display the "Select Limit Line" dialog box, press the LINES key.

All limit lines saved in the default directory and all subdirectories are displayed. For each limit line, the following information is given:

"Unit"	unit of the y-axis
"Traces"	selected traces to check
"Show"	limit line displayed in the measurement diagram or hidden
"Compatible"	compatibility of the limit line to the current measurement settings
"Offset"	user-definable X- and Y-offset for the limit line

Measurement Functions

 To display only the limit lines that are compatible, activate the "Show compatible" option. For details on compatibility refer to chapter 3.3.7.3, "Limit Lines (Frequency/ Time Lines)", on page 291.

3.3.7.6 Creating a New Limit Line

Press the New softkey to define a new limit line.

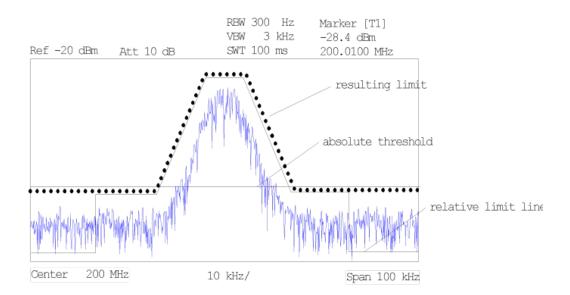
The "Edit Limit Line" dialog box is displayed. For more details on limit lines refer also to chapter 3.3.7.3, "Limit Lines (Frequency/Time Lines)", on page 291. The following settings can be defined:

Setting	Description
Name	The name under which the limit line is to be stored in the main directory. To save the limit line in an existing subdirectory, enter the relative path. A new subdirectory can only be created using the FILE key (for details refer to "Save File / Recall File" on page 69.
Comment	Optional description
Threshold	Absolute threshold value that works as a lower limit for the relative limit values (only for relative scaling of the y-axis).

Measurement Functions

Setting	Description	
Margin	A fixed distance to the limit line. Margins are not as strict as limits and belong to the valid value range, but violation is also indicated in the display.	
Position	Position of data point	
Value	Value of data point	
X-Axis:		
Span setting	"Hz" for span > 0 Hz"s" for zero span	
Scale mode	 Absolute: The frequencies or times are interpreted as absolute physical units. Relative: In the data point table, the frequencies are referred to the currently set center frequency. In the zero span mode, the left boundary of the diagram constitutes the reference. Relative scaling is always suitable if masks for bursts are to be defined in zero span or if masks for modulated signals are required for span > 0 Hz. 	
Scale	Linear Logarithmic	
Y-Axis:		
Scale unit	Unit of the y-axis	
Scale mode	Absolute: The limit values refer to absolute levels or voltages. Relative: The limit values refer to the reference level (Ref Level). Limit values with the unit dB are always relative values.	
Limit type	Upper limit Lower limit	

In addition, the following functions are available for the limit line:


Defining a threshold

If the scaling of the y-axis is relative, you can define an absolute threshold value that works as a lower limit for the relative limit values (see figure below).

▶ Enter a value in the "Threshold" field of the "Edit Limit Line" dialog box.

The function is especially useful for mobile radio applications provided the limit values are defined in relation to the carrier power as long as they are above an absolute limit value.

Measurement Functions

Defining a margin

A margin is similar to a limit, but less strict and it still belongs to the valid data range. It can be used as a warning that the limit is almost reached. The margin is not indicated by a separate line in the display.

► Enter a value in the "Margin" field of the "Edit limit Line" dialog box.

If the limit line is defined as an upper limit, the margin is below the limit line. If the limit line is defined as a lower limit, the margin is above the limit line.

Entering a new data point

- 1. Press the "Insert value" button in the dialog, or select an existing data point in the table and press the Insert Value softkey.
- 2. Enter the new position (x) and value (y) in the edit dialog box.

Changing a data point

- 1. Press on the data point to be changed in the table.
- 2. Enter the new position (x) and value (y) in the edit dialog box.

Deleting a data point

- 1. Press on the data point to be deleted in the table.
- 2. Press the "Delete" button in the dialog.

Shifting a limit line horizontally

Select the "Shift x" button and enter a shift width for the x value in the edit dialog box.

Shifting a limit line vertically

Select the "Shift y" button and enter a shift width for the y value in the edit dialog box.

Measurement Functions

Saving the limit line settings

▶ Press the "Save" button in the dialog. If an existing name is used, a message box is displayed. You have to confirm before the limit line is overwritten.

3.3.7.7 Editing an Existing Limit Line

In the "Select Limit Line" dialog box, select the limit line you want to change. For details see also chapter 3.3.7.5, "Selecting a Limit Line", on page 292.

Note that any changes to the special limit lines for spurious and SEM measurements are automatically overwritten when the sweep list settings are changed.

- 1. Press the "Edit" on page 288 softkey.
- Edit the data as described in chapter 3.3.7.6, "Creating a New Limit Line", on page 293.
- 3. Save the limit line ("Save Limit Line" on page 288 softkey).

3.3.7.8 Creating a New Limit Line Based upon an Existing Limit Line

- In the "Select Limit Line" dialog box, select the limit line you want to use as a basis for a new limit line. For details see also chapter 3.3.7.5, "Selecting a Limit Line", on page 292.
- 2. Press the Copy to softkey to transfer the data of the limit line into the "Edit Limit Line" dialog box.
- 3. Press the Edit Name softkey and enter a new name.
- 4. To shift the complete limit line parallel in the horizontal direction, select the "Shift x" button and enter an x shift value. In this manner, a new limit line can be easily generated based upon an existing limit line which has been shifted horizontally.
- 5. To shift the complete limit line parallel in the vertical direction, select the "Shift y" button and enter a y shift value. In this manner, a new limit line can be easily generated based upon an existing limit line which has been shifted vertically.
- 6. If required, edit the data as described in chapter 3.3.7.5, "Selecting a Limit Line", on page 292.
- 7. Save the limit line (Save Limit Line softkey).

Measurement Functions

3.3.7.9 Activating/Deactivating a Limit Line

Prerequisites:

The x- and y-units of limit line and current measurement setting have to be compatible. For details refer to chapter 3.3.7.3, "Limit Lines (Frequency/Time Lines)", on page 291.

The limit line has to consist of 2 or more data points.

- 1. In the "Select Limit Line" dialog box, select the limit line you want to activate/deactivate. For details see also chapter 3.3.7.5, "Selecting a Limit Line", on page 292.
- To activate or deactivate a limit line for a trace, press the "Select Traces to check" on page 287 softkey and select or deselect the trace(s) to which this limit line applies.
- 3. To deactivate the limit line for all traces, press the "Deselect All" on page 287 softkey.

3.3.8 Input/Output Configuration – INPUT/OUTPUT Key

The INPUT/OUTPUT key is used to configure input and output sources for measurement functions.

3.3.8.1 Softkeys of the Input/Output Menu

The following table shows all softkeys available in the "Input/Output" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is provided in the corresponding softkey description.

Input (AC/DC)	298
Noise Source	
Video Output	
Tracking Generator	
Power Sensor	
Trigger Out	
External Mixer	
Probe Config	
Signal Source	
L Input Path	
L Connected Device	
L Input Sample Rate	
L Full Scale Level	
L Level Unit	
L Adjust Reference Level to Full Scale Level	
EXIQ	
L TX Settings	
L RX Settings	
L Send To	300
L Firmware Undate	301

Measurement Functions

L R&S Support	301
L DiglConf	301
l Output	
I IQ Info	

Input (AC/DC)

Toggles the RF input of the R&S FSV between AC and DC coupling.

This function is not available for input from the R&S Digital I/Q Interface (option R&S FSV-B17).

Remote command:

INPut: COUPling on page 613

Noise Source

Switches the supply voltage for an external noise source on or off. For details on connectors refer to the R&S FSV Quick Start Guide, "Front and Rear Panel" chapter.

Remote command:

DIAGnostic<n>:SERVice:NSOurce on page 761

Video Output

Sends a video output signal according to the measured level to the connector on the rear panel of the R&S FSV.

Note: Video output does not return valid values in IQ or FFT mode.

Remote command:

OUTP: IF VID, see OUTPut: IF[:SOURce] on page 789

Tracking Generator

This softkey is only available if the R&S FSV option Tracking Generator (R&S FSV-B9) or External Tracking Generator (R&S FSV-B10) or both are installed. It is not available in I/Q Analyzer mode.

For details see the base unit description.

Power Sensor

For precise power measurement a power sensor can be connected to the instrument via the front panel (USB connector) or the rear panel (power sensor, option R&S FSV-B5). The Power Sensor Support firmware option (R&S FSV-K9) provides the power measurement functions for this test setup.

This softkey is only available if the R&S FSV option Power Sensor (R&S FSV-K9) is installed.

For details see chapter 3.9, "Instrument Functions - Power Sensor (R&S FSV-K9)", on page 400.

For details see the chapter "Instrument Functions Power Sensor (K9)" in the base unit description.

Measurement Functions

Trigger Out

Sets the Trigger Out port in the Additional Interfaces (option R&S FSV-B5 only) to low or high. Thus, you can trigger an additional device via the external trigger port, for example.

Remote command:

OUTPut: TRIGger on page 790

External Mixer

Opens the submenu for the external mixer.

For details see the base unit description.

Probe Config

With firmware R&S FSV 1.61SP2 or newer, active probes are supported (via an adapter). This softkey opens an edit dialog box to activate and configure a connected probe which is to provide an input signal. It is only available if a probe is connected to the instrument's RF INPUT and USB connectors.

For details see chapter 3.3.8.2, "Using Active Probes for Input", on page 302.

Remote command:

```
PROBe [:STATe] on page 628
PROBe:SETup:MODE on page 628
```

Signal Source

Opens a dialog box to select the signal source.

For "Digital Baseband (I/Q)", the source can also be configured here.

Input Path ← Signal Source

Defines whether the "RF Radio Frequency" or the "Digital IQ" input path is used for measurements. "Digital IQ" is only available if option R&S FSV-B17 (R&S Digital I/Q Interface) is installed.

Note: Note that the input path defines the characteristics of the signal, which differ significantly between the RF input and digital input.

Remote command:

INPut: SELect on page 617

Connected Device ← Signal Source

Displays the name of the device connected to the optional R&S Digital I/Q Interface (R&S FSV-B17) to provide Digital IQ input. The device name cannot be changed here.

The device name is unknown.

Remote command:

```
INPut:DIQ:CDEVice on page 613
```

Input Sample Rate ← Signal Source

Defines the sample rate of the digital I/Q signal source. This sample rate must correspond with the sample rate provided by the connected device, e.g. a generator.

Remote command:

```
INPut:DIQ:SRATe on page 615
```

Measurement Functions

Full Scale Level ← Signal Source

The "Full Scale Level" defines the level that should correspond to an I/Q sample with the magnitude "1".

The level can be defined either in dBm or Volt.

Remote command:

INPut:DIQ:RANGe[:UPPer] on page 615

Level Unit ← Signal Source

Defines the unit used for the full scale level.

Remote command:

INPut:DIQ:RANGe[:UPPer]:UNIT on page 615

Adjust Reference Level to Full Scale Level ← Signal Source

If enabled, the reference level is adjusted to the full scale level automatically if any change occurs.

(See the Auto Level softkey).

Remote command:

INPut:DIQ:RANGe:COUPling on page 614

EXIQ

Opens a configuration dialog box for an optionally connected R&S EX-IQ-BOX and a submenu to access the main settings quickly.

Note: The EX-IQ-Box functionality is not supported for R&S FSV models 1321.3008Kxx.

If the optional R&S DiglConf software is installed, the submenu consists only of one key to access the software. Note that R&S DiglConf requires a USB connection (not LAN!) from the R&S FSV to the R&S EX-IQ-BOX in addition to the R&S Digital I/Q Interface connection. R&S DiglConf version 2.10 or higher is required.

For typical applications of the R&S EX-IQ-BOX see also the description of the R&S Digital I/Q Interface (R&S FSV-B17) in the base unit manual.

For details on configuration see the "R&S®Ex I/Q Box - External Signal Interface Module Manual".

For details on installation and operation of the R&S DiglConf software, see the "R&S®EX-IQ-BOX Digital Interface Module R&S®DiglConf Software Operating Manual".

TX Settings ← EXIQ

Opens the "EX-IQ-BOX Settings" dialog box to configure the R&S FSV for digital output to a connected device ("Transmitter" Type).

RX Settings ← EXIQ

Opens the "EX-IQ-BOX Settings" dialog box to configure the R&S FSV for digital input from a connected device ("Receiver" Type).

Send To ← EXIQ

The configuration settings defined in the dialog box are transferred to the R&S EX-IQ-BOX.

Measurement Functions

Firmware Update ← EXIQ

If a firmware update for the R&S EX-IQ-BOX is delivered with the R&S FSV firmware, this function is available. In this case, when you select the softkey, the firmware update is performed.

R&S Support ← **EXIQ**

Stores useful information for troubleshooting in case of errors.

This data is stored in the $C:\R_S\Instr\user\Support$ directory on the instrument.

If you contact the Rohde&Schwarz support to get help for a certain problem, send these files to the support in order to identify and solve the problem faster.

DiglConf ← **EXIQ**

Starts the optional R&S DiglConf application. This softkey is only available if the optional software is installed.

To return to the R&S FSV application, press any key on the front panel. The application is displayed with the "EXIQ" menu, regardless of which key was pressed.

For details on the R&S DigIConf application, see the "R&S®EX-IQ-BOX Digital Interface Module R&S®DigIConf Software Operating Manual".

Note: If you close the R&S DiglConf window using the "Close" icon, the window is minimized, not closed.

If you select the "File > Exit" menu item in the R&S DiglConf window, the application is closed. Note that in this case the settings are lost and the EX-IQ-BOX functionality is no longer available until you restart the application using the "DiglConf" softkey in the R&S FSV once again.

Remote command:

Remote commands for the R&S DiglConf software always begin with SOURCE: EBOX. Such commands are passed on from the R&S FSV to the R&S DiglConf automatically

which then configures the R&S EX-IQ-BOX via the USB connection.

All remote commands available for configuration via the R&S DiglConf software are described in the "R&S®EX-IQ-BOX Digital Interface Module R&S®DiglConf Software Operating Manual".

Example 1:

SOURce:EBOX:*RST SOURce:EBOX:*IDN?

Result:

"Rohde&Schwarz,DigIConf,02.05.436 Build 47"

Example 2:

SOURce: EBOX: USER: CLOCk: REFerence: FREQuency 5MHZ

Defines the frequency value of the reference clock.

Digital Output

Opens a dialog box to enable a digital output stream to the optional R&S Digital I/Q Interface (R&S FSV-B17), if available.

The displayed sample rate is identical to the sample rate defined under Data Acquisition (I/Q Analyzer) and is not editable here.

Measurement Functions

For details see "Digital Output" in the description of the R&S Digital I/Q Interface for the base unit.

Remote command:

OUTPut: DIQ on page 625

Digital IQ Info

Displays a dialog box with information on the digital I/Q input and output connection via the optional R&S Digital I/Q Interface (R&S FSV-B17), if available. The information includes:

- Device identification
- Used port
- (Maximum) digital input/output sample rates and maximum digital input/output transfer rates
- Status of the connection protocol
- Status of the PRBS descewing test

For details see "Interface Status Information" in "Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)" in the description of the base unit.

Remote command:

INPut:DIQ:CDEVice on page 613

3.3.8.2 Using Active Probes for Input

When the input from the device under test requires high impedance, an active probe can be connected between the device and the R&S FSV.

With firmware R&S FSV 1.61SP2 or newer, active probes from the R&S RT-ZS series are supported when using the new probe adapter RT-ZA9.

When the probe has been connected to and recognized by the R&S FSV, a pre-defined "Generic Probe" transducer factor with 20 dB is automatically activated and the unit of the spectrum analyzer is changed to dB μ V. (The same applies after presetting the instrument.) Then the system is ready to analyze circuit points that cannot be loaded with the 50 Ω of the analyzer input, but require a higher impedance.

Optionally, the probe can be deactivated while remaining connected to the R&S FSV, for instance to analyze the digital input from the probe without considering the transducer factor.

All RT probes (except for ZS10E) have a micro button. The action for the micro button can be defined. Currently, either a single sweep or no action can be performed when the button is pressed. By default, when you press the probe's micro button, the R&S FSV is set to single sweep mode and a single sweep is performed. This allows you to start a measurement whilst applying the probe to a certain pin on the board under test.

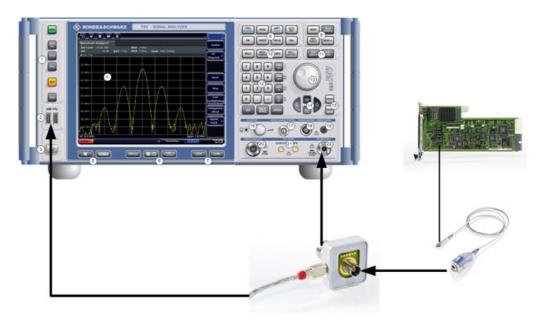
When using RT probes, consider the following:

- Active probes require operating power from the instrument and have a proprietary interface to the instrument.
- The probe is automatically recognized by the instrument, no adjustment is required.
- Connections should be as short as possible to keep the usable bandwidth high.

Measurement Functions

Observe the operating voltage range.

For more information on RT probes, refer to the probe's documentation.


Connecting Active Probes

In order to use active probes with an R&S FSV, an RT-ZA9 adapter is required. The RT-ZA9 provides an interface between the probe's BNC socket and the analyzer's N-socket and provides the necessary supply voltages for the probe via the USB connection. Using this adapter, the following probes are currently supported:

- R&S RT-ZS10
- RT-ZS10E
- RT-ZS20
- RT-ZS30

To connect an active probe, proceed as follows:

- 1. Connect the adapter to the RF Input connector on the R&S FSV.
- 2. Connect the adapter's USB cable to a USB connector on the R&S FSV.
- 3. Connect the probe to the adapter.

Once the probe and adapter have been connected to the R&S FSV correctly and the analyzer has recognized the probe, the "Generic Probe" transducer is activated and you can start a measurement.

To determine whether the probe has been connected properly and recognized by the R&S FSV, use the remote control command PROB:SET:STAT? (see PROBe:SETup:STATe? on page 628).

Measurement Functions

To perform a measurement with the probe

▶ Place the probe on the required position on the test equipment, then press the micro button on the probe to perform a single sweep measurement.

Probe Configuration

Principally, the probe is automatically recognized by the instrument and no further adjustment is required. However, you can switch off the probe while leaving it connected, and you can configure which action is to be performed when the probe's micro button is pressed.

To display the "Probe Configuration" dialog box, select the INPUT/OUTPUT key and then the "Probe Config" softkey.

The following settings are available:

State	304
Name	
Serial Number	304
Part number	304
Micro Button Action	304

State

Activates a connected probe. Use this command to switch off the probe and measure the digital input without considering the transducer factor of the probe.

Remote command:

PROBe [:STATe] on page 628

Name

Indicates the name of the connected probe.

Remote command:

PROBe: SETup: NAME? on page 628

Serial Number

Indicates the serial number of the connected probe.

Remote command:

PROBe: ID: SRNumber? on page 627

Part number

Indicates the material part number of the connected probe.

Remote command:

PROBe: ID: PARTnumber? on page 627

Micro Button Action

Defines which action is taken when the probe's micro button is pressed.

"RunSingle" A single sweep is performed.

"No Action" No action is taken.

Remote command:

PROBe: SETup: MODE on page 628

Measurement Modes

3.3.9 Performing Measurements – RUN SINGLE/RUN CONT Keys

The RUN SINGLE and RUN CONT keys are used to start measurement tasks.

- RUN SINGLE switches to single sweep mode and performs a single sweep, just as the Single Sweep softkey in the "Sweep" menu does.
- RUN CONT switches to continuous sweep mode and starts sweeping, just as the Continuous Sweep softkey in the "Sweep" menu does.

3.4 Measurement Modes

This section describes the provided measurement modes, the change of measurement modes and the access to the menus of all active measurement modes. For details refer to the following sections:

- chapter 3.4.1, "Measurement Mode Selection MODE Key", on page 305
- chapter 3.4.2, "Measurement Mode Menus HOME Key", on page 310

3.4.1 Measurement Mode Selection – MODE Key

The MODE key provides a quick access to the menu of the current measurement mode and a fast change of the measurement mode. You can choose from the following measurement modes:

- chapter 3.4.1.1, "Spectrum Mode", on page 306
- chapter 3.4.1.2, "I/Q Analyzer Mode", on page 307
- chapter 3.4.1.3, "Analog Demodulation Mode (Analog Demodulation Option, R&S FSV-K7)", on page 307
- chapter 3.4.1.4, "FM Stereo Mode (Option R&S FSV-K7S)", on page 307
- chapter 3.4.1.5, "Bluetooth Mode (Option R&S FSV-K8)", on page 307
- chapter 3.4.1.6, "GSM/EDGE Analyzer Mode (GSM/EDGE Option, R&S FSV-K10)", on page 307
- chapter 3.4.1.7, "Noise Figure Mode (Noise Figure Measurements Option, R&S FSV-K30)", on page 308
- chapter 3.4.1.8, "Phase Noise Mode (Phase Noise Measurements Option, R&S FSV-K40)", on page 308
- chapter 3.4.1.9, "Vector Signal Analysis mode (VSA Option, R&S FSV-K70)", on page 308
- chapter 3.4.1.10, "3G FDD BTS Mode (3GPP Base Station Measurements Option, R&S FSV-K72)", on page 308
- chapter 3.4.1.11, "3G FDD UE Mode (3GPP User Equipment Measurements Option, R&S FSV-K73)", on page 308
- chapter 3.4.1.12, "TDS BTS and TDS UE Mode (Option R&S FSV-K76/-K77)", on page 308

Measurement Modes

chapter 3.4.1.13, "CDMA2000 BTS and MS Mode (Options R&S FSV-K82/-K83)", on page 309

- chapter 3.4.1.14, "1xEV-DO BTS and MS Mode (Options R&S FSV-K84/-K85)", on page 309
- chapter 3.4.1.15, "WLAN Mode (WLAN TX Measurements Option, R&S FSV-K91)", on page 309 (not available for R&S FSV 40 model 1307.9002K39)
- chapter 3.4.1.16, "WiMAX Mode (WiMAX IEEE 802.16 OFDM, OFDMA Measurements Option, R&S FSV-K93)", on page 309 (not available for R&S FSV 40 model 1307.9002K39)
- chapter 3.4.1.17, "LTE Mode", on page 310 (not available for R&S FSV 40 model 1307.9002K39)

The "Power Sensor" mode can be accessed via the INPUT/OUTPUT key. This mode provides measurement functions for Power Sensors. The "Power Sensor" mode requires an instrument equipped with the corresponding optional software.

Spectrogram mode

Equipped with the firmware option R&S FSV-K14, the R&S FSV provides a graphical overview of changes in frequency and amplitude over a specified period of time. Spectrogram mode can be accessed viat the TRACE key.

For details see the description of R&S FSV-K14 in the base unit document.

To change the measurement mode

- Press the MODE key.
 A menu with the currently available measurement modes is displayed.
- 2. To activate a different mode, press the corresponding softkey.

Storing application-specific settings when switching modes

To store application-specific settings when you switch modes, activate the "Application Setup Recovery" softkey in the "Setup" menu before starting a new mode (see "Application Setup Recovery" on page 64).

3.4.1.1 Spectrum Mode

In the "Spectrum" mode the provided functions correspond to those of a conventional spectrum analyzer. The analyzer measures the frequency spectrum of the test signal over the selected frequency range with the selected resolution and sweep time, or, for a fixed frequency, displays the waveform of the video signal. This mode is set in the initial configuration.

You can use up to four spectrum displays simultaneously. The additional spectrum displays are independent of each other. You can set up each display as you like without

Measurement Modes

affecting measurement configurations in another one. Each additional spectrum display opens in an extra tab labelled "Spectrum 1" to "Spectrum 4".

➤ To add a new spectrum display, press the "New Spectrum" softkey.
The R&S FSV opens an additional "Spectrum" tab each time you press the softkey up to a maximum of four.

SCPI Command:

```
INSTrument[:SELect] on page 618
INSTrument:NSELect on page 621
INSTrument:CREate[:NEW] on page 620
```

3.4.1.2 I/Q Analyzer Mode

The "I/Q Analyzer" mode provides measurement and display functions for digital I/Q signals. For details refer to chapter 3.5, "Instrument Functions - I/Q Analyzer", on page 310.

3.4.1.3 Analog Demodulation Mode (Analog Demodulation Option, R&S FSV-K7)

The "Analog Demodulation" mode requires an instrument equipped with the corresponding optional software. This mode provides measurement functions for demodulating AM, FM, or PM signals.

For details see the R&S FSV-K7 document.

3.4.1.4 FM Stereo Mode (Option R&S FSV-K7S)

The "FM Stereo" mode provides measurement functions for demodulating FM Stereo signals. This mode requires an instrument equipped with the corresponding optional software, as well as the Analog Demodulation option (R&S FSV-K7).

For details see the R&S FSV-K7 document.

3.4.1.5 Bluetooth Mode (Option R&S FSV-K8)

The "Bluetooth" mode requires an instrument equipped with the corresponding optional software. This mode provides measurement functions for performing Bluetooth measurements.

For details see the R&S FSV-K8 document.

3.4.1.6 GSM/EDGE Analyzer Mode (GSM/EDGE Option, R&S FSV-K10)

The "GSM/EDGE Analyzer" mode requires an instrument equipped with the corresponding optional software. This mode provides measurement functions for downlink or uplink

Measurement Modes

signals according to the Third Generation Partnership Project (3GPP) standards for GSM/EDGE in different domains (Time, Frequency, I/Q).

For details see the R&S FSV-K10 document.

3.4.1.7 Noise Figure Mode (Noise Figure Measurements Option, R&S FSV-K30)

The "Noise Figure" mode requires an instrument equipped with the corresponding optional software. This mode provides noise figure measurements.

For details see the R&S FSV-K30 document.

3.4.1.8 Phase Noise Mode (Phase Noise Measurements Option, R&S FSV-K40)

The "Phase Noise" mode requires an instrument equipped with the corresponding optional software. This mode provides measurements for phase noise tests.

For details see the R&S FSV-K40 document.

3.4.1.9 Vector Signal Analysis mode (VSA Option, R&S FSV-K70)

The "Vector Signal Analysis" (VSA) mode requires an instrument equipped with the corresponding optional software. This mode provides measurement functions for vector signal analysis.

For details refer to the R&S FSV-K70 document.

3.4.1.10 3G FDD BTS Mode (3GPP Base Station Measurements Option, R&S FSV-K72)

The "3G FDD BTS" mode requires an instrument equipped with the corresponding optional software. This mode provides test measurements for WCDMA downlink signals (base station signals) according to the test specification.

For details see the R&S FSV-K72 document.

3.4.1.11 3G FDD UE Mode (3GPP User Equipment Measurements Option, R&S FSV-K73)

The "3G FDD UE" mode requires an instrument equipped with the corresponding optional software. This mode provides test measurements for WCDMA uplink signals (mobile signals) according to the test specification.

For details see the R&S FSV-K73 document.

3.4.1.12 TDS BTS and TDS UE Mode (Option R&S FSV-K76/-K77)

Equipped with the firmware application R&S FSV-K76, the R&S FSV performs code domain measurements on forward link signals according to the 3GPP standard (Third Generation Partnership Project). TD-SCDMA BTS Analysis is performed in "TDS BTS" mode.

Measurement Modes

Equipped with the firmware application R&S FSV-K77, the R&S FSV performs code domain measurements on downlink signals according to the 3GPP standard. TD-SCDMA ue Analysis is performed in "TDS ue" mode.

For details see the R&S FSV-K76/-K77 document.

3.4.1.13 CDMA2000 BTS and MS Mode (Options R&S FSV-K82/-K83)

The "CDMA2000 BTS" mode requires an instrument equipped with the optional software R&S FSV-K82. This mode provides test measurements for basic CDMA2000 base station tests.

The "CDMA2000 MS" mode requires an instrument equipped with the optional software R&S FSV-K83. This mode provides test measurements for basic CDMA2000 mobile station tests.

For details see the R&S FSV-K82/-K83 document.

3.4.1.14 1xEV-DO BTS and MS Mode (Options R&S FSV-K84/-K85)

The "1xEV-DO BTS" mode requires an instrument equipped with the optional software R&S FSV-K84. This mode provides Code Domain measurements on forward link signals according to the 3GPP2 Standard (Third Generation Partnership Project 2) High Rate Packet Data, generally referred to as "1xEV-DO".

The "1xEV-DO MS" mode requires an instrument equipped with the optional software R&S FSV-K85. This mode provides Code Domain measurements on reverse link signals according to the 3GPP2 Standard (Third Generation Partnership Project 2) High Rate Packet Data, generally referred to as "1xEV-DO".

For details see the R&S FSV-K84/-K85 document.

3.4.1.15 WLAN Mode (WLAN TX Measurements Option, R&S FSV-K91)

The "WLAN" mode requires an instrument equipped with the corresponding optional software. This mode provides Wireless LAN TX measurement functions according to IEEE 802.11 a, b, g and j standards.

This option is not available for R&S FSV 40 model 1307.9002K39.

For details see the R&S FSV-K91 document.

3.4.1.16 WiMAX Mode (WiMAX IEEE 802.16 OFDM, OFDMA Measurements Option, R&S FSV-K93)

The "WiMAX" mode requires an instrument equipped with the WiMAX IEEE 802.16 OFDM, OFDMA Measurements option (R&S FSV-K93). This mode provides WiMAX and WiBro measurement functions according to IEEE standards 802.16-2004 OFDM and 802.16e-2005 OFDMA/WiBro. It includes the WiMAX 802.16 OFDM Measurements option.

Instrument Functions - I/Q Analyzer

This option is not available for R&S FSV 40 model 1307.9002K39.

For details see the R&S FSV-K93 document.

3.4.1.17 LTE Mode

The LTE mode requires an instrument equipped with one of the EUTRA/LTE DL measurement applications that are available for the R&S FSV.

- R&S FSV-K100 LTE FDD DL
- R&S FSV-K101 LTE FDD UL
- R&S FSV-K104 LTE TDD DL
- R&S FSV-K105 LTE TDD UL

The application provides EUTRA/LTE measurement functions according to the 3GPP standard.

This option is not available for R&S FSV 40 model 1307.9002K39.

For details see the corresponding manuals.

3.4.2 Measurement Mode Menus – HOME Key

The HOME key provides a quick access to the root menu of the current measurement mode.

For the basic "Spectrum" mode (except for tracking generator measurements, see chapter 3.6, "Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)", on page 336), the softkeys of this menu are identical to the chapter 3.2.2.1, "Softkeys of the Frequency Menu", on page 89.

For details on changing the mode refer to chapter 3.4.1, "Measurement Mode Selection – MODE Key", on page 305.

3.5 Instrument Functions - I/Q Analyzer

The I/Q Analyzer provides functions to capture, visualize and evaluate I/Q data. These functions include:

- capturing data from the RF input or an R&S Digital I/Q Interface (with R&S FSV-B17 option)
- displaying I/Q data in various result types, e.g. separate Real/Imag diagrams or as an I/Q-vector
- providing I/Q data to a digital output for further processing in other devices (with R&S FSV-B17 option)

Instrument Functions - I/Q Analyzer

Menu and softkey description

The "I/Q Analyzer" menu is displayed when you select the "I/Q Analyzer" softkey in the MODE menu. The same menu is displayed when you press the MEAS or MEAS CONFIG keys in "I/Q Analyzer" mode. For details see chapter 3.5.1, "Softkeys and Parameters of the I/Q Analyzer Menu", on page 312.

The "Amplitude" menu, which is displayed when you select the AMPT key, is described in chapter 3.5.2, "Softkeys of the Amplitude Menu in I/Q Analyzer Mode", on page 320.

The "Input/Output" menu, which is displayed when you select the INPUT/OUTPUT key, as well as the "Save/Recall" menu (SAVE/RCL key) contain the same functions in I/Q Analyzer mode as in "Spectrum" mode (see chapter 3.3.8.1, "Softkeys of the Input/Output Menu", on page 297).

The "Marker" menu is identical to the one in Spectrum mode for display modes "Magnitude", "Real/Imag" and "Spectrum" (except for "Marker Zoom"), see "Display Config" on page 317. For the other display modes this menu is not available.

The "Marker To" menu is identical to the one in Spectrum mode. For the "Real / Imag (I/Q)" display mode, an additional function is available, see chapter 3.5.4, "Softkeys of the Marker To Menu in I/Q Analyzer Mode", on page 329.

The "Marker Function" menu, which is displayed when you select the MKR FUNC key, is described in chapter 3.5.5, "Softkeys of the Marker Function Menu in I/Q Analyzer Mode", on page 329.

The "Trace" menu is identical to the one in Spectrum mode, except in "I/Q Vector" display mode. In this case, only 1 trace is available and no detector can be selected (see chapter 3.2.8.1, "Softkeys of the Trace Menu", on page 123).

The "Trigger" menu, which is displayed when you select the TRIG key, is described in see chapter 3.5.3, "Softkeys of the Trigger Menu in I/Q Analyzer Mode", on page 324.

The "Span", "BW", and "Lines" menus are not available in this mode. For digital input, the "Frequency" menu is also not available. All other menus are identical to those described for "Spectrum" mode (see chapter 3.2, "Measurement Parameters", on page 86 and chapter 3.3, "Measurement Functions", on page 150.

Remote Control

Measurements with the I/Q Analyzer can also be performed via remote control.

The required commands are contained in the following subsystems:

- chapter 4.2.3.9, "INPut Subsystem", on page 612
- "TRACe:IQ Subsystem" on page 736
- chapter 4.2.3.12, "OUTPut Subsystem", on page 625

Further information

Some general information on working with I/Q data can be found in chapter 3.5.6,
 "Working with I/Q Data", on page 333.

Instrument Functions - I/Q Analyzer

 When measuring I/Q data, you may make use of the optional R&S Digital I/Q Interface (R&S FSV-B17); for details see chapter 3.7, "Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)", on page 361.

3.5.1 Softkeys and Parameters of the I/Q Analyzer Menu

This section describes the softkeys and parameters of the "I/Q Analyzer" submenu which is displayed when you select the "I/Q Analyzer" softkey in the MODE menu. The same menu is displayed when you press the MEAS or MEAS CONFIG keys in "I/Q Analyzer" mode.

I/Q Analyzer	313
L Signal Source	313
L Input Path	313
L Connected Device	
L Input Sample Rate	313
L Full Scale Level	
Level Unit	
L Adjust Reference Level to Full Scale Level	
L EXIQ	
L TX Settings	
L RX Settings	
L Send To	
L Firmware Update	
L R&S Support	
L DiglConf	
L Level	
L Reference Level	
L Auto Level	
L Preamp On/Off	
L Data Acquisition	
L Sample Rate	
L Filter BW	
L No Filter	
L Meas Time	
L Record Length	
L Display Config	
L Digital Output	
L Digital IQ Info	319

Instrument Functions - I/Q Analyzer

I/Q Analyzer

Starts the I/Q Analyzer evaluation mode and opens the submenu for the I/Q analyzer, which allows you to configure and display measurements of I/Q data, e.g. digital baseband signals.

Remote command:

Starting I/Q Analyzer:

TRACe<n>:IQ[:STATe] on page 737

Selecting evaluation mode:

TRACe<n>: IQ: EVAL on page 744

Selecting the I/Q Analyzer display configuration

CALCulate<n>:FORMat on page 598

Signal Source ← I/Q Analyzer

Opens a dialog box to select the signal source.

For "Digital Baseband (I/Q)", the source can also be configured here.

Input Path ← Signal Source ← I/Q Analyzer

Defines whether the "RF Radio Frequency" or the "Digital IQ" input path is used for measurements. "Digital IQ" is only available if option R&S FSV-B17 (R&S Digital I/Q Interface) is installed.

Note: Note that the input path defines the characteristics of the signal, which differ significantly between the RF input and digital input.

Remote command:

INPut: SELect on page 617

Connected Device ← **Signal Source** ← **I/Q Analyzer**

Displays the name of the device connected to the optional R&S Digital I/Q Interface (R&S FSV-B17) to provide Digital IQ input. The device name cannot be changed here.

The device name is unknown.

Remote command:

INPut:DIQ:CDEVice on page 613

Input Sample Rate ← Signal Source ← I/Q Analyzer

Defines the sample rate of the digital I/Q signal source. This sample rate must correspond with the sample rate provided by the connected device, e.g. a generator.

Remote command:

INPut:DIQ:SRATe on page 615

Full Scale Level ← Signal Source ← I/Q Analyzer

The "Full Scale Level" defines the level that should correspond to an I/Q sample with the magnitude "1".

The level can be defined either in dBm or Volt.

Remote command:

INPut:DIQ:RANGe[:UPPer] on page 615

Instrument Functions - I/Q Analyzer

Level Unit ← Signal Source ← I/Q Analyzer

Defines the unit used for the full scale level.

Remote command:

INPut:DIQ:RANGe[:UPPer]:UNIT on page 615

Adjust Reference Level to Full Scale Level ← Signal Source ← I/Q Analyzer

If enabled, the reference level is adjusted to the full scale level automatically if any change occurs.

(See the Auto Level softkey).

Remote command:

INPut:DIQ:RANGe:COUPling on page 614

EXIQ ← I/Q Analyzer

Opens a configuration dialog box for an optionally connected R&S EX-IQ-BOX and a submenu to access the main settings quickly.

Note: The EX-IQ-Box functionality is not supported for R&S FSV models 1321.3008Kxx.

If the optional R&S DiglConf software is installed, the submenu consists only of one key to access the software. Note that R&S DiglConf requires a USB connection (not LAN!) from the R&S FSV to the R&S EX-IQ-BOX in addition to the R&S Digital I/Q Interface connection. R&S DiglConf version 2.10 or higher is required.

For typical applications of the R&S EX-IQ-BOX see also the description of the R&S Digital I/Q Interface (R&S FSV-B17) in the base unit manual.

For details on configuration see the "R&S®Ex I/Q Box - External Signal Interface Module Manual".

For details on installation and operation of the R&S DiglConf software, see the "R&S®EX-IQ-BOX Digital Interface Module R&S®DiglConf Software Operating Manual".

TX Settings ← EXIQ ← I/Q Analyzer

Opens the "EX-IQ-BOX Settings" dialog box to configure the R&S FSV for digital output to a connected device ("Transmitter" Type).

RX Settings ← EXIQ ← I/Q Analyzer

Opens the "EX-IQ-BOX Settings" dialog box to configure the R&S FSV for digital input from a connected device ("Receiver" Type).

Send To ← EXIQ ← I/Q Analyzer

The configuration settings defined in the dialog box are transferred to the R&S EX-IQ-BOX.

Firmware Update ← EXIQ ← I/Q Analyzer

If a firmware update for the R&S EX-IQ-BOX is delivered with the R&S FSV firmware, this function is available. In this case, when you select the softkey, the firmware update is performed.

R&S Support ← **EXIQ** ← I/Q Analyzer

Stores useful information for troubleshooting in case of errors.

This data is stored in the C:\R S\Instr\user\Support directory on the instrument.

Instrument Functions - I/Q Analyzer

If you contact the Rohde&Schwarz support to get help for a certain problem, send these files to the support in order to identify and solve the problem faster.

$\textbf{DiglConf} \leftarrow \textbf{EXIQ} \leftarrow \textbf{I/Q Analyzer}$

Starts the optional R&S DiglConf application. This softkey is only available if the optional software is installed.

To return to the R&S FSV application, press any key on the front panel. The application is displayed with the "EXIQ" menu, regardless of which key was pressed.

For details on the R&S DigIConf application, see the "R&S®EX-IQ-BOX Digital Interface Module R&S®DigIConf Software Operating Manual".

Note: If you close the R&S DiglConf window using the "Close" icon, the window is minimized, not closed.

If you select the "File > Exit" menu item in the R&S DiglConf window, the application is closed. Note that in this case the settings are lost and the EX-IQ-BOX functionality is no longer available until you restart the application using the "DiglConf" softkey in the R&S FSV once again.

Remote command:

Remote commands for the R&S DiglConf software always begin with SOURCE: EBOX. Such commands are passed on from the R&S FSV to the R&S DiglConf automatically which then configures the R&S EX-IQ-BOX via the USB connection.

All remote commands available for configuration via the R&S DiglConf software are described in the "R&S®EX-IQ-BOX Digital Interface Module R&S®DiglConf Software Operating Manual".

Example 1:

SOURce:EBOX:*RST SOURce:EBOX:*IDN?

Result:

"Rohde&Schwarz,DiglConf,02.05.436 Build 47"

Example 2:

SOURce: EBOX: USER: CLOCk: REFerence: FREQuency 5MHZ

Defines the frequency value of the reference clock.

Level ← I/Q Analyzer

Opens a dialog box to define the level settings.

Reference Level ← Level ← I/Q Analyzer

Specifies the reference level for the I/Q measurement.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RVALue on page 605

Auto Level ← Level ← I/Q Analyzer

If enabled, the reference level is adjusted to the full scale level automatically if the full scale level changes.

Remote command:

INPut:DIQ:RANGe:COUPling on page 614

Preamp On/Off \leftarrow Level \leftarrow I/Q Analyzer

Switches the preamplifier on and off.

Instrument Functions - I/Q Analyzer

If option R&S FSV-B22 is installed, the preamplifier is only active below 7 GHz.

If option R&S FSV-B24 is installed, the preamplifier is active for all frequencies.

When measuring Spurious Emissions, using this softkey automatically opens the "Sweep List" dialog, see "Sweep List dialog box" on page 248.

This function is not available for input from the R&S Digital I/Q Interface (option R&S FSV-B17).

Remote command:

INPut:GAIN:STATe on page 617

Data Acquisition ← I/Q Analyzer

Opens a dialog box to configure data acquisition in I/Q Analyzer mode.

Sample Rate ← Data Acquisition ← I/Q Analyzer

Defines the I/Q data sample rate of the R&S FSV.

This rate may differ from the sample rate of the connected device (see "Input Sample Rate" on page 299).

If the R&S Digital I/Q Interface (R&S FSV-B17) is active, restrictions to the sample rate apply, see table 3-13.

For R&S FSV 40 model 1307.9002K39, the maximum sample rate is 12.5 MHz.

Remote command:

TRACe<n>: IQ: SRATe on page 747

Filter BW ← Data Acquisition ← I/Q Analyzer

Displays the flat, usable bandwidth of the final I/Q data.

This value is dependent on the defined Data Acquisition and the defined Signal Source and cannot be edited manually.

To avoid using a filter and use the Input Sample Rate instead, select the "No Filter" option.

Remote command:

TRACe<n>:IQ:BWIDth on page 738

No Filter ← Data Acquisition ← I/Q Analyzer

This setting is only available when using the Digital Baseband Interface (R&S FSV-B17).

If enabled, no digital decimation filter is used during data acquisition. Thus, the Sample Rate is identical to the input sample rate configured for the Digital I/Q input source (see "Input Sample Rate" on page 299).

Note, however, that in this case noise, artifacts, and the second IF side band may not be suppressed in the captured I/Q data.

Remote command:

TRACe<n>:IQ:DIQFilter on page 742

Meas Time ← Data Acquisition ← I/Q Analyzer

Defines the I/Q acquisition time. By default, the measurement time is calculated as the number of I/Q samples ("Record Length") divided by the sample rate. If you change the measurement time, the Record Length is automatically changed, as well.

Instrument Functions - I/Q Analyzer

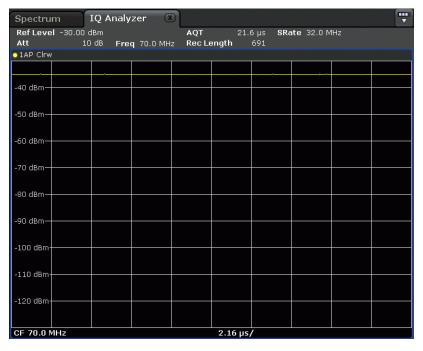
For details on the maximum number of samples see also chapter 3.5.6, "Working with I/Q Data", on page 333.

Remote command:

[SENSe:] SWEep:TIME on page 705

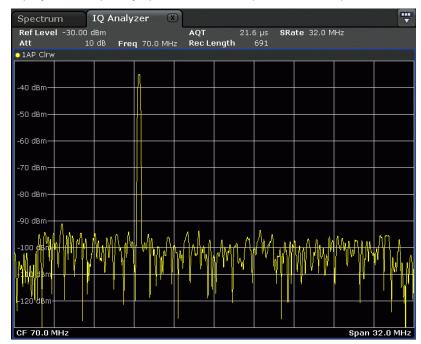
Record Length ← Data Acquisition ← I/Q Analyzer

Defines the number of I/Q samples to record. By default, the number of sweep points is used. The record length is calculated as the measurement time multiplied by the sample rate. If you change the record length, the Meas Time is automatically changed, as well.

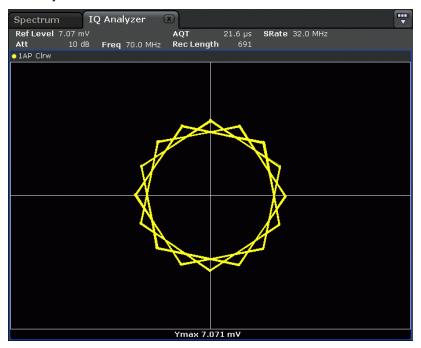

Remote command:

TRACe<n>:IQ:RLENgth on page 745
TRACe<n>:IQ:SET on page 746

Display Config ← I/Q Analyzer

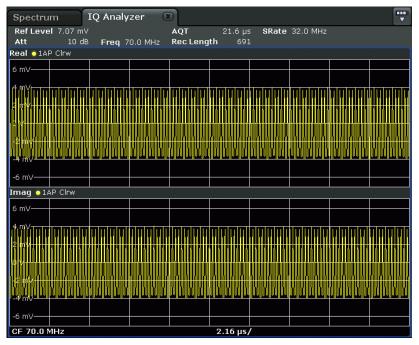

Opens a selection list to specify the result display configuration. The following displays are available:

"Magnitude" Shows the values in time domain



Instrument Functions - I/Q Analyzer

"Spectrum" Displays the frequency spectrum of the captured I/Q samples.


"I/Q-Vector" Displays the captured samples in an I/Q-plot. The samples are connected by a line.

Instrument Functions - I/Q Analyzer

"Real/Imag (I/Q)"

Displays the I and Q values in separate diagrams.

Remote command:

CALCulate<n>:FORMat on page 598

Digital Output ← I/Q Analyzer

Opens a dialog box to enable a digital output stream to the optional R&S Digital I/Q Interface (R&S FSV-B17), if available.

The displayed sample rate is identical to the sample rate defined under Data Acquisition (I/Q Analyzer) and is not editable here.

For details see "Digital Output" in the description of the R&S Digital I/Q Interface for the base unit.

Remote command:

OUTPut: DIQ on page 625

Digital IQ Info ← I/Q Analyzer

Displays a dialog box with information on the digital I/Q input and output connection via the optional R&S Digital I/Q Interface (R&S FSV-B17), if available. The information includes:

- Device identification
- Used port
- (Maximum) digital input/output sample rates and maximum digital input/output transfer rates
- Status of the connection protocol
- Status of the PRBS descewing test

Instrument Functions - I/Q Analyzer

For details see "Interface Status Information" in "Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)" in the description of the base unit.

Remote command:

INPut:DIQ:CDEVice on page 613

3.5.2 Softkeys of the Amplitude Menu in I/Q Analyzer Mode

In I/Q Analyzer mode, the "Amplitude" menu, which is displayed when you select the AMPT key, contains the following functions.

If the display configuration for the I/Q Analyzer is set to "I/Q Vector" or "Real/Imag (I/Q)", the Range and Unit functions are not available.

Ref Level	320
Range	320
L Range Log 100 dB	
L Range Log 50 dB	
L Range Log 10 dB	
L Range Log 5 dB	
L Range Log 1 dB	
L Range Log Manual	
L Range Linear %	
L Range Lin. Unit	
Unit	
Y-Axis Max	
Ref Level Offset.	
Ref Level Position	
Grid Abs/Rel	

Ref Level

Opens an edit dialog box to enter the reference level in the current unit (dBm, dBµV, etc).

The reference level is the maximum value the AD converter can handle without distortion of the measured value. Signal levels above this value will not be measured correctly, which is indicated by the "IFOVL" status display.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel on page 604

Range

Opens a submenu to define the display range of the level axis.

Instrument Functions - I/Q Analyzer

Range Log 100 dB ← Range

Sets the level display range to 100 dB.

Remote command:

Logarithmic scaling:

Display range:

DISP:WIND:TRAC:Y 100DB, **see** DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 603

Range Log 50 dB ← Range

Sets the level display range to 50 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y: SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 50DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 603

Range Log 10 dB ← Range

Sets the level display range to 10 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:
SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 10DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 603

Range Log 5 dB ← Range

Sets the level display range to 5 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:
SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 5DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]
on page 603

Instrument Functions - I/Q Analyzer

Range Log 1 dB ← Range

Sets the level display range to 1 dB.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y: SPACing on page 603

Display range:

DISP:WIND:TRAC:Y 1DB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]
on page 603

Range Log Manual ← Range

Opens an edit dialog box to define the display range of a logarithmic level axis manually.

Remote command:

Logarithmic scaling:

DISP:WIND:TRAC:Y:SPAC LOG, see DISPlay[:WINDow<n>]:TRACe<t>:Y:
SPACing on page 603

Display range:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 603

Range Linear % ← Range

Selects linear scaling for the level axis in %.

The grid is divided into decadal sections.

Markers are displayed in the selected unit ("Unit" softkey). Delta markers are displayed in % referenced to the voltage value at the position of marker 1. This is the default setting for linear scaling.

Remote command:

DISP:TRAC:Y:SPAC LIN, see DISPlay[:WINDow<n>]:TRACe<t>:Y:SPACing
on page 603

Range Lin. Unit ← Range

Selects linear scaling in dB for the level display range, i.e. the horizontal lines are labeled in dB.

Markers are displayed in the selected unit ("Unit" softkey). Delta markers are displayed in dB referenced to the power value at the position of marker 1.

Remote command:

DISP:TRAC:Y:SPAC LDB, **see** DISPlay[:WINDow<n>]:TRACe<t>:Y:SPACing on page 603

Unit

Opens the "Unit" submenu to select the unit for the level axis.

The default setting is dBm.

If a transducer is switched on, the softkey is not available.

Instrument Functions - I/Q Analyzer

In general, the signal analyzer measures the signal voltage at the RF input. The level display is calibrated in RMS values of an unmodulated sine wave signal. In the default state, the level is displayed at a power of 1 mW (= dBm). Via the known input impedance (50 Ω or 75 Ω), conversion to other units is possible. The following units are available and directly convertible:

- dBm
- dBmV
- dBµV
- dBµA
- dBpW
- Volt
- Ampere
- Watt

Remote command:

CALCulate<n>:UNIT:POWer on page 597

Y-Axis Max

Opens an edit dialog box to specify the maximum value of the y-axis in either direction (in Volts). Thus, the y-axis scale starts at -<Y-AxisMax> and ends at +<Y-AxisMax>.

This command is only available if the display configuration for the I/Q Analyzer is set to "I/Q Vector" or "Real/Imag (I/Q)", see "Display Config" on page 317.

Ref Level Offset

Opens an edit dialog box to enter the arithmetic level offset. This offset is added to the measured level irrespective of the selected unit. The scaling of the y-axis is changed accordingly. The setting range is ±200 dB in 0.1 dB steps.

Remote command:

```
DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet on page 604
```

Ref Level Position

Opens an edit dialog box to enter the reference level position, i.e. the position of the maximum AD converter value on the level axis. The setting range is from -200 to +200 %, 0 % corresponding to the lower and 100 % to the upper limit of the diagram.

Remote command:

```
DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RPOSition on page 605
```

Grid Abs/Rel

Switches between absolute and relative scaling of the level axis (not available with "Linear" range).

"Abs" Absolute scaling: The labeling of the level lines refers to the absolute

value of the reference level. Absolute scaling is the default setting.

Relative scaling: The upper line of the grid is always at 0 dB. The scaling

is in dB whereas the reference level is always in the set unit (for details

on unit settings see the "Unit" softkey).

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:MODE on page 604

"Rel"

Instrument Functions - I/Q Analyzer

3.5.3 Softkeys of the Trigger Menu in I/Q Analyzer Mode

In I/Q Analyzer mode, the "Trigger" menu, which is displayed when you select the TRIG key, contains the following functions:

Trg/Gate Source	324
L Free Run	324
L External	324
L Video	
L RF Power	325
L IF Power/BB Power	
L Power Sensor	
L Time	
L Digital IQ	
Trigger Level	
Trigger Polarity	327
Trigger Offset	
Repetition Interval	
Trigger Hysteresis	
Trigger Holdoff	

Trq/Gate Source

Opens the "Trigger/Gate Source" dialog box to select the trigger/gate mode.

As gate modes, all modes except "Power Sensor" are available. For details see also chapter 3.2.9.3, "Using Gated Sweep Operation", on page 147.

The default setting is "Free Run". If a trigger mode other than "Free Run" has been set, the enhancement label "TRG" is displayed and the trigger source is indicated.

Note: When triggering or gating is activated, the squelch function is automatically disabled (see "Squelch" on page 163).

Remote command:

```
TRIGger<n>[:SEQuence]:SOURce on page 753
[SENSe:]SWEep:EGATe:SOURce on page 701
```

Free Run ← Trg/Gate Source

The start of a sweep is not triggered. Once a measurement is completed, another is started immediately.

Remote command:

```
TRIG:SOUR IMM, see TRIGger<n>[:SEQuence]:SOURce on page 753
```

External ← Trg/Gate Source

Defines triggering via a TTL signal at the "EXT TRIG/GATE IN" input connector on the rear panel.

Remote command:

```
TRIG:SOUR EXT, see TRIGger<n>[:SEQuence]:SOURce on page 753

SWE:EGAT:SOUR EXT for gated triggering, see [SENSe:]SWEep:EGATe:SOURce on page 701
```

Instrument Functions - I/Q Analyzer

Video ← Trg/Gate Source

Defines triggering by the displayed voltage.

A horizontal trigger line is shown in the diagram. It is used to set the trigger threshold from 0 % to 100 % of the diagram height.

Video mode is only available in the time domain.

Remote command:

```
TRIG:SOUR VID, see TRIGger<n>[:SEQuence]:SOURce on page 753

SWE:EGAT:SOUR VID for gated triggering, see [SENSe:]SWEep:EGATe:SOURce on page 701
```

RF Power ← Trg/Gate Source

Defines triggering of the measurement via signals which are outside the measurement channel.

This trigger mode is available with detector board 1307.9554.02 Rev 05.00 or higher. It is not available for input from the R&S Digital I/Q Interface (option R&S FSV-B17). If RF Power trigger mode is selected and digital baseband input is activated, the trigger mode is automatically switched to "Free Run".

In RF Power trigger mode the instrument uses a level detector at the first intermediate frequency. The detector threshold can be selected in a range between - 50 dBm and -10 dBm at the input mixer. The resulting trigger level at the RF input lies within the following range:

 $(-24dBm + RF Att) \le Triggerlevel \le (+5dBm + RF Att)$, max. 30 dBm, for Preamp = OFF $(-40dBm + RF Att) \le Triggerlevel \le (-11dBm + RF Att)$, max. 30 dBm, for Preamp = ON with

 $500~MHz \leq InputSignal \leq 7~GHz$

Note: If input values outside of this range occur (e.g. for fullspan measurements), the sweep may be aborted and a message indicating the allowed input values is displayed in the status bar.

A Trigger Offset, Trg/Gate Polarity and Trigger Holdoff can be defined for the RF trigger to improve the trigger stability, but no hysteresis.

Remote command:

```
TRIG:SOUR RFP, see TRIGger<n>[:SEQuence]:SOURce on page 753
SWE:EGAT:SOUR RFP for gated triggering, see [SENSe:]SWEep:EGATe:SOURce
on page 701
```

IF Power/BB Power ← Trg/Gate Source

For this purpose, the R&S FSV uses a level detector at the second intermediate frequency.

The available trigger levels depend on the RF attenuation and preamplification. A reference level offset, if defined, is also considered.

For details on available trigger levels and trigger bandwidths see the data sheet.

The bandwidth at the intermediate frequency depends on the RBW and sweep type:

Sweep mode:

RBW > 500 kHz: 40 MHz, nominal

Instrument Functions - I/Q Analyzer

RBW ≤ 500 kHz: 6 MHz, nominal

FFT mode:

- RBW > 20 kHz: 40 MHz, nominal
- RBW ≤ 20 kHz: 6 MHz, nominal

Note: Be aware that in auto sweep type mode, due to a possible change in sweep types, the bandwidth may vary considerably for the same RBW setting.

The R&S FSV is triggered as soon as the trigger level is exceeded around the selected frequency (= start frequency in the frequency sweep).

Thus, the measurement of spurious emissions, e.g. for pulsed carriers, is possible even if the carrier lies outside the selected frequency span.

For digital input via the R&S Digital I/Q Interface (R&S FSV-B17), the baseband power ("BB Power") is used as the trigger source.

Remote command:

```
TRIG:SOUR IFP, see TRIGger<n>[:SEQuence]:SOURce on page 753
TRIG:SOUR BBP for digital input
SWE:EGAT:SOUR IFP for gated triggering, see [SENSe:]SWEep:EGATe:SOURce
on page 701
```

Power Sensor ← Trg/Gate Source

Uses an external power sensor as a trigger function. This option is only available if the R&S FSV-K9 Power Sensor option is installed and a power sensor is connected and configured.

(See chapter 3.9, "Instrument Functions - Power Sensor (R&S FSV-K9)", on page 400.)

Power sensors are configured in the "Input/Output" menu, see chapter 3.9.3, "Configuring an External Power Trigger", on page 405.

If a power sensor is selected as the trigger mode, the following softkeys are not available; these settings are configured in the "Power Sensor Configuration" dialog box (see chapter 3.9.5, "Power Sensor Configuration Dialog", on page 409).

- Trg/Gate Level
- Trg/Gate Polarity
- Trigger Hysteresis
- Trigger Holdoff

Note: For R&S power sensors, the "Gate Mode" *LvI* is not supported. The signal sent by these sensors merely reflects the instant the level is first exceeded, rather than a time period. However, only time periods can be used for gating in level mode. Thus, the trigger impulse from the sensors is not long enough for a fully gated measurement; the measurement cannot be completed.

Remote command:

```
TRIG:SOUR PSE, see TRIGger<n>[:SEQuence]:SOURce on page 753

SWE:EGAT:SOUR PSE for gated triggering, see [SENSe:]SWEep:EGATe:SOURce on page 701

TRACe<n>:IQ:SET on page 746
```

Instrument Functions - I/Q Analyzer

Time ← Trg/Gate Source

Opens an edit dialog box to define a repetition interval in which the measurement is triggered. The shortest interval is 2 ms.

Remote command:

TRIG:SOUR TIMETRIGger<n>[:SEQuence]:SOURce on page 753

Digital IQ ← Trg/Gate Source

For I/Q Analyzer or AnalogDemod mode only:

Defines triggering of the measurement directly via the LVDS connector. In the submenu you must specify which general purpose bit (GP0 to GP5) will provide the trigger data.

This trigger mode is available for input from the R&S Digital I/Q Interface (option R&S FSV-B17) only.

A Trigger Offset, and Trg/Gate Polarity can be defined for the Digital IQ trigger to improve the trigger stability, but no hysteresis or holdoff value.

The following table describes the assignment of the general purpose bits to the LVDS connector pins.

(See table 3-20)

Table 3-10: Assignment of general purpose bits to LVDS connector pins

Bit	LVDS pin
GP0	SDATA4_P - Trigger1
GP1	SDATA4_P - Trigger2
GP2	SDATA0_P - Reserve1
GP3	SDATA4_P - Reserve2
GP4	SDATA0_P - Marker1
GP5	SDATA4_P - Marker2

Remote command:

```
TRIG:SOUR GP0, see TRIGger<n>[:SEQuence]:SOURce on page 753
SWE:EGAT:SOUR RFP for gated triggering, see [SENSe:]SWEep:EGATe:SOURce on page 701
```

Trigger Level

Defines the trigger level as a numeric value.

In the trigger mode "Time", this softkey is not available.

Remote command:

```
TRIGger<n>[:SEQuence]:LEVel:IFPower on page 752
TRIGger<n>[:SEQuence]:LEVel:VIDeo on page 752
For digital input via the R&S Digital I/Q Interface, R&S FSV-B17:
TRIGger<n>[:SEQuence]:LEVel:BBPower on page 751
```

Trigger Polarity

Sets the polarity of the trigger source.

Instrument Functions - I/Q Analyzer

The sweep starts after a positive or negative edge of the trigger signal. The default setting is "Pos". The setting applies to all modes with the exception of the "Free Run" and "Time" mode.

"Pos" Level triggering: the sweep is stopped by the logic "0" signal and restar-

ted by the logical "1" signal after the gate delay time has elapsed.

"Neg" Edge triggering: the sweep is continued on a "0" to "1" transition for the

gate length duration after the gate delay time has elapsed.

Remote command:

```
TRIGger<n>[:SEQuence]:SLOPe on page 752
[SENSe:]SWEep:EGATe:POLarity on page 701
```

Trigger Offset

Opens an edit dialog box to enter the time offset between the trigger signal and the start of the sweep.

offset > 0:	Start of the sweep is delayed
offset < 0:	Sweep starts earlier (pre-trigger) Only possible for span = 0 (e.g. I/Q Analyzer mode) and gated trigger switched off Maximum allowed range limited by the sweep time: pretrigger _{max} = sweep time When using the R&S Digital I/Q Interface (R&S FSV-B17) with I/Q Analyzer mode, the maximum range is limited by the number of pretrigger samples. See table 3-14.

In the "External" or "IF Power" trigger mode, a common input signal is used for both trigger and gate. Therefore, changes to the gate delay will affect the trigger delay (trigger offset) as well.

Tip: To determine the trigger point in the sample (for "External" or "IF Power" trigger mode), use the TRACe < n > : IQ: TPISample? command.

In the "Time" trigger mode, this softkey is not available.

Remote command:

```
TRIGger<n>[:SEQuence]:HOLDoff[:TIME] on page 750
```

Repetition Interval

Opens an edit dialog box to define a repetition interval in which the measurement is triggered. The shortest interval is 2 ms. This softkey is only available if the trigger source "Time" is selected (see "Time" on page 142).

Remote command:

```
TRIGger<n>[:SEQuence]:TIME:RINTerval on page 754
```

Instrument Functions - I/Q Analyzer

Trigger Hysteresis

Defines the value for the trigger hysteresis for "IF power" or "RF Power" trigger sources. The hysteresis in dB is the value the input signal must stay below the power trigger level in order to allow a trigger to start the measurement. The range of the value is between 3 dB and 50 dB with a step width of 1 dB.

Remote command:

TRIGger<n>[:SEQuence]:IFPower:HYSTeresis on page 751

Trigger Holdoff

Defines the value for the trigger holdoff. The holdoff value in s is the time which must pass before triggering, in case another trigger event happens.

This softkey is only available if "IFPower", "RF Power" or "BBPower" is the selected trigger source.

Remote command:

```
TRIGger<n>[:SEQuence]:IFPower:HOLDoff on page 750
For digital input via the R&S Digital I/Q Interface, R&S FSV-B17:
TRIGger<n>[:SEQuence]:BBPower:HOLDoff on page 750
```

3.5.4 Softkeys of the Marker To Menu in I/Q Analyzer Mode

In I/Q Analyzer mode, The "Marker To" menu is identical to the one in Spectrum mode (see chapter 3.3.4.1, "Softkeys of the Marker To Menu", on page 172). For the "Real/Imag (I/Q)" display mode, however, an additional function is available.

Search Settings

Opens a dialog box to define which data is used for marker search functions.

Note: The search settings apply to all markers, not only the currently selected one.

"Search Real" Marker search functions are performed on the real trace of the I/Q

measurement.

"Search Imag" Marker search functions are performed on the imaginary trace of the I/ Q measurement.

"Search Magni- Marker search functions are performed on the magnitude of the I and tude" Q data.

Remote command:

"CALCulate:MARKer:FUNCtion Subsystem" on page 535

3.5.5 Softkeys of the Marker Function Menu in I/Q Analyzer Mode

In I/Q Analyzer mode, the "Marker Function" menu is similar to the one in Spectrum mode (see chapter 3.3.3.1, "Softkeys of the Marker Function Menu", on page 159). For the "I/Q Vector" display mode, however, this menu is not available.

Select Marker (No)	330
Signal Count.	330
n dB down	

Instrument Functions - I/Q Analyzer

Marker Peak List	331
L Peak List On/Off	331
L Sort Mode Freg/Lvl	331
L Max Peak Count	331
L Peak Excursion	332
L Left Limit	332
L Right Limit	
L Threshold	
L ASCII File Export	
L Decim Sep	
L Marker Number	333

Select Marker (No)

Opens a submenu to select one of 16 markers and define whether the marker is a normal or a delta marker (see "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/ Delta" on page 151). "(No)" indicates the number of the currently active marker.

See "Marker 1 / Marker 2 / Marker 3 / ... Marker 16,/ Marker Norm/Delta" on page 151.

Signal Count

Switches the frequency counter on or off, and opens an edit dialog box to define the resolution of the frequency counter, if enabled. The frequency is counted at the position of the reference marker (marker 1). If no marker is activate, marker 1 is switched on and positioned on the largest signal.

The sweep stops at the reference marker until the frequency counter has delivered a result. The result is displayed in the marker field (see figure 3-9), labeled with [Tx CNT].

For more information see chapter 3.3.3.5, "Frequency Measurement with the Frequency Counter", on page 168.

Remote command:

```
CALCulate<n>:MARKer<m>:COUNt on page 523
CALCulate<n>:MARKer<m>:COUNt:FREQuency? on page 524
```

n dB down

Opens an edit dialog box to enter a value to define the level spacing of the two temporary markers to the right and left of marker 1 (default setting: 3 dB). Activates the temporary markers T1 and T2. The values of the temporary markers (T1, T2) and the entered value (ndB) are displayed in the marker field.

If a positive value is entered, the markers T1 and T2 are placed below the active reference marker. If a negative value (e.g. for notch filter measurements) is entered, the markers T1 and T2 are placed above the active reference marker. Marker T1 is placed to the left and marker T2 to the right of the reference marker.

In the marker table, the following results are displayed:

Span setting	Parameter name	Description
span > 0	Bw	frequency spacing of the two temporary markers
	Q factor	quality of the displayed bandwidth value (Bw)
span = 0	PWid	pulse width between the two temporary markers

Instrument Functions - I/Q Analyzer

If it is not possible to form the frequency spacing for the n dB value (e.g. because of noise display), dashes instead of a measured value are displayed.

Remote command:

```
CALC:MARK1:FUNC:NDBD:STAT ON, see CALCulate<n>:MARKer<m>:FUNCtion:
NDBDown:STATe on page 548

CALC:MARK1:FUNC:NDBD 3dB, see CALCulate<n>:MARKer<m>:FUNCtion:
NDBDown on page 546

CALC:MARK1:FUNC:NDBD:RES?, see CALCulate<n>:MARKer<m>:FUNCtion:
NDBDown:RESult? on page 547

CALC:MARK:FUNC:NDBD:QFAC?, see CALCulate<n>:MARKer<m>:FUNCtion:
NDBDown:QFACtor on page 547

CALC:MARK1:FUNC:NDBD:FREQ? (span > 0), see CALCulate<n>:MARKer<m>:FUNCtion:
NDBDown:QFACtor on page 547

CALC:MARK1:FUNC:NDBD:FREQ? (span > 0), see CALCulate<n>:MARKer<m>:
FUNCtion:NDBDown:FREQuency? on page 546

CALC:MARK1:FUNC:NDBD:TIME? (span = 0), see CALCulate<n>:MARKer<m>:
FUNCtion:NDBDown:TIME? on page 548
```

Marker Peak List

Opens the "Peak List" submenu to define criteria for the sort order and the contents of the peak list. For each listed peak the frequency ("Stimulus") and level ("Response") values are given. In addition, the peaks are indicated in the trace display. A maximum of 50 entries are listed.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:COUNt? on page 541
CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:X on page 543
CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:Y? on page 543
```

Peak List On/Off ← Marker Peak List

Activates/deactivates the marker peak list. If activated, the peak list is displayed and the peaks are indicated in the trace display.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:STAT on page 543
```

$\textbf{Sort Mode Freq/LvI} \leftarrow \textbf{Marker Peak List}$

Defines the criteria for sorting:

"Freq" sorting in ascending order of frequency values (span > 0) or time values

(span = 0)

"Lvl" sorting in ascending order of the level

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:SORT on page 542
```

Max Peak Count ← **Marker Peak List**

Defines the maximum number of peaks to be determined and displayed.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:LIST:SIZE on page 542
```

Instrument Functions - I/Q Analyzer

Peak Excursion ← **Marker Peak List**

Opens an edit dialog box for level measurements to enter the minimum level value by which a signal must rise or fall so that it will be identified as a maximum or a minimum by the search functions. Entries from 0 dB to 80 dB are allowed; the resolution is 0.1 dB. The default setting for the peak excursion is 6 dB.

For more information see "Specifying the suitable peak excursion" and "Effect of different peak excursion settings".

Remote command:

CALCulate<n>:MARKer<m>:PEXCursion on page 530

Left Limit ← **Marker Peak List**

Opens an edit dialog box to enter a value for the lower limit (left vertical line: S1 for span > 0; T1 for zero span). The search is performed between the lines of the left and right limit (see also Right Limit softkey).

Remote command:

CALCulate<n>:MARKer<m>:X:SLIMits:LEFT on page 532

$\textbf{Right Limit} \leftarrow \textbf{Marker Peak List}$

Opens an edit dialog box to enter a value for the upper limit (left vertical line: S2 for span > 0; T2 for zero span). The search is performed between the lines of the left and right limit (see also Left Limit softkey). If no value is set, the upper limit corresponds to the stop frequency.

Remote command:

CALCulate<n>:MARKer<m>:X:SLIMits:RIGHT on page 533

Threshold ← Marker Peak List

Opens an edit dialog box to define the threshold line. The threshold line represents the lower level limit for a "Peak" search and the upper level limit for a "Min" search.

Remote command:

CALCulate<n>:THReshold:STATe on page 596 CALCulate<n>:THReshold on page 596

ASCII File Export ← Marker Peak List

Opens the "ASCII File Export Name" dialog box and saves the active peak list in ASCII format to the specified file and directory.

The file consists of the header containing important scaling parameters and a data section containing the marker data. For details on an ASCII file see chapter 3.2.8.7, "ASCII File Export Format", on page 138.

This format can be processed by spreadsheet calculation programs, e.g. MS-Excel. It is necessary to define ';' as a separator for the data import. Different language versions of evaluation programs may require a different handling of the decimal point. It is therefore possible to select between separators '.' (decimal point) and ',' (comma) using the "Decim Sep" softkey (see "Decim Sep" on page 71).

Instrument Functions - I/Q Analyzer

An example of an output file for Spectrum Emission Mask measurements is given in "ASCII File Export Format (Spectrum Emission Mask)" on page 240.

Remote command:

```
FORMat:DEXPort:DSEParator on page 609
MMEMory:STORe<n>:LIST on page 623
```

Decim Sep ← Marker Peak List

Selects the decimal separator with floating-point numerals for the ASCII Trace export to support evaluation programs (e.g. MS-Excel) in different languages. The values '.' (decimal point) and ',' (comma) can be set.

Remote command:

FORMat: DEXPort: DSEParator on page 609

Marker Number ← Marker Peak List

If enabled, the determined peaks are indicated by their corresponding marker number in the trace display.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:ANN:LAB:STAT on page 541

3.5.6 Working with I/Q Data

I/Q data can be captured either from RF input, or via the optional R&S Digital I/Q Interface (R&S FSV-B17), or it can be imported from a file (see chapter 3.1.2.3, "Importing and Exporting I/Q Data", on page 76). The captured I/Q data can then be processed further, e.g. using the I/Q Analyzer, or in the applications that support the R&S Digital I/Q Interface. Additionally, the captured I/Q data can be exported to a file in order to process it in another application, e.g. Vector Signal Analysis, if available.

Working with digital input is described in chapter 3.7, "Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)", on page 361 and in the applications that support that interface.

This section describes I/Q data processing of RF input, e.g. in the I/Q Analyzer.

The block diagram in figure 3-24 shows the analyzer hardware for active RF input from the IF section to the processor.

The A/D converter samples the IF signal at a rate of 128 MHz. The digital signal is down-converted to the complex baseband, lowpass-filtered, and the sample rate is reduced. The continuously adjustable sample rates are realized using an optimal decimation filter and subsequent resampling on the set sample rate.

The I/Q data is written to a single memory, the data acquisition is hardware-triggered.

Instrument Functions - I/Q Analyzer

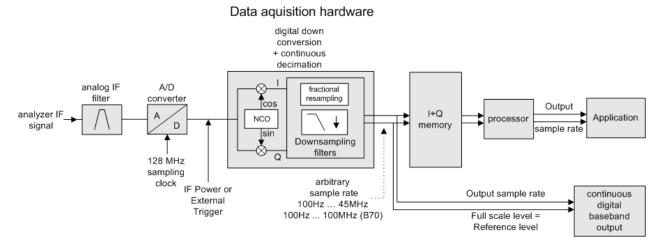


Fig. 3-24: Block diagram illustrating the R&S FSV signal processing

Maximum number of samples

The maximum number of samples for RF input is 200 MS.

For digital input using the R&S Digital I/Q Interface (R&S FSV-B17), see table 3-14.

3.5.6.1 Sample Rate and Maximum Usable Bandwidth (RF Input)

Information on sample rates and maximum usable bandwidths for Digital I/Q input is described in table 3-13.

Definitions

- **Input sample rate (ISR)**: the sample rate of the useful data provided by the connected instrument to the R&S FSV input
- (User, Output) Sample rate (SR): the sample rate that is defined by the user (e.g. in the "Data Aquisition" dialog box in the "I/Q Analyzer" application) and which is used as the basis for analysis or output
- Usable I/Q (Analysis) bandwidth: the bandwidth range in which the signal remains
 undistorted in regard to amplitude characteristic and group delay; this range can be
 used for accurate analysis by the R&S FSV

For the I/Q data acquisition, digital decimation filters are used internally. The passband of these digital filters determines the *maximum usable I/Q bandwidth*. In consequence, signals within the usable I/Q bandwidth (passband) remain unchanged, while signals outside the usable I/Q bandwidth (passband) are suppressed. Usually, the suppressed signals are noise, artifacts, and the second IF side band. If frequencies of interest to you are also suppressed, you should try to increase the output sample rate, since this increases the maximum usable I/Q bandwidth.

Instrument Functions - I/Q Analyzer

Relationship between sample rate and usable bandwidth

The diagram figure 3-25 shows the maximum usable I/Q bandwidths depending on the user sample rates.

As a rule, the usable bandwidth is proportional to the output sample. Yet, when the I/Q bandwidth reaches the bandwidth of the analog IF filter (at very high sample rates), the curve breaks.

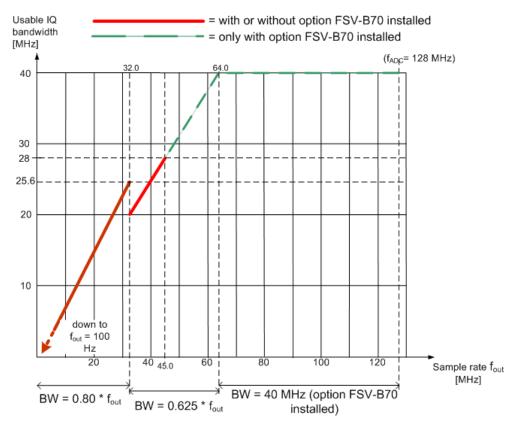


Fig. 3-25: Relation between maximum usable bandwidth and sample rate (RF input)

R&S FSV without additional bandwidth extension options

Sample rate: 100 Hz - 45 MHz

Maximum I/Q bandwidth: 28 MHz

Sample rate	Maximum I/Q bandwidth			
100 Hz to 32 MHz	proportional up to 25.6 MHz Usable I/Q bandwidth = 0.8 * Output sample rate			
32 MHz to 45 MHz	proportional up to 28 MHz Usable I/Q bandwidth = 0.625 * Output sample rate			

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

R&S FSV40 model 1307.9002K3

For the R&S FSV40 model 1307.9002K3 different values apply. No bandwidth extension options are available for this model.

Sample rate: 100 Hz to 12.5 MHz

Maximum I/Q bandwidth: proportional up to 12.5 MHz

Usable I/Q bandwidth = 0.8 * Output sample rate

R&S FSV with option R&S FSV-B70 (I/Q Bandwidth Extension)

This option is not available for R&S FSV 40 model 1307.9002K39.

Sample rate: 100 Hz - 128 MHz

Maximum I/Q bandwidth: 40 MHz

Sample rate	Maximum I/Q bandwidth
100 Hz to 32 MHz	proportional up to 25.6 MHz Usable I/Q bandwidth = 0.8 * Output sample rate
32 MHz to 64 MHz	proportional up to 40 MHz Usable I/Q bandwidth = 0.625 * Output sample rate
64 MHz to 128 MHz	40 MHz

3.6 Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

If the R&S FSV Tracking Generator option (R&S FSV-B9) is installed, an internal tracking generator emits a signal at the exact input frequency of the analyzer during operation. The generated signal is sent to the DUT, thus allowing the analyzer to control the input frequency of the device directly.

Using the R&S FSV External Tracking Generator option (B10), you can operate various commercially available generators as a tracking generator on the R&S FSV. Thus, scalar network analysis with the R&S FSV is also possible outside the frequency range of the internal tracking generator, when the appropriate generators are used.

The R&S FSV also allows you to set a frequency offset for frequency-converting measurements. For harmonics measurements or frequency-converting measurements, when external generators are used you can also enter a factor by which the generator frequency is increased or reduced, compared to the receive frequency of the R&S FSV. Make sure, however, that the resulting generator frequencies do not exceed the allowed setting range of the generator.

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

Both the internal and external tracking generator options can be installed simultaneously. However, only one tracking generator (internal or one of two possible external generators) can be used at any time. Which tracking generator is currently active, if any, is indicated by the "Source RF Internal (On/ Off)" on page 338 softkey. It can be changed using the "Source Config" on page 342 softkey. For details see chapter 3.6.3, "Configuring Tracking Generators", on page 345.

Tracking generator control (both internal and external) is only available in the "Spectrum" mode for frequency, time (zero span) or I/Q measurements, as well as in "Analog Demodulation" mode. If you switch to a mode other than "Spectrum" or "Analog Demodulation", any currently active tracking generator is deactivated.

Special measurement functions are not available with tracking generator control. The corresponding softkeys in the "Measurement" menu are deactivated in this case.

Menu and softkey description

chapter 3.6.1, "Softkeys of the Tracking Generator Menu", on page 337

Further information

- chapter 3.6.2, "Connecting External Tracking Generators", on page 342
- chapter 3.6.3, "Configuring Tracking Generators", on page 345
- chapter 3.6.4, "Tracking Generator Functions", on page 352
- chapter 3.6.5, "Displayed Information and Errors", on page 360

3.6.1 Softkeys of the Tracking Generator Menu

The "Tracking Generator" menu is displayed when you press the INPUT/OUPUT key and then "Tracking Generator".

This softkey is only available if the R&S FSV option Tracking Generator (B9) or External Tracking Generator (B10) or both are installed. The following table shows all softkeys available in the "Tracking Generator" menu.

As long as a tracking generator is active, the HOME key also displays the "Tracking Generator" menu.

Source RF Internal (On/ Off)	338
Source Power	
Source Cal	338
L Calibrate Transmission	338
L Calibrate Reflection Short	338
L Calibrate Reflection Open	339
L Normalize	
L Reference Value Position	339
L Reference Value	339
L Recall	340

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

L Save As Trd Factor	340
Modulation	
L External AM	
L External FM	
L External I/Q	
L Modulation OFF	
Power Sweep	341
L Power Sweep (On /Off)	
L Power Sweep Start	
L Power Sweep Stop.	
Source Config	

Source RF Internal (On/ Off)

Switches the selected tracking generator on or off. Default setting is off. The currently selected generator is indicated on the softkey.

Remote command:

OUTPut[:STATe] on page 626

Activates the internal tracking generator (B9).

SOURce<n>:EXTernal<generator>[:STATe] on page 708

Activates the external tracking generator 1 (B10).

Source Power

Opens an edit dialog box to quickly change the output power of the currently selected tracking generator, alternatively to the "Tracking Generator configuration" dialog box (see "Source Config" on page 342 softkey).

The default output power is -20 dBm. The range is specified in the data sheet.

Remote command:

SOURce<n>:POWer[:LEVel][:IMMediate][:AMPLitude] on page 715

Source Cal

Opens a submenu to configure calibration for transmission and reflection measurement for tracking generators. For details on the test setups see chapter 3.6.4.2, "Calibrating for transmission and reflection measurement", on page 353.

Calibrate Transmission ← **Source Cal**

Starts a sweep that records a reference trace. This trace is used to calculate the difference for the normalized values.

Remote command:

[SENSe:]CORRection:METHod on page 642

Selects the transmission method and starts the sweep to record a reference trace.

Calibrate Reflection Short ← **Source Cal**

Starts a sweep as a reference trace for short-circuit calibration.

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

If both calibrations (open circuit, short circuit) are carried out, the calibration curve is calculated by averaging the two measurements and stored in the memory. The order of the two calibration measurements is irrelevant.

Remote command:

[SENSe:] CORRection: METHod on page 642

Selects the reflection method.

[SENSe:]CORRection:COLLect[:ACQuire] on page 638

Starts the sweep for short-circuit calibration.

Calibrate Reflection Open ← Source Cal

Starts a sweep as a reference trace for the open-circuit calibration.

If both calibrations (open circuit, short circuit) are carried out, the calibration curve is calculated by averaging the two measurements and stored in the memory. The order of the two calibration measurements is irrelevant.

Remote command:

[SENSe:] CORRection: METHod on page 642

Selects the reflection method.

[SENSe:]CORRection:COLLect[:ACQuire] on page 638

Starts the sweep for open-circuit calibration.

Normalize ← Source Cal

Switches the normalization on or off. The softkey is only available if the memory contains a reference trace. For details on normalization see chapter 3.6.4.5, "Normalization", on page 355.

Remote command:

[SENSe:]CORRection[:STATe] on page 643

Reference Value Position ← Source Cal

Switches the reference line on or off. The reference line marks the reference position at which the normalization result (calculated difference to a reference trace) is displayed. For details on the reference line see chapter 3.6.4.5, "Normalization", on page 355.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RPOSition on page 605

Reference Value ← Source Cal

Opens an edit dialog box to enter a position value that shifts the reference line vertically. By default, the reference line corresponds to a difference of 0 dB between the currently measured trace and the reference trace.

If a 10 dB attenuation is inserted into the signal path between DUT and R&S FSV input, for example after a source calibration, the measurement trace is moved down by 10 dB. Entering a reference value of -10 dB will also shift the reference line down by 10 dB and place the measurement trace on the reference line. The deviation from the nominal power level can be displayed with higher resolution (e.g. 1 dB/div). The power is still displayed in absolute values.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RVALue on page 605

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

Recall ← Source Cal

Restores the settings that were used during source calibration. This can be useful if instrument settings were changed after calibration (e.g. center frequency, frequency deviation, reference level, etc).

Remote command:

[SENSe:]CORRection:RECall on page 643

Save As Trd Factor ← Source Cal

"Transducer" on page 47Uses the normalized measurement data to generate a transducer factor with up to 625 points. The trace data is converted to a transducer with unit dB and stored in a file with the specified name and the suffix.trd under "c:

\r_s\instr\trd". The frequency points are allocated in equidistant steps between start and stop frequency. The generated transducer factor can be further adapted using the "Transducer" softkey in the "SETUP" menu.

The "Save As Trd Factor" softkey is only available if normalization is switched on.

Remote command:

[SENSe:] CORRection: TRANsducer: GENerator on page 643

Modulation

Opens a submenu to define modulation settings. This submenu contains the following commands:

- "External AM" on page 340
- "External FM" on page 340
- "External I/Q" on page 341
- "Modulation OFF" on page 341

External AM ← Modulation

Activates an AM modulation of the tracking generator output signal.

The modulation signal is applied to the TG IN I/AM connector. An input voltage of 1 V corresponds to 100 % amplitude modulation.

Switching on an external AM disables the active I/Q modulation.

Remote command:

SOURce<n>: AM: STATe on page 708

External FM ← Modulation

Activates the FM modulation of the tracking generator output signal. The modulation signal is applied to the TG IN Q/FM connector. Switching on an external FM disables the active I/Q modulation.

Remote command:

```
SOURce<n>: FM: STATe on page 714
SOURce<n>: FM: DEViation on page 713
```

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

External I/Q ← Modulation

Activates the external I/Q modulation of the tracking generator output signal. The signals for modulation are applied to the two input connectors TG IN I and TG IN Q at the rear panel of the unit. The input voltage range is ± 1 V into 50 Ω . Switching on an external I/Q modulation disables the active AM or FM modulation.

Remote command:

```
SOURce<n>: DM: STATe on page 708
```

Modulation OFF ← **Modulation**

Deactivates external modulation of the tracking generator output signal.

Remote command:

```
SOURce<n>: AM: STATe on page 708
SOURce<n>: DM: STATe on page 708
SOURce<n>: FM: STATe on page 714
```

Power Sweep

Opens a submenu to define power sweep settings.

This softkey is only available if the (internal) Tracking Generator option (B9) is installed.

This submenu contains the following commands:

- "Power Sweep (On /Off)" on page 341
- "Power Sweep Start" on page 341
- "Power Sweep Stop" on page 342

Power Sweep (On /Off) ← Power Sweep

Activates or deactivates the power sweep. If the power sweep is on, the analyzer is set to zero span mode (span = 0Hz). During the sweep time of the zero span, the power at the internal tracking generator is changed linearly from start power to stop power. The start and stop power for the power sweep are displayed in the diagram header ("INT TG <start power>... <stop power>", see also chapter 3.6.5, "Displayed Information and Errors", on page 360.

The start power can be set between -30 dBm and +0 dBm.

The stop value can also be be set between -30 dBm and +0 dBm and may be smaller than the start value.

The difference between the start and stop values may not exceed 10 dB.

This softkey is only available if the (internal) Tracking Generator option (B9) is installed.

Remote command:

```
SOURce<n>: POWer: MODE on page 715
```

Power Sweep Start ← Power Sweep

Defines the start power of the power sweep.

The start power can be set between -30 dBm and +0 dBm. If the start power is set above 7 GHz, it is automatically limited to 7 GHz.

The difference between the start and stop values may not exceed 10 dB.

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

This softkey is only available if the (internal) Tracking Generator option (B9) is installed. Remote command:

SOURce<n>: POWer: STARt on page 716

Power Sweep Stop ← Power Sweep

Defines the stop power of the power sweep.

The stop power can be set between -30 dBm and +0 dBm. It can be smaller than the start value. If the stop power is set above 7 GHz, it is automatically limited to 7 GHz.

The difference between the start and stop values may not exceed 10 dB.

This softkey is only available if the (internal) Tracking Generator option (B9) is installed.

Remote command:

SOURce<n>: POWer: STOP on page 716

Source Config

Opens the "Tracking Generator Configuration" dialog, see chapter 3.6.3, "Configuring Tracking Generators", on page 345.

3.6.2 Connecting External Tracking Generators

The external tracking generator is controlled either via a LAN connection or via the – optional – second GPIB interface of the R&S FSV (= IEC2, supplied with the option).

Using GPIB, with some Rohde & Schwarz generators, additionally the TTL synchronization interface included in the AUX interface of the R&S FSV can be used.

Using the TTL interface allows for considerably higher measurement rates than pure GPIB control, because the frequency stepping of the R&S FSV is directly coupled with the frequency stepping of the generator.

Therefore, the frequency sweep differs according to the capabilities of the employed generator:

- For generators without a TTL interface, the generator frequency is set for each frequency point via GPIB first, then the setting procedure has to be completed before recording of measured values is possible.
- For generators with a TTL interface, a list of the frequencies to be set is entered into
 the generator before the beginning of the first sweep. Then the sweep is started and
 the next frequency point is selected using the TTL handshake line TRIGGER.
 Recording measured values is only enabled when the generator signals the end of
 the setting procedure via the BLANK signal. This method is considerably faster than
 pure GPIB control.

The "Tracking Generator Configuration" dialog provides a list of the supported generators with the frequency and level range, as well as the capabilities used. The interface settings are defined using the "Source Config" on page 342 softkey. For details see chapter 3.6.3.2, "External Tracking Generator", on page 348.

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

In order to use the functions of the external tracking generator, an appropriate generator must be connected and configured correctly. If no external generator is selected, if the GPIB or TCP/IP address is not correct, or the generator is not ready for operation, an error message is displayed ("Ext. Generator GPIB Handshake Error!" or "Ext. Generator TCPIP Handshake Error!".

figure 3-26 illustrates the TTL connection using an SMU generator, for example.

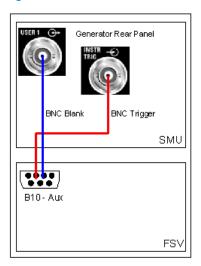


Fig. 3-26: TTL connection for an SMU generator

In order to enhance measurement accuracy, a common reference frequency should be used for both the R&S FSV and the generator. If no independent 10 MHz reference frequency is available, it is recommended that you connect the reference output of the generator with the reference input of the R&S FSV and that you enable usage of the external reference on the R&S FSV via "SETUP" > "Reference EXT".

3.6.2.1 Overview of Generators Supported by the R&S FSV

The R&S SMA and R&S SMU require the following firmware versions:

R&S SMA: V2.10.x or higher R&S SMU: V1.10 or higher

Generator	Interface Type	Generator Min Freq	Generator Max Freq	Generator Min Power	Generator Max Power
				dBm	dBm
SMA01A	TTL	9 kHz	3.0 GHz	-145	+30
SMBV100A3	TTL	9 kHz	3.2 GHz	-145	+30
SMBV100A6	TTL	9 kHz	6.0 GHz	-145	+30
SMC100A1	TTL	9 kHz	1.1 GHz	-120	+30

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

Generator	Interface Type	Generator Min Freq	Generator Max Freq	Generator Min Power	Generator Max Power
				dBm	dBm
SMC100A3	TTL	9 kHz	3.2 GHz	-145	+30
SME02	TTL	5 kHz	1.5 GHz	-144	+16
SME03	TTL	5 kHz	3.0 GHz	-144	+16
SME06	TTL	5 kHz	6.0 GHz	-144	+16
SMG	GPIB	100 kHz	1.0 GHz	-137	+13
SMGL	GPIB	9 kHz	1.0 GHz	-118	+30
SMGU	GPIB	100 kHz	2.16 GHz	-140	+13
SMH	GPIB	100 kHz	2.0 GHz	-140	+13
SMHU	GPIB	100 kHz	4.32 GHz	-140	+13
SMIQ02B	TTL	300 kHz	2.2 GHz	-144	+13
SMIQ02E	GPIB	300 kHz	2.2 GHz	-144	+13
SMIQ03B	TTL	300 kHz	3.3 GHz	-144	+13
SMIQ03E	GPIB	300 kHz	3.3 GHz	-144	+13
SMIQ04B	TTL	300 kHz	4.4 GHz	-144	+10
SMIQ06B	TTL	300 kHz	6.4 GHz	-144	+10
SML01	GPIB	9 kHz	1.1 GHz	-140	+13
SML02	GPIB	9 kHz	2.2 GHz	-140	+13
SML03	GPIB	9 kHz	3.3 GHz	-140	+13
SMR20	TTL	1 GHz	20 GHz	-130 ²⁾	+11 ²⁾
SMR20B11 ¹⁾	TTL	10 MHz	20 GHz	-130 ²⁾	+13 2)
SMR27	TTL	1 GHz	27 GHz	-130 ²⁾	+11 2)
SMR27B11 ¹⁾	TTL	10 MHz	27 GHz	-130 ²⁾	+12 2)
SMR30	TTL	1 GHz	30 GHz	-130 ²⁾	+11 2)
SMR30B11 ¹⁾	TTL	10 MHz	30 GHz	-130 ²⁾	+12 2)
SMR40	TTL	1 GHz	40 GHz	-130 ²⁾	+9 2)
SMR40B11 1)	TTL	10 MHz	40 GHz	-130 ²⁾	+12 2)
SMR50	TTL	1 GHz	50 GHz	-130 ²⁾	+9 2)
SMR50B11 ¹⁾	TTL	10 MHz	50 GHz	-130 ²⁾	+12 2)
SMR60	TTL	1 GHz	60 GHz	-130 ²⁾	+9 2)
SMR60B11 ¹⁾	TTL	10 MHz	60 GHz	-130 ²⁾	+12 2)
SMP02	TTL	10 MHz	20 GHz	-130 ³⁾	+17 3)
SMP03	TTL	10 MHz	27 GHz	-130 ³⁾	+13 ³⁾

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

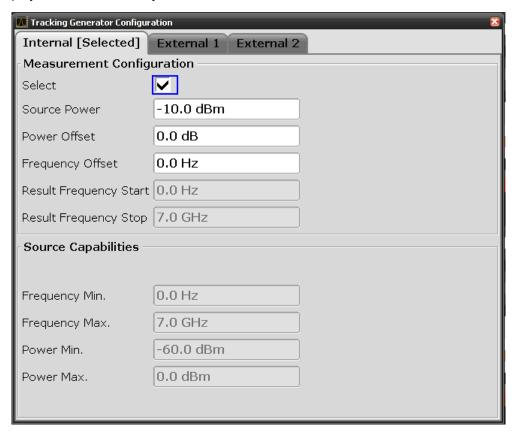
Generator	Interface Type	Generator Min Freq	Generator Max Freq	Generator Min Power dBm	Generator Max Power dBm
SMP04	TTL	10 MHz	40 GHz	-130 ³⁾	+12 3)
SMP22	TTL	10 MHz	20 GHz	-130 ³⁾	+20 3)
SMT02	GPIB	5.0 kHz	1.5 GHz	-144	+13
SMT03	GPIB	5.0 kHz	3.0 GHz	-144	+13
SMT06	GPIB	5.0 kHz	6.0 GHz	-144	+13
SMV03	GPIB	9 kHz	3.3 GHz	-140	+13
SMU200A	TTL	100 kHz	2.2 GHz	-145	+13
SMU02B31	TTL	100 kHz	2.2 GHz	-145	+19
SMU03	TTL	100 kHz	3 GHz	-145	+13
SMU03B31	TTL	100 kHz	3 GHz	-145	+19
SMU04	TTL	100 kHz	4 GHz	-145	+13
SMU04B31	TTL	100 kHz	4 GHz	-145	+19
SMU06	TTL	100 kHz	6 GHz	-145	+13
SMU06B31	TTL	100 kHz	6 GHz	-145	+19
SMX	GPIB	100 kHz	1.0 GHz	-137	+13
SMY01	GPIB	9 kHz	1.04 GHz	-140	+13
SMY02	GPIB	9 kHz	2.08 GHz	-140	+13
HP8340A	GPIB	10 MHz	26.5 GHz	-110	10
HP8648	GPIB	9 kHz	4 GHz	-136	10
HP ESG-A Series 1000A, 2000A, 3000A, 4000A	GPIB	250 kHz	4 GHz	-136	20
HP ESG-D SER- IES E4432B	GPIB	250 kHz	3 GHz	-136	+10

- 1) Requires the option SMR-B11 to be fitted.
- 2) Maximum/minimum power depends on presence of Option SMR-B15/-B17 and set frequency range. For more details see SMR data sheet.
- 3) Maximum/minimum power depends on presence of Option SMP-B15/-B17 and set frequency range. For more details see SMP data sheet.

3.6.3 Configuring Tracking Generators

The "Tracking Generator Configuration" dialog box is opened via the "Source Config" softkey in the "Tracking Generator" menu.

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)


This dialox box allows you to define measurement settings, as well as connection settings for external generators (option B10 only). Depending on which options are installed, the corresponding tabs for internal or external generators, or both, are displayed.

- chapter 3.6.3.1, "Internal Tracking Generator", on page 346
- chapter 3.6.3.2, "External Tracking Generator", on page 348

3.6.3.1 Internal Tracking Generator

The internal tracking generator is configured in the "Internal" tab of the "tracking Generator Configuration" dialog box.

In the top half of the dialog box, the measurement configurations can be defined. In the lower half of the dialog box, the capabilities of the internal tracking generator are displayed for reference only.

The configuration dialog box contains the following fields:

Select

Selects the internal tracking generator as the current tracking generator source. "Internal" is displayed as the source on the "Source RF" softkey. All tracking generator functions are performed with the currently selected source.

Note: Note that the generator is not automatically activated when it is selected. To activate the currently selected generator, click the "Source RF On" softkey.

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

Source Power

The tracking generator output power. The default output power is -20 dBm. The range is specified in the data sheet.

Remote command:

SOURce<n>:POWer[:LEVel][:IMMediate][:AMPLitude] on page 715

Power Offset

Constant level offset for the tracking generator. Values from -200 dB to +200 dB in 1 dB steps are allowed. The default setting is 0 dB. Offsets are indicated by the enhancement label "LVL" in the diagram header (see also chapter 3.6.5, "Displayed Information and Errors", on page 360).

With this offset, attenuators or amplifiers at the output connector of the tracking generator can be taken into account for the displayed output power values on screen or during data entry, for example. Positive offsets apply to an amplifier and negative offsets to an attenuator subsequent to the tracking generator.

Remote command:

SOURce<n>:POWer[:LEVel][:IMMediate]:OFFSet on page 715

Frequency Offset

Constant frequency offset between the output signal of the tracking generator and the input frequency of the R&S FSV. Possible offsets are in a range of ±1 GHz in 0.1 Hz steps.

The default setting is 0 Hz. Offsets <> 0 Hz are marked with the enhancement label "FRQ" in the diagram header (see also chapter 3.6.5, "Displayed Information and Errors", on page 360).

If a positive frequency offset is entered, the tracking generator generates an output signal above the receive frequency of the R&S FSV. In case of a negative frequency offset it generates a signal below the receive frequency of the R&S FSV. The output frequency of the tracking generator is calculated as follows:

Tracking generator frequency = receive frequency + frequency offset.

Remote command:

SOURce<n>:FREQuency:OFFSet on page 714

Result Frequency Start

For reference only: The start frequency for the generator, calculated from the configured generator frequency and the start value defined for the analyzer.

Result Frequency Stop

For reference only: The stop frequency for the generator, calculated from the configured generator frequency and the stop value defined for the analyzer.

Frequency Min.

For reference only: Lower frequency limit for the generator.

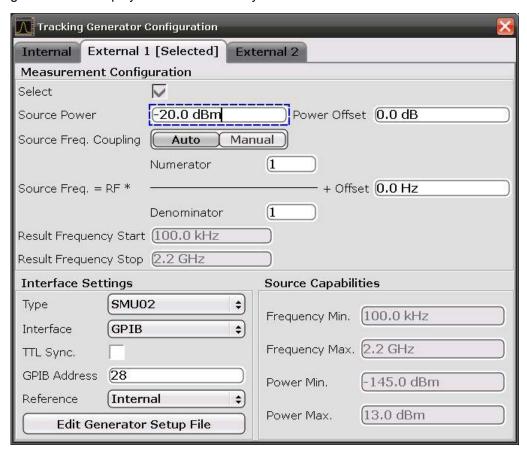
Frequency Max.

For reference only: Upper frequency limit for the generator.

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

Power Min.

For reference only: Lower power limit for the generator.


Power Max.

For reference only: Upper power limit for the generator.

3.6.3.2 External Tracking Generator

The external tracking generators are configured in the "External" tabs of the "Tracking Generator Configuration" dialog box.

In the top section of the dialog box, the measurement configurations can be defined. In the middle section, interface settings for the connection to the external generator are defined. In the lower section of the dialog box, the capabilities of the external tracking generator are displayed for reference only.

The configuration dialog box contains the following fields:

Select

Selects the specified external tracking generator as the current tracking generator source. "External 1" or "External 2" is displayed as the source on the "Source RF" softkey. All tracking generator functions are performed with the currently selected source.

Note: Note that the generator is not automatically activated when it is selected. To activate the currently selected generator, click the "Source RF On" softkey.

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

Source Frequency Coupling

Enables or disables frequency coupling between the analyzer and the generator.

"Auto" Default setting: the frequencies are coupled (see "Generator Frequency

(Numerator/Denominator/Offset)" on page 349).

"Manual" The generator uses a fixed frequency, defined in the (Fixed) Generator

Frequency field which is displayed when you select "Manual" coupling.

Remote command:

SOURce<n>:EXTernal<m>:FREQuency:COUPling[:STATe] on page 709

(Fixed) Generator Frequency

Defines the fixed frequency to be used by the generator.

Remote command:

SOURce<n>:EXTernal<m>:FREQuency on page 709

Source Power

The output power of the external tracking generator. The default output power is -20 dBm. The range is specified in the data sheet.

Remote command:

SOURce<n>:EXTernal<generator>:POWer[:LEVel] on page 712

Power Offset

Constant level offset for the tracking generator. Values from -200 dB to +200 dB in 1 dB steps are allowed. The default setting is 0 dB. Offsets are indicated by the enhancement label "LVL" in the diagram header (see also chapter 3.6.5, "Displayed Information and Errors", on page 360).

With this offset, attenuators or amplifiers at the output connector of the tracking generator can be taken into account for the displayed output power values on screen or during data entry, for example. Positive offsets apply to an amplifier and negative offsets to an attenuator subsequent to the tracking generator.

Remote command:

SOURce<n>:POWer[:LEVel][:IMMediate]:OFFSet on page 715

Generator Frequency (Numerator/Denominator/Offset)

The frequency used by the generator may differ from the input from the analyzer. The RF frequency may be multiplied by a specified factor, or a frequency offset can be added, or both.

Note: The input for the generator frequency is not validated, i.e. you can enter any values. However, if the allowed frequency ranges of the generator are exceeded, an error message is displayed on the analyzer screen and the values for Start and Stop are corrected to comply with the range limits.

The value range for the offset depends on the selected generator. The default setting is 0 Hz. Offsets <> 0 Hz are marked with the enhancement label "FRQ" in the diagram header (see also chapter 3.6.5, "Displayed Information and Errors", on page 360).

If a positive frequency offset is entered, the tracking generator generates an output signal above the receive frequency of the analyzer. For a negative frequency offset it generates a signal below the receive frequency of the analyzer.

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

The output frequency of the generator is calculated as follows:

$$F_{Generator} = \left| F_{Analyzer} * \frac{Numerator}{Deno\min ator} + F_{Open} \right|$$

Fig. 3-27: Output frequency of the generator

Note: Make sure that the frequencies resulting from the start and stop frequency of the R&S FSV do not exceed the allowed generator range:

- If the start frequency lies below F MIN, the generator is only switched on when F MIN is reached.
- If the stop frequency lies above F MAX, the generator is switched off. When the generator is subsequently switched on using the "Source RF Internal (On/ Off)" on page 338 softkey, the stop frequency is limited to F MAX.
- If the stop frequency lies below F MIN, the generator is switched off and an error message is displayed.

Remote command:

```
SOURce<n>:EXTernal<generator>:FREQuency[:FACTor]:NUMerator
on page 710
```

 ${\tt SOURce < n > : EXTernal < generator > : FREQuency[:FACTor]: DENominator} \\ on page 710$

SOURce<n>:EXTernal<generator>:FREQuency:OFFSet<m> on page 711

Reverse sweep

The "Offset" setting can be used to sweep in the reverse direction. You can do this by setting a "negative" offset in the tracking generator configuration.

Example for reverse sweep:

F_{AnalyzerStart}= 100 MHz

 $F_{AnalyzerStop} = 200 MHz$

 $F_{Offset} = -300 MHz$

Numerator = Denominator = 1

→F_{GeneratorStart} = 200 MHz

→F_{GeneratorStop} = 100 MHz

If the offset is adjusted so that the sweep of the generator crosses the minimum generator frequency, a message is displayed in the status bar ("Reverse Sweep via min. Ext. Generator Frequency!").

Example for reverse sweep via minimum frequency:

F_{AnalyzerStart}= 100 MHz

 $F_{AnalyzerStop} = 200 MHz$

 $F_{Offset} = -150 MHz$

 $F_{min} = 20 MHz$

Numerator = Denominator = 1

→F_{GeneratorStart} = 50 MHz

→F_{GeneratorStop} = 50 MHz via Fmin

Result Frequency Start

For reference only: The start frequency for the generator, calculated from the configured generator frequency and the start value defined for the analyzer.

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

Result Frequency Stop

For reference only: The stop frequency for the generator, calculated from the configured generator frequency and the stop value defined for the analyzer.

Type

Generator type. See also chapter 3.6.2.1, "Overview of Generators Supported by the R&S FSV", on page 343.

Remote command:

SYSTem: COMMunicate: RDEVice: GENerator < generator >: TYPE on page 729

Interface

Type of interface connection used. The following interfaces are currently supported:

- TCP/IP
- GPIB

For details on interfaces see the "Interfaces and Protocols" section in the R&S FSV Quick Start Guide.

Remote command:

SYSTem:COMMunicate:RDEVice:GENerator<generator>:INTerface
on page 728

TTL Synchronization

If available for the specified generator type, this option activates TTL synchronization for GPIB connections.

See also chapter 3.6.2, "Connecting External Tracking Generators", on page 342.

For Noise Figure measurements (K30) this setting currently has no effect.

Remote command:

SYSTem:COMMunicate:RDEVice:GENerator<generator>:LINK on page 728

Address

For LAN connections: TCP/IP address. For GPIB connections: GPIB address.

For more information on configuring interfaces see the "Interfaces and Protocols" section in the R&S FSV Quick Start Guide.

Remote command:

SYSTem:COMMunicate:RDEVice:GENerator<generator>:LINK on page 728

Reference

Selects internal or external reference for the generator (default: internal).

Note: Using the TTL interface allows for considerably higher measurement rates than pure GPIB control, because the frequency stepping of the R&S FSV is directly coupled with the frequency stepping of the generator.

Remote command:

SOURce<n>:EXTernal<generator>:ROSCillator[:SOURce] on page 713

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

Edit Generator Setup File

Displays the setup file for the currently selected generator (see Type field) in read-only mode in an editor.

Adding new generator types

Although the existing setup files are displayed in read-only mode in the editor, they can be saved under a different name (using "File > SaveAs"). To add a new generator type to the selection list in the Type field, edit the setup file for an existing generator as required, then save the file with the extension ".gen". After you close the configuration dialog and re-open it, a new generator is available in the Type list with the name of the saved setup file.

Be careful, however, to adhere to the required syntax and commands. Errors will only be detected and displayed when you try to use the new generator (see also chapter 3.6.5, "Displayed Information and Errors", on page 360).

Frequency Min.

For reference only: Lower frequency limit for the generator.

Frequency Max.

For reference only: Upper frequency limit for the generator.

Power Min.

For reference only: Lower power limit for the generator.

Power Max.

For reference only: Upper power limit for the generator.

3.6.4 Tracking Generator Functions

The following functions are available if the R&S FSV Tracking Generator (R&S FSV-B9) or External Tracking Generator (R&S FSV-B10) options are installed.

The following functions are available if the R&S FSV Tracking Generator (R&S FSV-B9) is installed.

- chapter 3.6.4.1, "Calibration mechanism", on page 352
- chapter 3.6.4.2, "Calibrating for transmission and reflection measurement", on page 353
- chapter 3.6.4.3, "Transmission measurement", on page 354
- chapter 3.6.4.4, "Reflection measurement", on page 354
- chapter 3.6.4.5, "Normalization", on page 355
- chapter 3.6.4.6, "Modulation (internal Tracking Generator only)", on page 358

3.6.4.1 Calibration mechanism

Calibration means calculating the difference between the currently measured power and a reference curve, independent of the selected type of measurement (transmission/

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

reflection). The hardware settings used for measuring the reference curve are included in the reference dataset.

Even with normalization switched on, the instrument settings can be changed in a wide area without stopping the normalization. This reduces the necessity to carry out a new normalization to a minimum.

Therefore, the reference dataset (trace with n measured values, where n is the number of Sweep Points) is stored internally as a table of n points (frequency/level).

Differences in level settings between the reference curve and the current instrument settings are taken into account automatically. If the span is reduced, a linear interpolation of the intermediate values is applied. If the span increases, the values at the left or right border of the reference dataset are extrapolated to the current start or stop frequency, i.e. the reference dataset is extended by constant values.

An enhancement label is used to mark the different levels of measurement accuracy. This enhancement label is displayed at the right diagram border if normalization is switched on and a deviation from the reference setting occurs. Three accuracy levels are defined:

Table 3-11: Measurement accuracy levels

Accuracy	Enhancement label	Reason/Limitation	
high	NOR	No difference between reference setting and measurement	
medium	APX (approximation)	Change of the following settings:	
_	Aborted normalization	More than 500 extrapolated points within the current sweep limits (in case of span doubling)	

At a reference level of -10 dBm and at a tracking generator output level of the same value, the R&S FSV operates without overrange reserve. That means the R&S FSV is in danger of being overloaded if a signal is applied whose amplitude is higher than the reference line. In this case, either the message "OVLD" for overload or "IFOVL" for exceeded display range (clipping of the trace at the upper diagram border = overrange) is displayed in the status line.

Overloading can be avoided as follows:

- Reducing the output level of the tracking generator ("Source Config" on page 342 softkey in the Tracking Generator menu)
- Increasing the reference level (Ref Level softkey in the "Amplitude" menu)

3.6.4.2 Calibrating for transmission and reflection measurement

Prerequisite: The instrument is in tracking generator measurement mode.

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

- 1. To enter the generator output level, press the "Source Power" on page 338 softkey.
- 2. To enter a constant level offset for the tracking generator, press the "Source Config" on page 342 softkey and enter a "Power Offset".
- 3. To open the submenu for calibration, press the "Source Cal" on page 338 softkey.
- To record a reference trace for transmission measurement, press the "Calibrate
 Transmission" on page 338 softkey.
 The recording of the reference trace and the completion of the calibration sweep are
- To record a reference trace for reflection measurement, press the "Calibrate Reflection Short" on page 338 or "Calibrate Reflection Open" on page 339 softkey.
 The recording of the reference trace and the completion of the calibration sweep are
- 6. To switch on the normalization, press the "Normalize" on page 339 softkey.
- To display the reference line, press the "Reference Value Position" on page 339 softkey.
- 8. To enter a value to shift the reference line, press the "Reference Value" on page 339 softkey.
- 9. To restore the settings used for source calibration, press the "Recall" on page 340 softkey.

3.6.4.3 Transmission measurement

indicated by message bo XE s.

indicated by message bo XE s.

This measurement yields the transmission characteristics of a two-port network. The internal or external tracking generator serves as a signal source. It is connected to the input connector of the DUT. The input of the R&S FSV is fed from the output of the DUT. A calibration can be carried out to compensate for the effects of the test setup (e.g. frequency response of connecting cables).

Fig. 3-28: Test setup for transmission measurement

3.6.4.4 Reflection measurement

Scalar reflection measurements can be carried out by means of a reflection-coefficient measurement bridge.

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

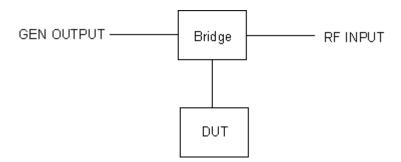


Fig. 3-29: Test setup for reflection measurement

3.6.4.5 Normalization

The "NORMALIZE" softkey switches normalization on or off. The softkey is only available if the memory contains a correction trace.

You can shift the relative reference point within the grid using the "Reference Value Position" on page 339 softkey. Thus, the trace can be shifted from the top grid margin to the middle of the grid:

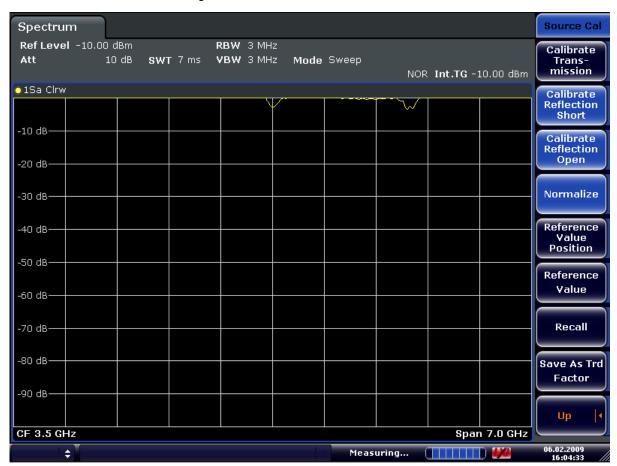


Fig. 3-30: Normalized display

CORR ON, see [SENSe:]CORRection[:STATe] on page 643

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

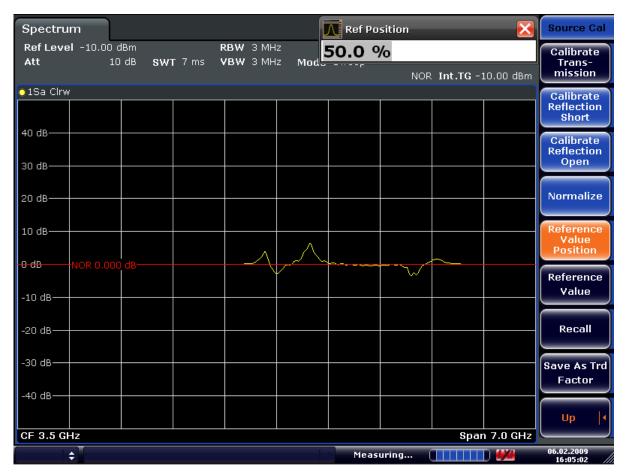


Fig. 3-31: Normalized measurement, shifted with Reference Value Position= 50%

 $\label{localize} $$ DISP:WIND:TRAC:Y:RPOS $$ 10PCT, $$ see $$ DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RPOSition $$ on page 605$

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

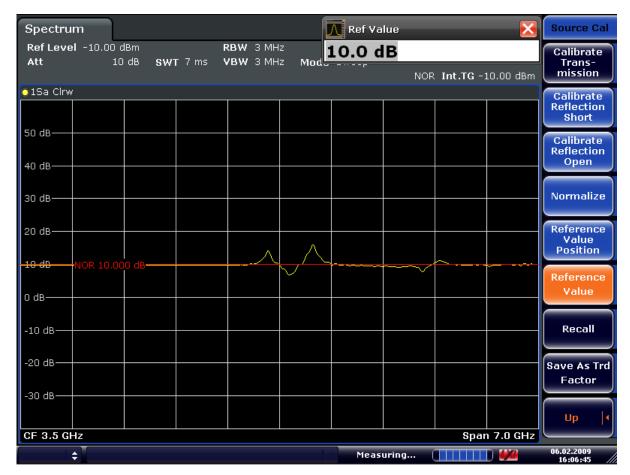


Fig. 3-32: Measurement with Reference Value: +10dB and Reference Value Position = 50%

After the reference line has been shifted by entering +10 dB as the "Reference Value" on page 339, deviations from the nominal value can be displayed with high resolution (e.g. 2 dB/Div.). The absolute measured values are still displayed; in the above example, 2 dB below nominal value (reference line) = 8 dB attenuation.

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

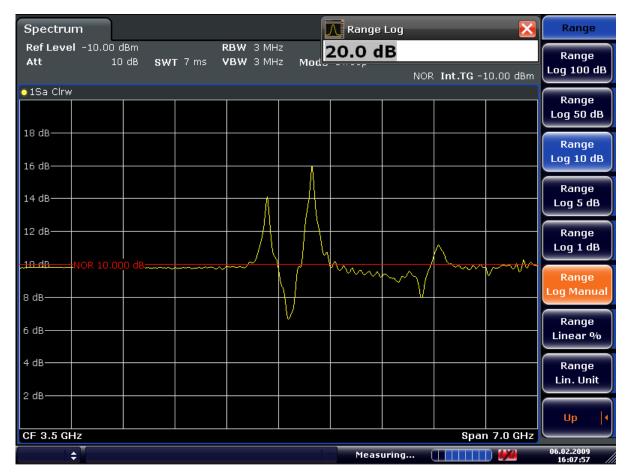


Fig. 3-33: Measurement of a 10-dB attenuator pad with 2dB/Div

DISP:WIND:TRAC:Y:RVAL +10dB, see DISPlay[:WINDow<n>]:TRACe<t>:Y[:
SCALe]:RVALue on page 605

3.6.4.6 Modulation (internal Tracking Generator only)

The time characteristics of the tracking generator output signal can be influenced by means of external signals (input voltage range -1 V to +1 V).

Two BNC connectors at the rear panel are available as signal inputs. Their function changes depending on the selected modulation:

- TG IN I/AMand
- TG IN Q/FM

The modulation modes can be combined with each other and with the frequency offset function up to a certain degree. The following table shows which modulation modes are possible at the same time and which ones can be combined with the frequency offset function.

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

Table 3-12: Simultaneous modes of modulation (tracking generator)

Modulation	Frequency offset	EXT AM	EXT FM	EXT I/Q
Frequency offset		•	•	•
EXT AM	•		•	
EXT FM	•	•		
EXT I/Q	•			

• = can be combined

External AM

The "External AM" on page 340 softkey activates an AM modulation of the tracking generator output signal.

The modulation signal is applied to the TG IN I/AM connector. An input voltage of 1 V corresponds to 100% amplitude modulation.

Switching on an external AM disables the active I/Q modulation.

External FM

The "External FM" on page 340 softkey activates the FM modulation of the tracking generator output signal.

The modulation frequency range is 1 kHz to 100 kHz, the deviation can be set in 1-decade steps in the range of 100 Hz to 10 MHz at an input voltage of 1 V. The phase deviation h should not exceed the value 100.

Phase deviation h = deviation/modulation frequency

The modulation signal is applied to the TG IN Q/FM connector.

Switching on an external FM disables the active I/Q modulation.

External IQ

The "External I/Q" on page 341 softkey activates the external I/Q modulation of the tracking generator.

The signals for modulation are applied to the two input connectors TG IN I and TG IN Q at the rear panel of the unit. The input voltage range is ± 1 V into 50 Ω .

Switching on an external I/Q modulation disables the active external AM or FM.

Functional description of the quadrature modulator:

Instrument Functions – Tracking Generator (Options R&S FSV-B9/ R&S FSV-B10)

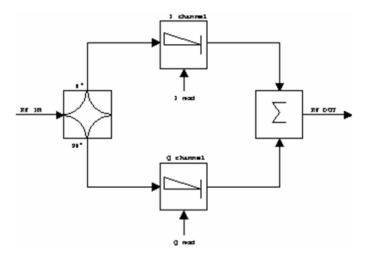


Fig. 3-34: I/Q modulation

I/Q modulation is performed by means of the built-in quadrature modulator. The RF signal is divided into two orthogonal I and Q components (in phase and quadrature phase). Amplitude and phase are controlled in each path by the I and Q modulation signal. By adding the two components an RF output signal is generated that can be controlled in amplitude and phase.

Remote command:

SOURce<n>: DM: STATe on page 708

3.6.5 Displayed Information and Errors

Diagram header

In Tracking Generator measurement mode, some additional information is displayed in the diagram header.

Label	Description			
INT TG: <source power=""/>	Internal tracking generator active			
INT TG: <start power=""> <stop power=""></stop></start>	Internal tracking generator with power sweep active			
EXT TG <1 2>: <source power=""/>	External tracking generator (1 or 2) active			
LVL	Power Offset (see chapter 3.6.3, "Configuring Tracking Generators", on page 345			
FRQ	Frequency Offset (see chapter 3.6.3, "Configuring Tracking Generators", on page 345			
Measurement accuracy levels				
NOR	Normalization on;			
	No difference between reference setting and measurement			

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

Label	Description	
APX (approximation)	Normalization on; Deviation from the reference setting occurs	
-	Aborted normalization	

For details on measurement accuracy levels, see chapter 3.6.4.5, "Normalization", on page 355.

Error and status messages

Message	Description
"Ext. Generator GPIB Handshake Error!" / "Ext. Generator TCPIP Handshake Error!" / "Ext. Generator TTL Handshake Error!"	Connection to the generator is not possible, e.g. due to a cable damage or loose connection or wrong address.
"Ext. Generator Limits Exceeded!"	The allowed frequency or power ranges for the generator were exceeded.
"Reverse Sweep via min. Ext. Generator Frequency!"	Reverse sweep is performed; frequencies are reduced to the minimum frequency, then increased again; see figure 3-27
"Ext. Generator File Syntax Error!"	Syntax error in the generator setup file (see "Edit Generator Setup File" on page 352
"Ext. Generator Command Error!"	Missing or wrong command in the generator setup file (see "Edit Generator Setup File" on page 352
"Ext. Generator Visa Error!!"	Error with Visa driver provided with installation (very unlikely)

3.7 Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

In the standard configuration, the R&S FSV provides an internal I/Q memory in order to capture and evaluate I/Q data, which can be output via GPIB or the LAN interface. If the R&S FSV R&S Digital I/Q Interface option (R&S FSV-B17) is installed, an online digital I/Q data interface is provided on the rear panel of the instrument for input and output.

This option is not available for R&S FSV 40 model 1307.9002K39.

Using the R&S Digital I/Q Interface for input, the digital baseband signal from the digital interface is used for measurement, rather than the digitalized IF signal. If the digital output is enabled, the I/Q data is continuously output at the connector at the rear of the instrument.

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

Alternatively, the I/Q data can be exported to a file (see chapter 3.1.2.3, "Importing and Exporting I/Q Data", on page 76).

In the base unit, the input and output I/Q data can be evaluated using the I/Q Analyzer, for example (see chapter 3.5, "Instrument Functions - I/Q Analyzer", on page 310). Other applications (e.g. VSA, R&S FSV-K70) also support digital input, see the descriptions of the individual firmware options for details.

The digital input and output can be enabled in the base unit or in one of the applications (where available). Alternatively, I/Q data can also be captured via remote control. The required commands are contained in the following subsystems:

- chapter 4.2.3.9, "INPut Subsystem", on page 612
- "TRACe:IQ Subsystem" on page 736
- chapter 4.2.3.12, "OUTPut Subsystem", on page 625

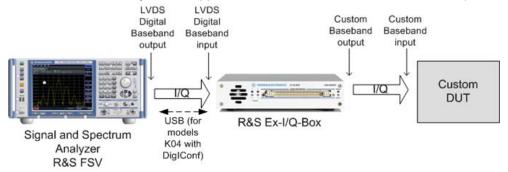
Information on the STATus:QUEStionable:DIQ register can be found in "STATus:QUEStionable:DIQ Register" on page 456.

3.7.1	Typical Applications for the R&S Digital I/Q Interface	362
3.7.2	Digital Input	364
3.7.3	Digital Output	370
3.7.4	Softkeys and Parameters of the R&S Digital I/Q Interface	371
3.7.5	Interface Status Information	375
3.7.6	Description of the LVDS Connector	378

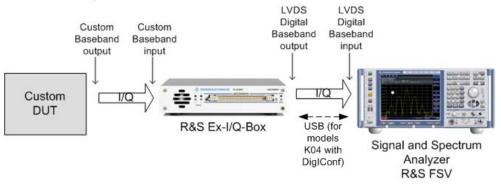
3.7.1 Typical Applications for the R&S Digital I/Q Interface


The following typical applications use the R&S Digital I/Q Interface:

Capturing and evaluating digital I/Q data in the I/Q Analyzer mode of the R&S FSV base unit or other (optional) applications, e.g. R&S FSV-K70 (VSA). See chapter 3.5, "Instrument Functions - I/Q Analyzer", on page 310 or the description of the individual firmware options.



 Output of digital I/Q data to a selected receiver, e.g. to implement fading (simulating mobile radio communication participants) using a generator.


Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

Output of digital I/Q data to a device with a user-specific interface using an R&S EX-IQ-BOX (see the "R&S®EX-IQ-BOX - External Signal Interface Module Manual". The EX-IQ-Box functionality is not supported for R&S FSV models 1321.3008Kxx.)

 Capturing and evaluating digital I/Q data from a device with a user-specific interface using an R&S EX-IQ-BOX (see the "R&S®EX-IQ-BOX - External Signal Interface Module Manual". The EX-IQ-Box functionality is not supported for R&S FSV models 1321.3008Kxx.).

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

R&S EX-IQ-BOX and R&S DiglConf

The R&S EX-IQ-BOX is a configurable interface module that converts signal properties and the transmission protocol of the R&S instruments into user-defined or standardized signal formats and vice versa.

The EX-IQ-Box functionality is **not supported** for R&S FSV models **1321.3008K**xx.

The latest R&S EX-IQ-BOX (model 1409.5505K04) provides the configuration software R&S DiglConf which can be installed directly on the R&S FSV. The software R&S DiglConf (Digital Interface Configurator for the R&S EX-IQ-BOX, version 2.10 or higher) controls the protocol, data and clock settings of the R&S EX-IQ-BOX independently from the connected R&S instrument. Besides basic functions of the user-defined protocols, this software utility supports the settings for standardized protocols, as e.g. CPRI, OBSAI or DigRF. Note that R&S DiglConf requires a USB connection (not LAN!) to the R&S FSV in addition to the R&S Digital I/Q Interface connection.

Remote control is possible and very simple. Remote commands for the R&S DiglConf software always begin with SOURCE: EBOX. Such commands are passed on from the R&S FSV to the R&S EX-IQ-BOX automatically via the USB connection.

A setup file, included in delivery, consists of an installation wizard, the executable program and all necessary program and data files. The latest software versions can be downloaded free of charge from the R&S website: www.rohde-schwarz.com/en/products/test_and_measurement/signal_generation/EX-IQ-Box. Simply execute the Setup file and follow the instructions in the installation wizard.

For details on installation and operation of the R&S DiglConf software, see the "R&S®EX-IQ-BOX Digital Interface Module R&S®DiglConf Software Operating Manual".

3.7.2 Digital Input

Digital input is enabled by selecting the "Digital Baseband (I/Q)" input path in the "Signal Source" dialog box (available either in the "Measurement" menu of the "I/Q Analyzer" mode, or in the "Input/Output" menu of the base unit and some applications, see "Signal Source" on page 299).

The digital input and output cannot be used simultaneously.

Signal Source

The device that provides digital input must be connected to the R&S Digital I/Q Interface at the rear of the R&S FSV. The signal source is then configured in the "Signal Source" dialog box.

In the "Signal Source" dialog box the detected input device is indicated. For "Digital Baseband (I/Q)" sources, you can configure the basic connection settings, e.g. the input sample rate. Each time the device is disconnected or the configuration is changed, a connection protocol is executed, and before the first measurement, a PRBS descewing test is performed. Information on the connection status and the results of the connection

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

tests are provided in the "Digital IQ Info" dialog box, see chapter 3.7.5, "Interface Status Information", on page 375.

Measurement Settings

The "Full Scale Level" defines the level that should correspond to an I/Q sample with the magnitude "1" and can be defined either in dBm or Volt (see "Full Scale Level" on page 300). When converting the measured power into dBm, an impedance of 50 Ω is assumed.

Processing digital input

The digital input signal is brought to the desired sample rate using a downsampling filter and fractional resampling. The word length of the data is 18 bits fixed point for each I and Q. The resulting data can be processed by the selected application (see chapter 3.7.1, "Typical Applications for the R&S Digital I/Q Interface", on page 362). As illustrated in figure 3-35, the sample rate is dependant on the input sample rate.

Data aquisition hardware

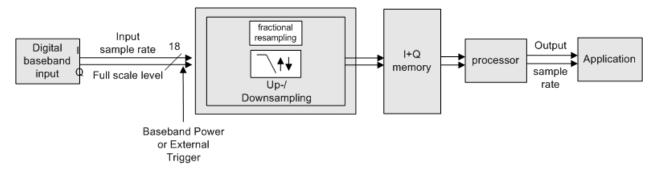


Fig. 3-35: Signal path using digital input

Sample rates, bandwidths and other limitations

The calculation of the usable I/Q bandwidth for active digital input is described in table 3-13.

Abbreviations

The following abbreviations are used in this section:

- SR: sample rate: the sample rate that is defined by the user (e.g. in the "Data Aquisition" dialog box in the "I/Q Analyzer" mode, see "Sample Rate" on page 316)
- ISR: Input sample rate: the sample rate of the data provided by the connected device to the digital input
- Ms: 1 Ms = 1024 * 1024 samples

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

Table 3-13: Calculation of the usable I/Q bandwidth for active digital input

Precondition	Bandwith
$\frac{SR}{ISR} < 0.95$	0.8 * SR
$0.95 \le \frac{SR}{ISR}$	0.76 * ISR

Unfiltered I/Q data input

The values in table 3-13 apply for the default data processing using the decimation filter and resampler. If the filter is deactivated (see "No Filter" on page 316, the sample rate is identical to the input sample rate. In this case, the usable I/Q bandwidth is not restricted by the R&S FSV.

The following table describes the dependencies for digital in- and output:

Table 3-14: Dependencies for digital in- and output

Type of Limit	Precondition	Range / Value
Input sample rate (ISR)		100 Hz 10 GHz (*)
Minimum sample rate (SR)		100 Hz (*)
Maximum sample rate (SR)	Digital input active	45 MHz (without R&S FSV-B70) (*) 254 * ISR, max. 10 GHz (with R&S FSV-B70) (*)
	Digital output active	45 MHz (without R&S FSV-B70) 100 MHz (with R&S FSV-B70)

^(*) Note the relationship between the sample rate and the input sample rate, which may restrict the value ranges further:

ISR_{min}= SR/254

ISR_{max}= SR*2*1048576

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

Type of Limit	Precondition	Range / Value
Maximum number of samples		$ \frac{Min}{100Ms,100Ms} \bullet \frac{SR}{ISR} - group \ delay \ in \ samples $ Note: the internal filter settling time depends on the relation: $ \frac{SR}{ISR} $
		Some R&S FSV applications limit the maximum number of samples to reasonable values.
		In I/Q Analyzer mode (Eval mode, see TRACe <n>: IQ: EVAL on page 744), the maximum number of samples is restricted to:</n>
		$Min \left(10 Mio, 100 Ms \bullet \frac{SR}{ISR}\right) - group \ delay \ in \ samples$
Maximum number of I/Q pretrigger samples		-(MaxNoOfSamples-1) to + (MaxNoOfSamples-1)
(*) Note the relationship bet	tween the sample ra	te and the input sample rate, which may restrict the value ranges

ISR_{min}= SR/254

ISR_{max}= SR*2*1048576

Table 3-15: Typical values for the maximum number of samples depending on the SR/ISR relation

SR/ISR	Max number of samples
100	104857600
10	104857600
1	104857600
1/10	10485686
1/100	1048508

SlowIQ measurements

"SlowIQ" measurements are measurements where the sample rate exceeds the rate used to transfer valid samples. In the R&S FSV, the sample rate may exceed 100 MHz for "SlowIQ" measurements. This happens, for example, when an analog signal is sampled by external hardware, e.g. an oscilloscope, with a sample rate > 100 MHz, is stored there in a memory temporarily and then read from the memory and transmitted to the R&S FSV. In this case, make sure the source sample rate is defined corrrespondingly for the connected device (see "Input Sample Rate" on page 299).

Bandwidths

Depending on the sample rate, the following bandwidths are available:

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

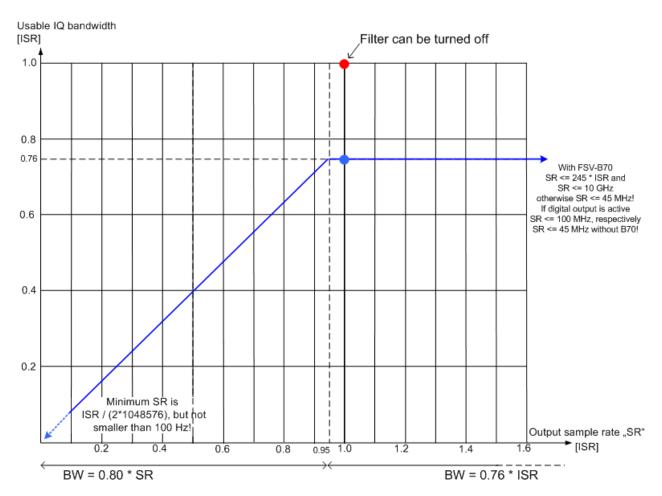


Fig. 3-36: Bandwidths depending on sample rate for active digital input

Table 3-16: Bandwidths depending on sample rate for active digital input (with B70)

Examplary digital input sample rates	Possible output sample rates and the corresponding IQ bandwidths			
	Linear increase from the minimum possible output sample rate up to break point		Constant IQ bandwidth from break point up to the maximum possible output sample rate	
	minimum	break point	break point	maximum
Minimum: ISR =100 Hz	Not allowed		SR = 100 Hz ¹⁾ BW = 0.76 * ISR = 76 Hz	SR = 254 * ISR = 25.64 kHz BW = 0.76 * ISR = 76 Hz
Example ISR = 30 MHz	SR = 100 Hz ¹⁾ BW = 0.8 * SR = 80 Hz	SR = 0.95*ISR = 28.5 MHz BW = 0.8 * SR = 22.8 MHz	SR = 0.95*ISR = 28.5 MHz BW = 0.76 * ISR = 22.8 MHz	SR = 254 * ISR = 7.62 GHz BW = 0.76 * ISR = 22.8 Hz
¹⁾ max(ISR/(2*10485 ²⁾ min(254*ISR, 10G)	,, ,			

²⁾ min(254*ISR, 10GHz)

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

Examplary digital input sample rates	Possible output sample rates and the corresponding IQ bandwidths			
	Linear increase from the minimum possible output sample rate up to break point		Constant IQ bandwidth from break point up to the maximum possible output sample rate	
	minimum	break point	break point	maximum
Example ISR = 50 MHz	SR = 100 Hz ¹⁾ BW = 0.8 * SR = 80 Hz	SR = 0.95*ISR = 47.5 MHz BW = 0.8 * SR = 38 MHz	SR = 0.95*ISR = 47.5 MHz BW = 0.76 * ISR = 38 MHz	SR = 10 GHz ²⁾ BW = 0.76 * ISR = 38 MHz
Example ISR = 500 MHz	SR =ISR/ (2*1048576) = 239 Hz BW = 0.8 * SR = 191.2 Hz	SR = 0.95*ISR = 475 MHz BW = 0.8 * SR = 380 MHz	SR = 0.95*ISR = 475 MHz BW = 0.76 * ISR = 380 MHz	SR = 10 GHz ²⁾ BW = 0.76 * ISR = 380 MHz
Maximum: ISR = 10 GHz	SR =ISR/ (2*1048576) = 4.769 kHz BW = 0.8 * SR = 3.8152 kHz	SR = 0.95*ISR = 9.5 GHz BW = 0.8 * SR = 7.6 GHz	SR = 0.95*ISR = 9.5 GHz BW = 0.76 * ISR = 7.6 GHz	SR = 10 GHz ²⁾ BW = 0.76 * ISR = 7.6 GHz

¹⁾ max(ISR/(2*1048576), 100 Hz)

Table 3-17: Bandwidths depending on sample rate for active digital input (without B70)

Examplary digital	Possible output sample rates and the corresponding IQ bandwidths			
input sample rates	Linear increase from the minimum possible output sample rate up to break point		Constant IQ bandwidth from break point up to the maximum possible output sample rate	
	minimum	break point	break point	maximum
Minimum: ISR =100 Hz	Not allowed		SR = 100 Hz ¹⁾ BW = 0.76 * ISR = 76 Hz	SR = 254 * ISR = 25.64 kHz BW = 0.76 * ISR = 76 Hz
Example ISR = 30 MHz	SR = 100 Hz ¹⁾ BW = 0.8 * SR = 80 Hz	SR = 0.95*ISR = 28.5 MHz BW = 0.8 * SR = 22.8 MHz	SR = 0.95*ISR = 28.5 MHz BW = 0.76 * ISR = 22.8 MHz	SR = 45 MHz ²⁾ BW = 0.76 * ISR = 22.8 Hz
Example ISR = 50 MHz	SR = 100 Hz ¹⁾ BW = 0.8 * SR = 80 Hz	SR = 45 MHz ²⁾ BW = 0.8 * SR = 36 MHz	Not allowed	
¹⁾ max(ISR/(2*1048576), 100 Hz)				

²⁾ min(254*ISR, 45 MHz)

²⁾ min(254*ISR, 10GHz)

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

Examplary digital	Possible output sample rates and the corresponding IQ bandwidths			
input sample rates	Linear increase from the minimum possible output sample rate up to break point		Constant IQ bandwidth from break point up to the maximum possible output sample rate	
	minimum	break point	break point	maximum
Example ISR = 500 MHz	SR =ISR/ (2*1048576) = 239 Hz BW = 0.8 * SR = 191.2 Hz	SR = 45 MHz ²⁾ BW = 0.8 * SR = 36 MHz	Not allowed	
Maximum: ISR = 10 GHz	SR =ISR/ (2*1048576) = 4.769 kHz BW = 0.8 * SR = 3.8152 kHz	SR = 45 MHz ²⁾ BW = 0.8 * SR = 36 MHz	Not allowed	
1) max(ISR/(2*10485	76), 100 Hz)			

²⁾ min(254*ISR, 45 MHz)

Triggering

The following trigger modes are supported:

- External (see "External" on page 140)
- BB Power (see "IF Power/BB Power" on page 141)
- Time (see "Time" on page 142)

If external triggering is used, the external trigger must be applied via the connector on the rear panel of the instrument (as for analog input).

Gating

Gating is not supported for digital input.

3.7.3 Digital Output

Digital output is enabled in the I/Q Analyzer mode (see chapter 3.5, "Instrument Functions - I/Q Analyzer", on page 310).

The digital input and output cannot be used simultaneously.

Processing digital output

Digital output is processed almost identically to RF input in I/Q mode (see chapter 3.5.6, "Working with I/Q Data", on page 333). I/Q data is sampled blockwise, according to the defined sample rate, and stored in the I/Q memory. From the memory, the I/Q data is

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

processed in the I/Q Analyzer mode. Simultaneously, the data is written to the R&S Digital I/Q Interface continuously. Using this interface, the I/Q data can be processed in an external device as an alternative to internal processing in the R&S FSV.

The sample rate at the digital output corresponds to the user-defined sample rate (maximum 100 MHz, see "Sample Rate" on page 316). The current sample rate is displayed in the "Digital Output" dialog box (read-only) when the digital output is enabled (see "Digital Output" on page 301).

For digital output, the full scale level corresponds to the defined reference level (without the reference level offset and transducer; see also "Full Scale Level" on page 300 and "Reference Level" on page 315.

The data rate for digital output via the R&S Digital I/Q Interface is 100 MHz, i.e. any connected device must be capable of processing digital input at a data rate of 100 MHz.

Data aguisition hardware digital down conversion + continuous decimation analog IF A/D fractional filter converter resampling Tcos Output I+Q analyzer IF Application NCO processor D memory signal sample rate sin Downsampling filters 128 MHz sampling clock arbitrary IF Power or sample rate continuous Output sample rate External 100Hz ... 45MHz digital Trigger 100Hz ... 100MHz (B70) Full scale level = baseband Reference level output

Fig. 3-37: Signal path using the digital output

3.7.4 Softkeys and Parameters of the R&S Digital I/Q Interface

The following softkeys and parameters are available for the R&S Digital I/Q Interface in the applications that support it.

Signal Source	372
L Input Path	
L Connected Device	372
L Input Sample Rate	372
L Full Scale Level	
L Level Unit	372
L Adjust Reference Level to Full Scale Level	372
Digital Output	373
Digital IQ Info	373
EXIQ	373
L TX Settings	374
L RX Settings	

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

L Send To	374
L Firmware Update	
L R&S Support	374
L DialConf	374

Signal Source

Opens a dialog box to select the signal source.

For "Digital Baseband (I/Q)", the source can also be configured here.

Input Path ← Signal Source

Defines whether the "RF Radio Frequency" or the "Digital IQ" input path is used for measurements. "Digital IQ" is only available if option R&S FSV-B17 (R&S Digital I/Q Interface) is installed.

Note: Note that the input path defines the characteristics of the signal, which differ significantly between the RF input and digital input.

Remote command:

INPut: SELect on page 617

Connected Device ← Signal Source

Displays the name of the device connected to the optional R&S Digital I/Q Interface (R&S FSV-B17) to provide Digital IQ input. The device name cannot be changed here.

The device name is unknown.

Remote command:

INPut:DIQ:CDEVice on page 613

Input Sample Rate ← Signal Source

Defines the sample rate of the digital I/Q signal source. This sample rate must correspond with the sample rate provided by the connected device, e.g. a generator.

Remote command:

INPut:DIQ:SRATe on page 615

Full Scale Level ← Signal Source

The "Full Scale Level" defines the level that should correspond to an I/Q sample with the magnitude "1".

The level can be defined either in dBm or Volt.

Remote command:

INPut:DIQ:RANGe[:UPPer] on page 615

Level Unit ← Signal Source

Defines the unit used for the full scale level.

Remote command:

INPut:DIQ:RANGe[:UPPer]:UNIT on page 615

Adjust Reference Level to Full Scale Level ← Signal Source

If enabled, the reference level is adjusted to the full scale level automatically if any change occurs.

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

(See the Auto Level softkey).

Remote command:

INPut:DIQ:RANGe:COUPling on page 614

Digital Output

Opens a dialog box to enable a digital output stream to the optional R&S Digital I/Q Interface (R&S FSV-B17), if available.

The displayed sample rate is identical to the sample rate defined under Data Acquisition (I/Q Analyzer) and is not editable here.

For details see "Digital Output" in the description of the R&S Digital I/Q Interface for the base unit.

Remote command:

OUTPut: DIQ on page 625

Digital IQ Info

Displays a dialog box with information on the digital I/Q input and output connection via the optional R&S Digital I/Q Interface (R&S FSV-B17), if available. The information includes:

- Device identification
- Used port
- (Maximum) digital input/output sample rates and maximum digital input/output transfer rates
- Status of the connection protocol
- Status of the PRBS descewing test

For details see "Interface Status Information" in "Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)" in the description of the base unit.

Remote command:

INPut:DIQ:CDEVice on page 613

EXIQ

Opens a configuration dialog box for an optionally connected R&S EX-IQ-BOX and a submenu to access the main settings quickly.

Note: The EX-IQ-Box functionality is not supported for R&S FSV models 1321.3008Kxx. If the optional R&S DiglConf software is installed, the submenu consists only of one key to access the software. Note that R&S DiglConf requires a USB connection (not LAN!) from the R&S FSV to the R&S EX-IQ-BOX in addition to the R&S Digital I/Q Interface connection. R&S DiglConf version 2.10 or higher is required.

For typical applications of the R&S EX-IQ-BOX see also the description of the R&S Digital I/Q Interface (R&S FSV-B17) in the base unit manual.

For details on configuration see the "R&S®Ex I/Q Box - External Signal Interface Module Manual".

For details on installation and operation of the R&S DiglConf software, see the "R&S®EX-IQ-BOX Digital Interface Module R&S®DiglConf Software Operating Manual".

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

TX Settings ← EXIQ

Opens the "EX-IQ-BOX Settings" dialog box to configure the R&S FSV for digital output to a connected device ("Transmitter" Type).

RX Settings ← EXIQ

Opens the "EX-IQ-BOX Settings" dialog box to configure the R&S FSV for digital input from a connected device ("Receiver" Type).

Send To ← EXIQ

The configuration settings defined in the dialog box are transferred to the R&S EX-IQ-BOX.

Firmware Update ← EXIQ

If a firmware update for the R&S EX-IQ-BOX is delivered with the R&S FSV firmware, this function is available. In this case, when you select the softkey, the firmware update is performed.

R&S Support ← **EXIQ**

Stores useful information for troubleshooting in case of errors.

This data is stored in the $C:\R_S\Instr\user\Support$ directory on the instrument.

If you contact the Rohde&Schwarz support to get help for a certain problem, send these files to the support in order to identify and solve the problem faster.

$\textbf{DiglConf} \leftarrow \textbf{EXIQ}$

Starts the optional R&S DiglConf application. This softkey is only available if the optional software is installed.

To return to the R&S FSV application, press any key on the front panel. The application is displayed with the "EXIQ" menu, regardless of which key was pressed.

For details on the R&S DiglConf application, see the "R&S®EX-IQ-BOX Digital Interface Module R&S®DiglConf Software Operating Manual".

Note: If you close the R&S DiglConf window using the "Close" icon, the window is minimized, not closed.

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

If you select the "File > Exit" menu item in the R&S DiglConf window, the application is closed. Note that in this case the settings are lost and the EX-IQ-BOX functionality is no longer available until you restart the application using the "DiglConf" softkey in the R&S FSV once again.

Remote command:

Remote commands for the R&S DiglConf software always begin with SOURCE: EBOX. Such commands are passed on from the R&S FSV to the R&S DiglConf automatically which then configures the R&S EX-IQ-BOX via the USB connection.

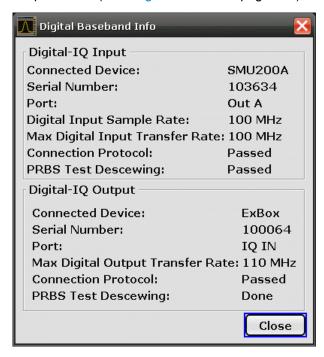
All remote commands available for configuration via the R&S DiglConf software are described in the "R&S®EX-IQ-BOX Digital Interface Module R&S®DiglConf Software Operating Manual".

Example 1:

SOURce:EBOX:*RST
SOURce:EBOX:*IDN?

Result:

"Rohde&Schwarz, DiglConf, 02.05.436 Build 47"


Example 2:

SOURce: EBOX: USER: CLOCk: REFerence: FREQuency 5MHZ

Defines the frequency value of the reference clock.

3.7.5 Interface Status Information

When a digitial input or output device is connected to the R&S Digital I/Q Interface, a dialog box and status icons in the status bar provide information on the status of the connection. To display the dialog box, select the "Digital IQ Info" softkey in the "Input/ Output" menu (see "Digital IQ Info" on page 302).

The following information is displayed:

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

Table 3-18: Displayed Information for Digital Baseband Connections

Label	Description	
Digital I/Q input connection		
Digital-I/Q Input	Device connected to R&S FSV input interface	
Serial Number	Serial number of the connected device	
Port	Port name used by the connected device	
(Max.) Digital Output Sample Rate	Maximum possible or currently used sample rate of the connected device; depends on the used connection protocol version (see " <samplerate-type>" parameter described in INPut:DIQ:CDEVice on page 613)</samplerate-type>	
Max. Digital Output Transfer Rate	Maximum data transfer rate of the connected device in Hz	
Connection Protocol	State of the connection protocol which is used to identify the connected device	
PRBS Test Descewing	State of the PRBS test	
Digital I/Q output connection		
Digital-I/Q Output	Device connected to R&S FSV output interface	
Serial Number	Serial number of the connected device	
Port	Port name used by the connected device	
Max. Digital Input Transfer Rate	Maximum input data transfer rate that can be processed by the connected device	
Connection Protocol	State of the connection protocol which is used to identify the connected device	
PRBS Test Descewing	State of the PRBS test	

You can query the information in this dialog box using remote commands, see INPut: DIQ:CDEVice on page 613.

Connection tests

Each time a device is (re-)connected to the R&S FSV, a connection protocol is executed. This test identifies the connected device. This test may take 2 seconds to complete. If a connection cannot be established within 30 seconds, the test is aborted and an error is indicated in the dialog box and the status bar.

Before the first measurement is started after a device has been (re-)connected to the R&S FSV, a PRBS Descewing test is performed to identify the properties of the used cable. The state of this test is also indicated in the dialog box and the status bar.

If either of the tests fail, check the cable to the connected device as a first step. Also make sure the data rate of the R&S FSV and the connected device comply with the specification.

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

Status icons

The status of the connection tests are indicated in the "Digital IQ Info" dialog box and as icons in the status bar. The status icons have the following meaning:

Table 3-19: Status information for digital baseband connections

Icon	Status		
Digital input			
IQ IN	Connection established, protocol not yet started		
IQ IN	Connection protocol in progress		
IQ IN	Connection protocol passed		
IQ IN	PRBS test in progress		
IQ IN	PRBS test passed		
IQ IN	Connection protocol failed		
IQ IN	PRBS test failed		
IQ IN	No cable connected although "Signal Source" = "DigIQ"		
Digital output			
IQ OUT	Connection established, protocol not yet started		
IQ OUT	Connection protocol in progress		
IQ OUT	Connection protocol passed		
IQ OUT	Connection protocol failed		
IQOUT	No cable connected although "Digital Output" enabled.		

Error messages

If errors occur, a message is displayed in the status bar. The following table describes the most common errors and possible solutions.

Instrument Functions - R&S Digital I/Q Interface (Option R&S FSV-B17)

Message	Possible solutions
"Dig. Input Sample Rate too high!"	Increase the sample rate Reduce the input sample rate
"Dig. Input Sample Rate too low!"	Reduce the sample rate Increase the input sample rate
"Output Sample Rate too high!"	Reduce the sample rate Increase the input sample rate
"Number of I/Q Capture Samples too high!"	Reduce the number of I/Q samples Reduce the ratio input sample rate / sample rate by increasing the sample rate or descreasing the input sample rate
Keyword: "FIFO OVL"	Reduce the input sample rate

3.7.6 Description of the LVDS Connector

The R&S Digital I/Q Interface is a proprietary LVDS serial interface. For adaption to industrial standard interfaces use the R&S EX-IQ-BOX (see the "R&S®EX-IQ-BOX - External Signal Interface Module Manual". The EX-IQ-Box functionality is not supported for R&S FSV models 1321.3008Kxx.).

The LVDS Connector is a 26 pin female 0.050" Mini D Ribbon connector (e.g.: 3M 102XX-1210VE series).

For the connection, use the cables provided with the R&S EX-IQ-BOX or an R&S®SMU-Z6 cable (order no.: 1415.0201.02).

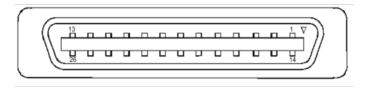


Fig. 3-38: LVDS connector on the R&S FSV rear panel, connector front view

The table 3-20 shows the multiplexed data at the output of the LVDS transmitter.

Table 3-20: LVDS connector pin description

Pin	Signal	Level	
1			reserved for future use
2	GND	0V	Ground, shield of pair 1-14, for future use
3	SDAT0_P	LVDS	Serial data channel 0 positive pin; carries the bits VALID, ENABLE, MARKER_1 (GP4), Reserve_1 (GP2), RE_0, RE_1
4	SDAT1_P	LVDS	Serial data channel 1 positive pin; carries the bits RE_2, RE_3, RE_4, RE_5, RE_6, RE_7

Instrument Functions – External Mixer (Option R&S FSV-B21)

Pin	Signal	Level	
5	SDAT2_P	LVDS	Serial data channel 2 positive pin; carries the bits RE_8, RE_9, RE_10, RE_11, RE_12, RE_13
6	CLK1_P	LVDS	Clock 1 positive pin; clock for transmission on LVDS link
7	S_CLK	TTL	(for future use)
8	+5VD	+5.0V	Supply voltage (for future use)
9	SDAT3_P	LVDS	Serial data channel 3 positive pin; carries the bits RE_14, RE_15, RE_16, RE_17, RE_18, RE_19
10	SDAT4_P	LVDS	Serial data channel 4 positive pin; carries the bits TRIGGER_1 (GP0), TRIGGER_2 (GP1), MARKER_2 (GP5), Reserve_2 (GP3), IM_0, IM_1
11	SDAT5_P	LVDS	Serial data channel 5 positive pin; carries the bits IM_2, IM_3, IM_4, IM_5, IM_6, IM_7
12	SDAT6_P	LVDS	Serial data channel 6 positive pin; carries the bits IM_8, IM_9, IM_10, IM_11, IM_12, IM_13
13	SDAT7_P	LVDS	Serial data channel 7 positive pin; carries the bits IM_14, IM_15, IM_16, IM_17, IM_18, IM_19
14			reserved for future use
15	SDAT0_M	LVDS	Serial data channel 0 negative pin
16	SDAT1_M	LVDS	Serial data channel 1 negative pin
17	SDAT2_M	LVDS	Serial data channel 2 negative pin
18	CLK1_M	LVDS	Clock 1 negative pin
19	DGND	0V	Power ground; ground return for 5V supply voltage (for future use)
20	S_DATA	TTL	(for future use)
21	SDAT3_M	LVDS	Serial data channel 3 negative pin
22	SDAT4_M	LVDS	Serial data channel 4 negative pin
23	SDAT5_M	LVDS	Serial data channel 5 negative pin
24	SDAT6_M	LVDS	Serial data channel 6 negative pin
25	SDAT7_M	LVDS	Serial data channel 7 negative pin
26	GND	0V	LVDS ground; shielding of transmission lines and shielding of cable

3.8 Instrument Functions – External Mixer (Option R&S FSV-B21)

If the R&S FSV External Mixer option (R&S FSV-B21) is installed, an external mixer can be connected to the R&S FSV to increase the available frequency range.

Instrument Functions – External Mixer (Option R&S FSV-B21)

External mixers - once activated - are available for all instrument applications. (De-)Activation is only possible in the base unit, i.e. in "Spectrum" mode.

Connecting External Mixers

How to connect external mixers is described in the R&S FSV Quick Start Guide, "Optional Front Panel Connectors".

General information

Some general information on working with external mixers can be found in chapter 3.8.1, "General Information on External Mixers", on page 380.

Menu and softkey description

The "External Mixer" menu is displayed when you select the "External Mixer" softkey in the "Home" menu of the "Spectrum" mode.

For details see chapter 3.8.2, "Softkeys of the External Mixer (Option B21)", on page 386.

Measurement Example

An introductory example of operating an external mixer is provided in chapter 3.8.3, "Introductory Example of Operation", on page 397.

3.8.1 General Information on External Mixers

This section contains some general information on external mixers and their application.

3.8.1.1	Frequency Range	.380
3.8.1.2	Bias Current	.381
3.8.1.3	Conversion Loss Tables	.382
3.8.1.4	Full Screen Level	.383

3.8.1.1 Frequency Range

3.8.1.5

The frequency of the input signal can be expressed as a function of the LO frequency and the selected harmonic of the first LO as follows:

Remarks on Signal Identification with Auto ID......384

$$f_{in} = n * f_{LO} + f_{IF}$$

where:

fin: frequency of input signal

Instrument Functions – External Mixer (Option R&S FSV-B21)

n: order of harmonic used for conversion

f_{LO}: frequency of first LO: 7.73 GHz to 15.23 GHz

f_{IF}: intermediate frequency 729.9 MHz

For pre-defined bands, the resulting frequency ranges are as follows:

Table 3-21: Frequency ranges for pre-defined bands

Band	Frequency start [GHz]	Frequency stop [GHz]
К	18.0	26.5
KA (A) *)	26.5	40.0
Q	33.0	50.0
U	40.0	60.0
V	50.0	75.0
E	60.0	90.0
W	75.0	110.0
F	90.0	140.0
D	110.0	170.0
G	140.0	220.0
J	220.0	325.0
Υ	325.0	500.0
USER	31.65	60.1901
	(default)	(default)
*) The band formerly referred to as "A" is now named "KA".		

^{3.8.1.2} Bias Current

Single-diode mixers generally require a DC voltage which is applied via the LO line. This DC voltage is to be tuned to the minimum conversion loss versus frequency. Such a DC voltage can be set via the "BIAS" function using the D/A converter of the R&S FSV. The value to be entered is not the voltage but the short-circuit current. The current is defined in the "Bias Settings" or set to the value of the conversion loss table (see "Bias Settings" on page 395 and "Bias" on page 392.

Instrument Functions – External Mixer (Option R&S FSV-B21)

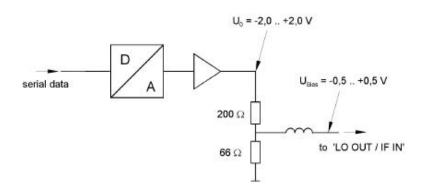


Fig. 3-39: Bias circuit of the R&S FSV

The voltage U0 at the output of the operational amplifier can be set in the range -2.0 to +2.0 V An open-circuit voltage Vbias of -0.5 to +0.5 V is obtained accordingly at the output of the voltage divider. A short-circuit current of Ishort = V0 / 200Ω = 10 mA to + 10 mA is obtained for a short circuit at the output of the voltage divider. For using biasing it is not important to know exactly the current flowing through the diode since the conversion loss must be set to minimum with the frequency. It therefore makes no difference whether the setting is performed by an open-circuit voltage or by a short-circuit current. A DC return path is ensured via the 66Ω resistor, which is an advantage in some mixers.

3.8.1.3 Conversion Loss Tables

Conversion loss tables consist of value pairs that describe the correction values for conversion loss at certain frequencies. Correction values for frequencies between the reference values are obtained by interpolation. Linear interpolation is performed if the table contains only two values. If it contains more than two reference values, spline interpolation is carried out. Outside the frequency range covered by the table the conversion loss is assumed to be the same (see figure 3-40) as that for the first and last reference value.

Instrument Functions – External Mixer (Option R&S FSV-B21)

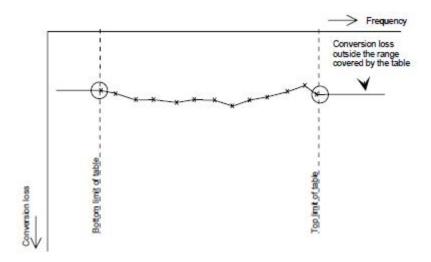


Fig. 3-40: Conversion loss outside the band's frequency range

Predefined conversion loss tables are often provided with the external mixer and can be imported to the R&S FSV. Alternatively, you can define your own conversion loss tables. Conversion loss tables are configured and managed in the "Conversion Loss Table Setup" tab of the "External Mixer Configuration" dialog box (see "Conversion Loss Table Setup" on page 390).

The conversion loss table to be used for a particular range is defined in the "External Mixer Configuration" dialog box. All tables stored on the instrument in the $C:\r_s\instr\user\cvl\$ directory are offered for selection. A validation check is then performed on the selected table to ensure that it complies with the settings. In particular, the following is checked:

- the assigned band name
- the harmonic order
- the mixer type
- the table must contain at least one frequency that lies within the frequency range for the band

3.8.1.4 Full Screen Level

The maximum possible reference level depends on the maximum used conversion loss value. Thus, the reference level can be adjusted for each range according to the used conversion loss table or average conversion loss value. If a conversion loss value is used which exceeds the maximum reference level, the reference level is adjusted to the maximum value permitted by the firmware.

Instrument Functions – External Mixer (Option R&S FSV-B21)

3.8.1.5 Remarks on Signal Identification with Auto ID

Test sweep and reference sweep

Depending on which of the automatic signal identification functions are used, the traces are used to display either the test sweep (the upper side-band sweep) or the reference sweep (lower side-band sweep).

Function	Trace 1	Trace 2	Trace 3
Signal ID	Signal ID upper side-band	Signal ID lower side-band	-
Auto ID	Auto ID	-	-
Signal ID + Auto ID	Signal ID upper side-band	Signal ID lower side-band	Auto ID

Type of signal

The automatic comparison of the test sweep and reference sweep with the "Auto ID" function can only be usefully applied for signals with time-constant spectrum since the two sweeps are always required to determine the actual spectrum.

Tolerance for the comparison of test sweep and reference

Since the LO frequency is displaced downwards in the reference sweep, the conversion loss of the mixer may differ from that of the test sweep. The reasons for this are the LO output power of the R&S FSV varying with the frequency and the non-ideal characteristics of the mixer. A certain tolerance should therefore be permitted for the comparison of the signal levels in the test sweep and reference sweep. The user can set this tolerance using the "AUTO ID THRESHOLD" function. If the tolerance is defined too narrow, the signal collected with the reference sweep may be displayed even for the identification of real signals.

Mixer products with low S/N ratio

If the S/N ratio of a mixer product is less than the tolerance set with "AUTO ID THRESH-OLD", the level difference between the test sweep and reference sweep at the frequency of this mixer product is always within limits, even if the signal occurs in one of the sweeps only. Such mixer products cannot be identified by "AUTO ID". It is therefore recommended to perform a visual comparison of the test sweep and reference sweep using the function "SIGNAL ID".

An unwanted signal with a S/N ratio that corresponds approximately to the tolerance set with "AUTO ID THRESHOLD" may not be blanked out permanently. Due to the fact that the noise display varies from one sweep to another, the S/N ratio changes and thus the level difference between the test sweep and reference sweep measured at a frequency changes as well. As a result, the criterion for detecting unwanted signals is not fulfilled. To blank out unwanted signals permanently, an almost constant noise indication is therefore required. This can be achieved by reducing the video bandwidth. Since the average noise indication lies well below the generated noise peak values, the minimum level diminishes. For identification using "AUTO ID" signals should have this minimum level.

Instrument Functions – External Mixer (Option R&S FSV-B21)

Examining unwanted mixer products with small span

With large spans in which non-modulated sinewave signals are represented as single lines, unwanted mixer products are generally completely blanked out. However, if you examine the frequency range containing a blanked signal in detail using a small span, e.g. an image-frequency response, part of the signal may nevertheless be displayed. This happens when the displayed components of a blanked signal have a level difference which is smaller than the tolerance predefined with "AUTO ID THRESHOLD" when compared with the noise floor. These components are therefore not blanked out.

Display of mixer products at the same frequency

If the input signal consists of a very large number of spectral components, it will become more and more probable that two different unwanted mixer products will be displayed at the same frequency in the test sweep and reference sweep.

Fig. 3-41: Different mixer products displayed at the same frequency in the test sweep and reference sweep

The external mixer has been working using 2nd order harmonic. The signal recorded in the test sweep is displayed by trace 1. The IF filter of the R&S FSV is represented at a 3 dB bandwidth of 20 kHz, the real IF bandwidth being 30 kHz. If, however, the 3 dB bandwidth (trace 2) of the signal recorded in the reference sweep is examined, it will be found to be larger exactly by a factor of 2. This shows that the two products were generated by mixing with LO harmonics of different orders The signal recorded in the test sweep was generated by mixing with 3rd order harmonic. Since the frequency axis scaling is based

Instrument Functions – External Mixer (Option R&S FSV-B21)

on the 2nd order, the mixer product or the resulting diagram of the IF filter is compressed by a factor of 2/3. The signal recorded in the reference sweep was generated by mixing with the fundamental of the LO signal. Since the frequency axis scaling is based on the 2nd order, the mixer product or the resulting diagram of the IF filter is expanded by a factor of 2.

Automatic identification with a large span is not possible since the two mixer products are displayed at the same frequency. The diagram shown in figure 3-42 is obtained when examining products with a narrow span using "AUTO ID". You can easily recognize unwanted mixer products from the clear diagram obtained using "AUTO ID" or "SIGNAL ID".

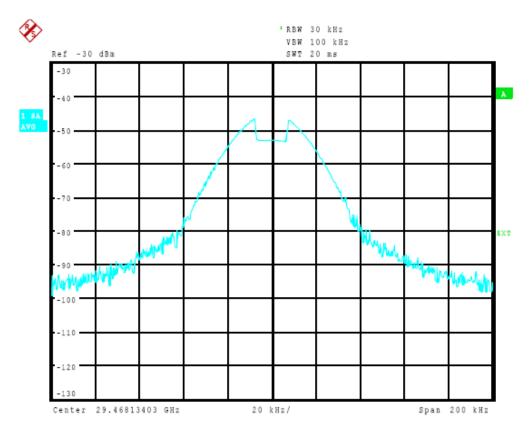


Fig. 3-42: Signal as in Screen A: Unwanted mixer product with the use of AUTO ID

3.8.2 Softkeys of the External Mixer (Option B21)

External Mixer	387
L External Mixer (On/Off)	387
L External Mixer Config	
L External Mixer Setup	
L RF Start	
L RF Stop	388
L Handover Freg	
L Band	388

Instrument Functions – External Mixer (Option R&S FSV-B21)

L RF Overrange	389
L Preset Band	389
L Mixer Type	389
L Harmonic Type	389
L Range 1/2	389
L Harmonic Order	
L Conversion Loss	390
L Conversion Loss Table Setup	390
L New Table	
L File Name	392
L Comment	392
L Band	392
L Harmonic Order	392
L Bias	392
L Mixer Name	392
L Mixer S/N	393
L Mixer Type	393
L Position/Value	
L Insert	394
L Delete	
L Shift x	394
L Shift y	394
L Save	
L Edit Table	
L Delete Table	
L Import Table	
L Bias Settings	
L Write to <cvl name="" table=""></cvl>	
LO Level	
Signal ID (On/Off)	
L Auto ID (On/Off)	
L Auto ID Threshold	397

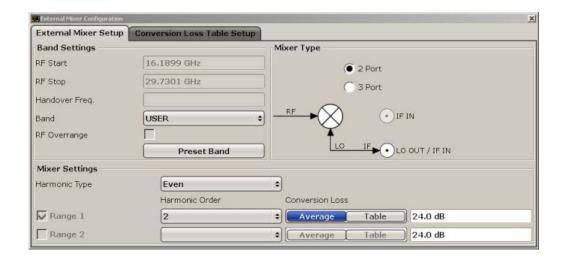
External Mixer

Opens the submenu for the external mixer.

External Mixer (On/Off) \leftarrow External Mixer

Switches the external mixer on or off. Once activated, the external mixer is available for all applications on the instrument.

Remote command:


[SENSe:]MIXer[:STATe] on page 672

External Mixer Config — External Mixer

Opens the "External Mixer Configuration" dialog box that contains two tabs:

- "External Mixer Setup" on page 388
- "Conversion Loss Table Setup" on page 390

Instrument Functions – External Mixer (Option R&S FSV-B21)

$\textbf{External Mixer Setup} \leftarrow \textbf{External Mixer Config} \leftarrow \textbf{External Mixer}$

In this tab you configure the band and mixer settings.

RF Start ← External Mixer Setup ← External Mixer Config ← External Mixer

Displays the start frequency of the selected band. For pre-defined bands, the frequency range is set automatically (see table 3-21).

Remote command:

[SENSe:]MIXer:FREQuency:STARt? on page 674

RF Stop ← External Mixer Setup ← External Mixer Config ← External Mixer

Displays the stop frequency of the selected band. For pre-defined bands, the frequency range is set automatically (see table 3-21).

Remote command:

[SENSe:]MIXer:FREQuency:STOP? on page 674

Handover Freq. ← External Mixer Setup ← External Mixer Config ← External Mixer Defines the frequency at which the mixer switches from one range to the next (if two different ranges are selected). The handover frequency can be selected freely within the overlapping frequency range.

Remote command:

[SENSe:]MIXer:FREQuency:HANDover on page 673

Band ← External Mixer Setup ← External Mixer Config ← External Mixer

Defines the waveguide band or user-defined band to be used by the mixer.

The start and stop frequencies of the selected band are displayed in the "RF Start" and "RF Stop" fields.

For a definition of the frequency range for the pre-defined bands, see table 3-21).

The mixer settings for the user-defined band can be selected freely. The frequency range for the user band is defined via the harmonics configuration (see "Range 1/2" on page 389).

Instrument Functions – External Mixer (Option R&S FSV-B21)

Note: The band formerly referred to as "A" is now named "KA".

Remote command:

[SENSe:]MIXer:HARMonic:BAND on page 674

RF Overrange ← External Mixer Setup ← External Mixer Config ← External Mixer Specifies whether the band limits are extended beyond "RF Start" and "RF Stop" due to the capabilities of the used harmonics.

Remote command:

[SENSe:]MIXer:RFOVerrange[:STATe] on page 673

Preset Band ← External Mixer Setup ← External Mixer Config ← External Mixer Restores the presettings for the selected band.

Note: changes to the band and mixer settings are maintained even after using the PRESET function. This function allows you to restore the original band settings.

Remote command:

[SENSe:]MIXer:HARMonic:BAND:PRESet on page 674

Mixer Type ← External Mixer Setup ← External Mixer Config ← External Mixer The R&S FSV option B21 allows for the following external mixer types:

"2 Port" LO and IF data uses the same port

"3 Port" LO and IF data uses separate ports

Remote command:

[SENSe:]MIXer:PORTs on page 677

Harmonic Type ← External Mixer Setup ← External Mixer Config ← External Mixer Defines if only even, only odd, or even and odd harmonics can be used for conversion. Depending on this selection, the order of harmonic to be used for conversion changes (see "Harmonic Order" on page 389).

Remote command:

[SENSe:]MIXer:HARMonic:TYPE on page 675

Range 1/2 ← External Mixer Setup ← External Mixer Config ← External Mixer Enables the use of a second harmonic to cover the band's frequency range.

For each range you can define which harmonic to use and how the Conversion Loss is handled.

Remote command:

[SENSe:]MIXer:HARMonic:HIGH:STATe on page 675

Harmonic Order \leftarrow Range 1/2 \leftarrow External Mixer Setup \leftarrow External Mixer Config \leftarrow External Mixer

Defines which of the available harmonic orders are used to cover the frequency range.

By default, the lowest order of the specified harmonic type is selected that allows conversion of input signals in the whole band. If due to the LO frequency the conversion is not possible using one harmonic, the band is splitted.

Instrument Functions – External Mixer (Option R&S FSV-B21)

For the band "USER", the order of harmonic is defined by the user. The order of harmonic can be between 2 and 100, the lowest usable frequency being 26,5 GHz.

Remote command:

```
[SENSe:]MIXer:HARMonic[:LOW] on page 675
[SENSe:]MIXer:HARMonic:HIGH[:VALue] on page 675
```

Conversion Loss \leftarrow Range 1/2 \leftarrow External Mixer Setup \leftarrow External Mixer Config \leftarrow External Mixer

Defines how the conversion loss is handled. The following possibilities are available:

"Average"

Defines the average conversion loss for the entire range in dB.

"Table"

Defines the conversion loss via the table selected from the list. Predefined conversion loss tables are often provided with the external mixer and can be imported to the R&S FSV. Alternatively, you can define your own conversion loss tables. Conversion loss tables are configured and managed in the Conversion Loss Table Setup tab.

For details on conversion loss tables, see chapter 3.8.1.3, "Conversion Loss Tables", on page 382. For details on importing tables, see "Import Table" on page 394.

All tables stored on the instrument in the

 $C:\r_s\instr\user\cvl\$ directory are offered for selection. A validation check is then performed on the selected table to ensure that it complies with the settings. In particular, the following is checked:

- the assigned band name
- the harmonic order
- the mixer type
- the table must contain at least one frequency that lies within the frequency range for the band

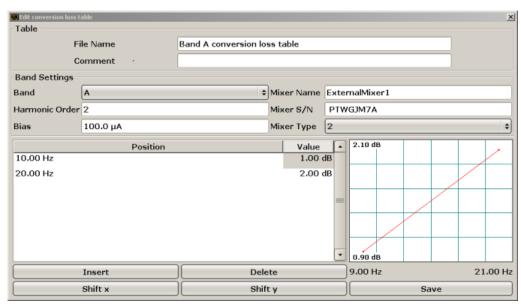
Remote command:

Table for range 2

```
[SENSe:]MIXer:LOSS[:LOW] on page 677
Average for range 1
[SENSe:]MIXer:LOSS:TABLe[:LOW] on page 676
Table for range 1
[SENSe:]MIXer:LOSS:HIGH on page 676
Average for range 2
[SENSe:]MIXer:LOSS:TABLe:HIGH on page 676
```

Conversion Loss Table Setup ← External Mixer Config ← External Mixer

In this tab you configure and manage conversion loss tables. Conversion loss tables consist of value pairs that describe the correction values for conversion loss at certain frequencies. The correction values for frequencies between the reference points are obtained via interpolation.


The currently selected table for each range is displayed at the top of the dialog box.

Instrument Functions – External Mixer (Option R&S FSV-B21)

New Table \leftarrow Conversion Loss Table Setup \leftarrow External Mixer Config \leftarrow External Mixer

Opens the "Edit Conversion Loss Table" dialog box to configure a new conversion loss table.

A preview pane displays the current configuration of the conversion loss function as described by the Position/Value entries.

Remote command:

[SENSe:]CORRection:CVL:SELect on page 639

Instrument Functions – External Mixer (Option R&S FSV-B21)

File Name ← New Table ← Conversion Loss Table Setup ← External Mixer Config ← External Mixer

Defines the name under which the table is stored in the C:\r_s\instr\user\cvl\ directory on the instrument. The name of the table is identical with the name of the file (without extension) in which the table is stored. The entry in this field is mandatory. The .ACL extension is automatically appended during storage.

Remote command:

[SENSe:]CORRection:CVL:SELect on page 639

Comment \leftarrow New Table \leftarrow Conversion Loss Table Setup \leftarrow External Mixer Config \leftarrow External Mixer

An optional comment that describes the conversion loss table. The comment can be freely defined by the user.

Remote command:

[SENSe:]CORRection:CVL:COMMent on page 641

Band ← New Table ← Conversion Loss Table Setup ← External Mixer Config ← External Mixer

The waveguide or user-defined band for which the table is to be applied.

For a definition of the frequency range for the pre-defined bands, see table 3-21).

Remote command:

[SENSe:]CORRection:CVL:BAND on page 638

Harmonic Order \leftarrow New Table \leftarrow Conversion Loss Table Setup \leftarrow External Mixer Config \leftarrow External Mixer

The harmonic order for which the table is to be applied.

Remote command:

[SENSe:]CORRection:CVL:HARMonic on page 640

$\textbf{Bias} \leftarrow \textbf{New Table} \leftarrow \textbf{Conversion Loss Table Setup} \leftarrow \textbf{External Mixer Config} \leftarrow \textbf{External Mixer}$

The bias current which is required to set the mixer to its optimum operating point. It corresponds to the short-circuit current. The bias current can range from -10 mA to 10 mA. The actual bias current is lower because of the forward voltage of the mixer diode(s).

Tip: You can also define the bias interactively while a preview of the trace with the changed setting is displayed, see "Bias Settings" on page 395.

Remote command:

[SENSe:]CORRection:CVL:BIAS on page 641

Mixer Name ← New Table ← Conversion Loss Table Setup ← External Mixer Config ← External Mixer

Specifies the name of the external mixer for which the table is to be applied.

Remote command:

[SENSe:]CORRection:CVL:MIXer on page 639

Instrument Functions – External Mixer (Option R&S FSV-B21)

Mixer S/N ← New Table ← Conversion Loss Table Setup ← External Mixer Config ← External Mixer

Specifies the serial number of the external mixer for which the table is to be applied.

Remote command:

[SENSe:]CORRection:CVL:SNUMber on page 640

$$\label{eq:mixer_type} \begin{split} &\text{Mixer Type} \leftarrow \text{New Table} \leftarrow \text{Conversion Loss Table Setup} \leftarrow \text{External Mixer Config} \\ &\leftarrow \text{External Mixer} \end{split}$$

Specifies whether the external mixer for which the table is to be applied is a two-port or three-port type.

Remote command:

[SENSe:]CORRection:CVL:PORTs on page 640

Position/Value \leftarrow New Table \leftarrow Conversion Loss Table Setup \leftarrow External Mixer Config \leftarrow External Mixer

Each position/value pair defines the correction value for conversion loss for a specific frequency. The reference values must be entered in order of increasing frequencies. A maximum of 50 reference values can be entered.

Correction values for frequencies between the reference values are obtained by interpolation. Linear interpolation is performed if the table contains only two values. If it contains more than two reference values, spline interpolation is carried out. Outside the frequency range covered by the table the conversion loss is assumed to be the same (see figure 3-40) as that for the first and last reference value.

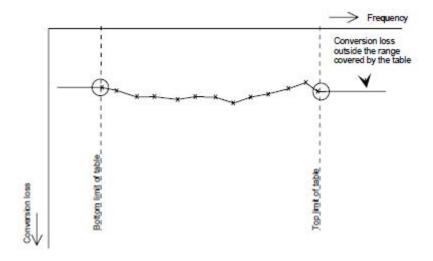


Fig. 3-43: Conversion loss outside the band's frequency range

The current configuration of the conversion loss function as described by the Position/ Value entries is displayed in the preview pane to the right of the table.

The following functions are available to define the table:

- Insert an entry
- Delete an entry
- Shift all positions by a specific value (shift x)

Instrument Functions – External Mixer (Option R&S FSV-B21)

Shift all conversion loss values by a specific value (shift y)

Remote command:

[SENSe:]CORRection:CVL:DATA on page 641

Insert \leftarrow New Table \leftarrow Conversion Loss Table Setup \leftarrow External Mixer Config \leftarrow External Mixer

Inserts a new position/value entry in the table.

If the table is empty, a new entry at 0 Hz is inserted.

If entries already exist, a new entry is inserted above the selected entry. The position of the new entry is selected such that it divides the span to the previous entry in half.

$\textbf{Delete} \leftarrow \textbf{New Table} \leftarrow \textbf{Conversion Loss Table Setup} \leftarrow \textbf{External Mixer Config} \leftarrow \textbf{External Mixer}$

Deletes the currently selected position/value entry.

Shift $x \leftarrow \text{New Table} \leftarrow \text{Conversion Loss Table Setup} \leftarrow \text{External Mixer Config} \leftarrow \text{External Mixer}$

Shifts all positions in the table by a specific value. The value can be entered in the edit dialog box. The conversion loss function in the preview pane is shifted along the x-axis.

Shift $y \leftarrow \text{New Table} \leftarrow \text{Conversion Loss Table Setup} \leftarrow \text{External Mixer Config} \leftarrow \text{External Mixer}$

Shifts all conversion loss values by a specific value. The value can be entered in the edit dialog box. The conversion loss function in the preview pane is shifted along the y-axis.

Save \leftarrow New Table \leftarrow Conversion Loss Table Setup \leftarrow External Mixer Config \leftarrow External Mixer

The conversion loss table is stored under the specified name in the C:\r s\instr\user\cvl\ directory of the instrument.

Edit Table \leftarrow Conversion Loss Table Setup \leftarrow External Mixer Config \leftarrow External Mixer

Opens the "Edit Conversion Loss Table" dialog box to edit the selected conversion loss table. For details on table configuration see "New Table" on page 391.

Remote command:

[SENSe:]CORRection:CVL:SELect on page 639

$\textbf{Delete Table} \leftarrow \textbf{Conversion Loss Table Setup} \leftarrow \textbf{External Mixer Config} \leftarrow \textbf{External Mixer}$ Mixer

Deletes the currently selected conversion loss table after you confirm the action.

Remote command:

[SENSe:]CORRection:CVL:CLEar on page 642

Import Table \leftarrow Conversion Loss Table Setup \leftarrow External Mixer Config \leftarrow External Mixer

Imports a stored conversion loss table from any directory to the instrument's C:\r_s\instr\user\cvl\ directory.

Instrument Functions – External Mixer (Option R&S FSV-B21)

Bias Settings ← **External Mixer**

Opens a dialog box to define the bias current for each range, which is required to set the mixer to its optimum operating point. It corresponds to the short-circuit current. The bias current can range from -10 mA to 10 mA. The actual bias current is lower because of the forward voltage of the mixer diode(s).

The trace is adapted to the settings immediately so you can check the results. To store the bias setting in the currently selected conversion loss table, select the Write to <CVL table name> button.

Remote command:

```
[SENSe:]MIXer:BIAS:LOW on page 673
[SENSe:]MIXer:BIAS:HIGH on page 672
```

Write to <CVL table name> ← Bias Settings ← External Mixer

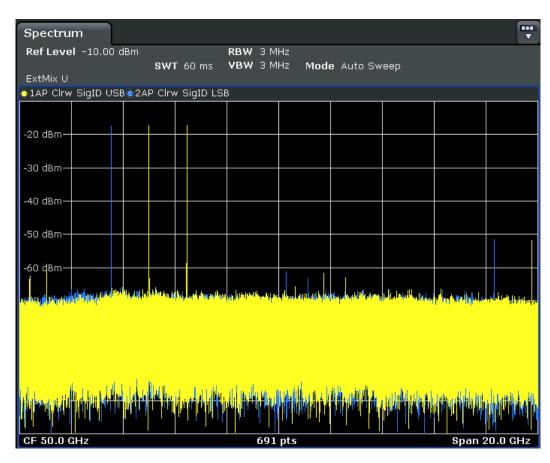
Stores the bias setting in the currently selected "Conversion Loss Table" for the range (see "Conversion Loss Table Setup" on page 390).

Remote command:

```
[SENSe:]CORRection:CVL:BIAS on page 641
```

LO Level ← **External Mixer**

Opens an edit dialog box to change the LO level of the external mixer's LO port from 13.0 dBm to 17.0 dBm in 0.1 dB steps. Default value is 15.5 dB.


Remote command:

```
[SENSe:]MIXer:LOPower on page 676
```

Signal ID (On/Off) ← External Mixer

The SIGNAL ID softkey activates or deactivates visual signal identification. Two sweeps are performed alternately. Trace 1 shows the trace measured on the upper side band (USB) of the LO (the test sweep), trace 2 shows the trace measured on the lower side band (LSB), i.e. the reference sweep. (See also chapter 3.8.1.5, "Remarks on Signal Identification with Auto ID", on page 384).

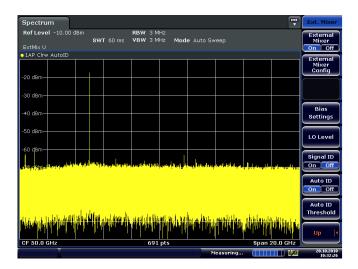
Instrument Functions – External Mixer (Option R&S FSV-B21)

The reference sweep is performed using a LO setting shifted downwards by 2*IF/<Harmonic order>. Input signals in the wanted sideband that are converted using the specified harmonic are displayed in both traces at the same position on the frequency axis. Image signals and mixer products caused by other harmonics are displayed in both traces at different positions. The user identifies the signals visually by comparing the two traces.

Since the LO frequency is displaced downwards in the reference sweep, the conversion loss of the mixer may differ from the test sweep. Therefore the level should only be measured in the test sweep (trace 1).

Mathematical functions with traces and trace copy cannot be used with the Signal ID function.

Remote command:


[SENSe:]MIXer:SIGNal on page 677

Auto ID (On/Off) ← External Mixer

Activates or deactivates automatic signal identification.

Auto ID basically functions like Signal ID (On/Off). However, the test and reference sweeps are converted into a single trace by a comparison of maximum peak values of each sweep point. The result of this comparison is displayed in trace 3 if "Signal ID" is active at the same time. If "Signal ID" is not active, the result can be displayed in any of the traces 1 to 3. Unwanted mixer products are suppressed in this calculated trace. (See also chapter 3.8.1.5, "Remarks on Signal Identification with Auto ID", on page 384).

Instrument Functions – External Mixer (Option R&S FSV-B21)

Real input signals are displayed at the same frequency in the test and reference sweeps, i.e. theoretically identical signal levels are expected in the two sweeps at the frequency of the real mixer product. If the level difference is lower than the tolerance set with Auto ID Threshold, the signal obtained in the test sweep is displayed. If a signal occurs only in the test sweep or reference sweep, it is an unwanted mixer product. The level of this signal is compared to the noise floor in the other sweep. If the S/N ratio is sufficiently large, the tolerance limit for the maximum permissible level difference is exceeded. This means that the signal with the lower level, i.e. noise in this case, is displayed.

Note that "Auto ID" functions according to the fail-safe principle, i.e. unwanted mixer products may not be detected as such but signals which are in fact real input signals are not blanked out. See also chapter 3.8.1.5, "Remarks on Signal Identification with Auto ID", on page 384.

Remote command:

[SENSe:]MIXer:SIGNal on page 677

Auto ID Threshold ← External Mixer

Allows the maximum permissible level difference between test sweep and reference sweep to be corrected during automatic comparison (Auto ID function). The input range is between 0.1 dB and 100 dB. Values of about 10 dB (i.e. default setting) generally yield satisfactory results. See also chapter 3.8.1.5, "Remarks on Signal Identification with Auto ID", on page 384.

Remote command:

[SENSe:]MIXer:THReshold on page 678

3.8.3 Introductory Example of Operation

The following example gives an example of the operation of external mixers as well as the required settings: A sine wave signal with f = 14.5 GHz is applied to the input of a multiplier. The spectrum at the multiplier output is to be recorded in the range of 52 to 60 GHz using a 2-port mixer for the V band. The mixer used is a double-diode mixer. The example of operation is described in the following steps:

Test Setup

Instrument Functions – External Mixer (Option R&S FSV-B21)

- Activating the External Mixer and Selecting the Mode
- Default Settings
- Level Correction
- Frequency-dependant Level Correction
- Level Correction with an Average Value
- Taking into Account the Cable Loss in the IF Path
- Functions for Signal Identification

Test Setup

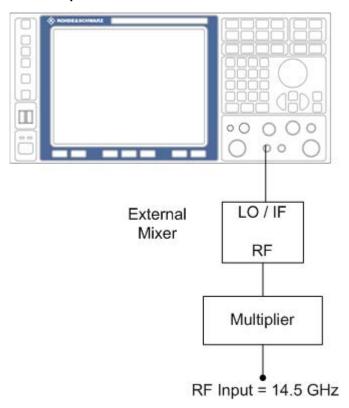


Fig. 3-44: External mixer test setup

- 1. 1. Connect the "LO OUT / IF IN" output of the R&S FSV to the LO/IF port of the external mixer.
- 2. Connect the multiplier to the external mixer.
- 3. Apply a sine wave signal with f = 14.5 GHz to the input of the multiplier.

Activating the External Mixer and Selecting the Mode

► Activate the external mixing for all applications by selecting "FREQ > External Mixer > External Mixer ON" in Spectrum mode.

Instrument Functions – External Mixer (Option R&S FSV-B21)

Default Settings

Prior to the measurement select the required band (in this case the V band).

- 1. Select "FREQ > External Mixer > External Mixer Config".
- 2. From the "Band" selection list, select the "V" band.

Level Correction

The conversion loss of the mixer can be taken into account either as a function of frequency (table with reference values) or using an average value. The frequency-dependent level correction is used in this example in order to obtain a higher precision. As an alternative, level correction based on average value can be used (see below).

- 1. Select "FREQ > External Mixer > External Mixer Config".
- 2. For Range 1, select "Table".
- From the selection list, select a conversion loss table stored on the instrument.If the selected table is not valid for the selected band, an error message is displayed.

3.8.3.1 Frequency-dependent Level Correction

- Open the external mixer configuration settings by selecting "FREQ > External Mixer
 External Mixer Config".
- 2. Select the required "Band".
- 3. For "Range 1", select "Table".
- 4. From the selection list, select a conversion loss table stored on the instrument. No further settings are necessary since the selected file contains all required parameters. If the selected table is not valid for the selected band, an error message is displayed. If no conversion loss table is available yet, create a new table first (in the "Conversion Loss Table Setup" tab, see "New Table" on page 391).
- 5. A span is automatically set which covers the whole V band (50 to 75 GHz).
- Set the frequency range to be examined by selecting "FREQ > Frequency Start"=52 GHz and "FREQ > Frequency Stop"=60 GHz.
- Reduce the video bandwidth by selecting "BW > Video Bandwidth Manual"=1 MHz.
 This allows for correct signal identification using "AUTO ID" (see also chapter 3.8.1.5, "Remarks on Signal Identification with Auto ID", on page 384).

3.8.3.2 Level Correction with an Average Value

To take an average value into account instead of the frequency-dependent level correction, enter the following parameters for the selected band in the external mixer configuration settings:

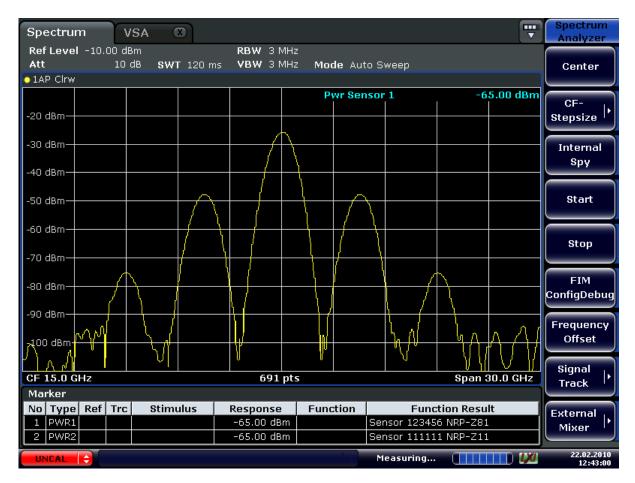
Instrument Functions - Power Sensor (R&S FSV-K9)

- Open the external mixer configuration settings by selecting "FREQ > External Mixer
 External Mixer Config".
- 2. Select the required "Band".
- 3. For "Range 1", select "Average".
- 4. Enter the average of the conversion loss.

The entered average value is taken into account for the spectrum display irrespective of the frequency. The precision that can be obtained depends on the frequency response of the mixer. With this type of level correction, measurements can be easily performed at single frequencies.

3.8.3.3 Taking into Account the Cable Loss in the IF Path

On performing level correction, the conversion loss of the mixer and also the insertion loss a_0 of the cable used to tap off the IF signal are to be taken into account. This additional loss is frequency-dependent.


- 1. Determine the insertion of the cable at the intermediate frequency $f_{\rm IF}$ = 729.9 MHz.
- 2. For level correction with average value, add the cable insertion loss to the average conversion loss.

For frequency-dependent level correction, increase each reference value by the insertion loss to the same extent. To do so, you can enter the cable loss using a transducer table. Such a table should only contain two reference values (band start and end) for which a_0 is specified.

3.9 Instrument Functions - Power Sensor (R&S FSV-K9)

For precise power measurement up to 4 power sensors can be connected to the instrument via the power sensor interface (option R&S FSV-B5, front panel) or the USB connector (front or rear panel). The Power Sensor Support firmware option provides the power measurement functions for this test setup. Both manual operation and remote control are supported. The power sensor results are displayed in the marker table.

Instrument Functions - Power Sensor (R&S FSV-K9)

For details on the connectors and compatible power sensors refer to the Quick Start Guide, chapter 1, "Front and Rear Panel".

Power Sensors can also be used to trigger a measurement at a specified power level, e.g. from a signal generator.

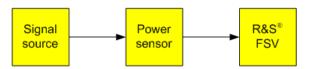


Fig. 3-45: Power sensor support – standard test setup

Using the power sensor with several applications

The power sensor cannot be used from the R&S FSV firmware and the R&S Power Viewer (virtual power meter for displaying results of the R&S NRP power sensors) simultaneously. After using the Power Viewer, close the application, then unplug and replug the sensor. Afterwards the power sensor can be used by the R&S FSV again.

To open the Power Sensor menu

The power sensor option R&S FSV–K9 is integrated within the "Input/Output" menu.

Press the INPUT/OUTPUT key.

Instrument Functions - Power Sensor (R&S FSV-K9)

• Press the "Power Sensor" softkey. The "Power Sensor" menu is displayed.

Menu and softkey description

- chapter 3.9.4, "Softkeys of the Power Sensor Menu (R&S FSV-K9)", on page 407
- chapter 3.9.5, "Power Sensor Configuration Dialog", on page 409

Remote operation

Power sensors can be operated using the following remote command subsystems:

- "CALCulate:PMETer Subsystem (Power Sensor, R&S FSV-K9)" on page 584
- chapter 4.2.3.3, "CALibration:PMETer Subsystem (Power Sensor, R&S FSV-K9)", on page 598
- chapter 4.2.3.6, "FETCh:PMETer Subsystem (Power Sensor, R&S FSV-K9)", on page 608
- chapter 4.2.3.14, "READ:PMETer Subsystem", on page 628
- "SENSe:PMETer Subsystem (Power Sensor, R&S FSV-K9)" on page 682
- chapter 4.2.3.21, "UNIT Subsystem", on page 754

Results display

The results of the power sensor measurements are displayed in the marker table. For each power sensor, a row is inserted. The sensor index is indicated in the "Function" column.

Mar	Marker					
No	Туре	Trc	Stimulus	Response	Function	Function Result
1	PWR2				Sensor 2	Sensor ?
2	PWR3				Sensor 3	Sensor ?
3	PWR4				Sensor 4	Sensor ?

Alternatively, you can query the results using the remote command FETCh < n >: PMETer? on page 608.

Tasks

The following tasks with Power Sensors are described in this chapter:

- chapter 3.9.2, "Zeroing the Power Sensor", on page 404
- chapter 3.9.1, "Using Power Sensors", on page 403
- chapter 3.9.3, "Configuring an External Power Trigger", on page 405

Further information

Information on possible error messages when using the Power Sensor is provided in chapter 3.9.6, "Error Messages", on page 413.

Instrument Functions - Power Sensor (R&S FSV-K9)

3.9.4	Softkeys of the Power Sensor Menu (R&S FSV-K9)	.407
3.9.5	Power Sensor Configuration Dialog	.409
3.9.6	Error Messages	.413

3.9.1 Using Power Sensors

Up to 4 external power sensors can be configured separately and used for precise power measurement, as a trigger, or both. All power sensors can be activated and deactivated individually.

The following procedure describes in detail how to configure and activate power sensors.

For details on the settings in the "Power Sensor Configuration" dialog box, see chapter 3.9.5, "Power Sensor Configuration Dialog", on page 409.

- 1. Press INPUT/OUTPUT > "Power Sensor" to display the "Power Sensor" menu.
- 2. Press "Power Sensor Config" to display the configuration dialog box.
- 3. Select the tab for the power sensor index you want to configure, e.g. "Sensor 1". Note: if automatic assignment is active (default) and a power sensor is already connected to the R&S FSV, the serial number of the sensor is indicated in one of the tabs. In this case, you configure that particular sensor in the corresponding tab. If no serial number is indicated, you can set up a configuration and assign a sensor manually later.
- 4. Press "Select" to evaluate the power sensor when power measurement is activated.
- 5. Define the frequency of the signal whose power you want to measure.
 - a) To define the frequency manually, select "Frequency Manual" and enter a frequency.
 - b) To determine the frequency automatically, select "Frequency Coupling" and then either "Center", to use the center frequency, or "Marker", to use the frequency defined by marker 1.
- 6. Select the "Unit" for the power result display.
- Select the measurement time for which the average is calculated. To define the number of readings to be taken into account manually, select "Manual" and enter the number in the "Number of Readings" field.
- 8. To activate the duty cycle correction, select "DutyCycle" and enter a percentage as the correction value.
- 9. If you selected "dB" or "%" as units (relative display), define a reference value:
 - To set the currently measured power as a reference value, press the "Meas -> Ref" button.
 - b) Alternatively, enter a value manually in the "Reference Value" field.

Instrument Functions - Power Sensor (R&S FSV-K9)

- c) Optionally, select the "Use Ref Level Offset" option to take the reference level offset set for the analyzer (Ref Level Offset softkey) into account for the measured power.
- 10. Optionally, define the usage of an external power trigger (see chapter 3.9.3, "Configuring an External Power Trigger", on page 405).
- 11. If necessary, repeat steps 3-10 for another power sensor.
- 12. By default, automatic assignment is active. If a power sensor is already connected to the R&S FSV, it is automatically assigned to an index and the serial number of the sensor is indicated on the corresponding tab. In this case, you already configured the settings for the assigned power sensor.
 - Otherwise, assign the connected power sensors to the power sensor configurations manually:
 - a) Press the "Power Sensor Assignment" softkey in the "Power Sensor" menu to display the assignment dialog box.
 - b) For each configuration, define whether it is to be assigned automatically or manually by activating or deactivating the "Auto Assignment" option for the corresponding power sensor index.
 - c) For manual assignment, select the serial number of one of the connected power sensors from the list.
- 13. Press the "Power Sensor On" softkey in the "Power Sensor" menu to activate power measurement for the selected power sensors.

The results of the power measurement are displayed in the marker table (Function: "Sensor<1...4>") and can be queried via the remote command FETC: PMET? (see FETCh<n>: PMETer? on page 608).

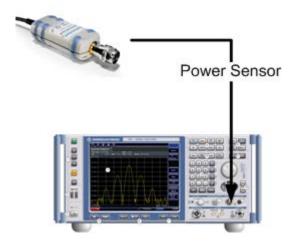
3.9.2 Zeroing the Power Sensor

You can reset each power sensor to zero. This can be done using the remote command CALibration: PMETer: ZERO: AUTO ONCE on page 598 or manually, as desribed here.

- 1. In the "Power Sensor" menu (INPUT/OUTPUT > "Power Sensor"), press "Power Sensor Config" to display the configuration dialog box.
- 2. Select the tab that is assigned to the power sensor you want to zero.
- Press the "Zeroing Power Sensor" button.
 A dialog box is displayed that prompts you to disconnect all signals from the input of the power sensor.
- 4. Disconnect all signals from the input of the power sensor and press ENTER to continue.
- 5. Wait until zeroing is complete.

Instrument Functions - Power Sensor (R&S FSV-K9)

A corresponding message is displayed.


3.9.3 Configuring an External Power Trigger

Power Sensors can be used to trigger a measurement at a specified power level, e.g. from a signal generator.

Currently, only R&S NRP-Zxy power sensors are supported.

As of firmware version 1.60 (with an appropriate detector board as of version 5.00), the power sensors can be connected to the "Power Sensor" interface directly, and no further cables are required. They can then be configured as an external trigger or a power sensor trigger. The measured power results are displayed as usual.

The previous connection and configuration of a power sensor as an external trigger is still supported. It is not necessary to change an existing trigger setup unless you want to evaluate the measured power results further.

Power Trigger Parameters

With the new implementation of the power sensor triggers some additional trigger parameters were introduced. The following figure illustrates the trigger parameters for an external power trigger.

Instrument Functions - Power Sensor (R&S FSV-K9)

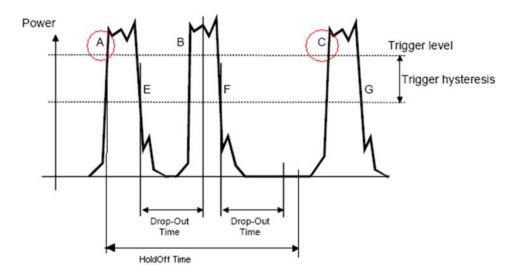


Fig. 3-46: Power Sensor Trigger Parameters

- Level: Power that triggers the measurement
- **Hysteresis**: Distance the input signal must stay below the trigger level before triggering again
- Holdoff time: Time which must pass before triggering again
- **Dropout time**: Time the input signal must stay below the trigger level before triggering again
- Slope: Direction of edge on which the trigger occurs (positive = rising, negative = falling)

Example:

In Power Sensor Trigger Parameters, the events A and C are valid trigger events for triggering on a positive slope. The trigger level is exceeded and the dropout time and holdoff time have elapsed. For triggering on a negative slope, E and G are valid trigger events. B and F, however, are not valid trigger events: For B, the dropout time has not elapsed; for F, the holdoff time has not yet elapsed.

To configure a power sensor as an external power sensor (PSE) trigger

This is the way to configure a power sensor as an explicite power sensor trigger.

- Connect the power sensor to the "Power Sensor" interface on the front panel of the R&S FSV.
- 2. Configure the power sensor for use as described in chapter 3.9.1, "Using Power Sensors", on page 403.
- 3. Select the "External Power Trigger" option.
- 4. Enter the power level at which the measurement is to be triggered ("External Trigger Level").

Instrument Functions - Power Sensor (R&S FSV-K9)

- 5. Enter the minimum power difference that should occur between two trigger events ("Hysteresis").
- 6. Enter the minimum time that should pass between two trigger events ("Holdoff").
- 7. Enter the minimum time the signal should remain beneath the trigger level before the next trigger event occurs ("Dropout").
- 8. Select whether the measurement is triggered on a rising (positive) or falling (negative) edge ("Slope").
- 9. Press the TRIG key on the front panel of the instrument to display the "Trigger" menu.
- 10. Press the "Trg/Gate Source" softkey.
- 11. Select the "Power Sensor" softkey.
- 12. If necessary, configure the "Gate Settings" to define a gated sweep (see chapter 3.2.9.3, "Using Gated Sweep Operation", on page 147).

The "Gate Mode" *LvI* is not supported for R&S power sensors. The trigger impulse sent by these sensors is not long enough to be used as a level for the gated sweep.

The R&S FSV is configured to trigger when the defined conditions for the power sensor occur. Power measurement results are provided as usual.

3.9.4 Softkeys of the Power Sensor Menu (R&S FSV-K9)

The following table shows all softkeys available in the "Power Sensor" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is delivered in the corresponding softkey description.

For details on how to configure and activate power sensors, see chapter 3.9.1, "Using Power Sensors", on page 403.

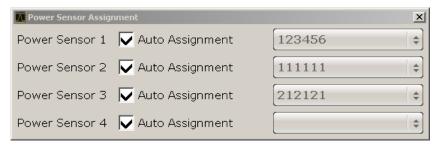
Power Sensor On/Off	407
Power Sensor Config	408
Power Sensor Assignment	
Continuous Value Undate	

Power Sensor On/Off

Switches the power measurement for all power sensors on or off. Note that in addition to this general setting, each power sensor can be activated or deactivated individually in the "Power Sensor Configuration" dialog box (see "Power Sensor Config" on page 408). However, the general setting overrides the individual settings.

Remote command:

[SENSe:]PMETer[:STATe] on page 683


Instrument Functions - Power Sensor (R&S FSV-K9)

Power Sensor Config

Opens the "Power Sensor Configuration" dialog box to configure up to 4 different power sensors. Each sensor configuration is displayed on a separate tab. The serial number of the power sensor connected to the instrument and currently assigned to the displayed configuration is indicated on the tab.

Power Sensor Assignment

Opens the "Power Sensor Assignment" dialog box to assign the connected power sensors to the configuration sets.

The detected serial numbers of the power sensors connected to the instrument are provided in a selection list. For each of the four available power sensor indexes ("Power Sensor 1"..."Power Sensor 4"), which correspond to the tabs in the configuration dialog, one of the detected serial numbers can be assigned. The physical sensor is thus assigned to the configuration setting for the selected power sensor index.

By default, serial numbers not yet assigned are automatically assigned to the next free power sensor index for which "Auto Assignment" is selected.

Alternatively, you can assign the sensors manually by deactivating the "Auto Assignment" option and selecting a serial number from the list.

Remote command:

```
SYSTem:COMMunicate:RDEVice:PMETer:DEFine on page 729
SYSTem:COMMunicate:RDEVice:PMETer:CONFigure:AUTO[:STATe]
on page 730
```

SYSTem:COMMunicate:RDEVice:PMETer:COUNt? on page 731

Continuous Value Update

If activated, the power sensor data is updated continuously even after a single sweep has completed. For continuous sweeps this setting is irrelevant.

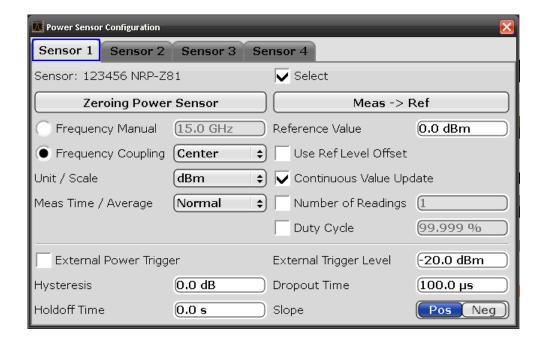
This function cannot be activated for individual sensors; if you change the setting for one sensor, it is automatically applied to all sensors.

If the power sensor is being used as a trigger (see "Power Sensor" on page 142), continuous update is not possible; this setting is ignored.

Remote command:

```
[SENSe:]PMETer:UPDate[:STATe] on page 689
```

Instrument Functions - Power Sensor (R&S FSV-K9)


3.9.5 Power Sensor Configuration Dialog

Power sensors are configured in the "Power Sensor Configuration" dialog box, which is displayed when you select the "Power Sensor Config" softkey in the "Power Sensor" menu.

Up to 4 different power sensors can be configured. Each sensor configuration is displayed on a separate tab. The serial number of the power sensor connected to the instrument and currently assigned to the displayed configuration is indicated on the tab.

For details on how to configure and activate power sensors, see chapter 3.9.1, "Using Power Sensors", on page 403.

Select

If enabled, the power sensor is evaluated when power measurement is activated.

Remote command:

[SENSe:]PMETer[:STATe] on page 683

Zeroing Power Sensor

Starts zeroing of the power sensor. For details on the zeroing process refer to chapter 3.9.2, "Zeroing the Power Sensor", on page 404.

Remote command:

CALibration:PMETer:ZERO:AUTO ONCE on page 598

Instrument Functions - Power Sensor (R&S FSV-K9)

Frequency Manual

The frequency of the signal to be measured. The power sensor has a memory with frequency-dependent correction factors. This allows extreme accuracy for signals of a known frequency.

Remote command:

```
[SENSe:] PMETer:FREQuency on page 684
```

Frequency Coupling

If enabled, the frequency is coupled to the center frequency of the instrument or to the frequency of marker 1 automatically.

Remote command:

```
[SENSe:] PMETer:FREQuency:LINK on page 684
```

Unit / Scale

Select the unit with which the measured power is to be displayed. Available units are dBm, dB, W and %.

If dB or % is selected, the display is relative to a reference value that is defined either by the measurement (Meas -> Ref) or the value in the Reference Value field.

Remote command:

```
UNIT<n>:PMETer:POWer on page 755
UNIT<n>:PMETer:POWer:RATio on page 755
```

Meas Time / Average

Selects the measurement time or switches to manual averaging mode. In general, results are more precise with longer measurement times. The following settings are recommended for different signal types to obtain stable and precise results:

Short	Stationary signals with high power (> -40dBm), because they require only a short measurement time and short measurement time provides the highest repetition rates.
Normal	Signals with lower power or of modulated signals
Long	Signals at the lower end of the measurement range (<-50 dBm) or signals with lower power to minimize the influence of noise.
Manual	Switches to manual averaging mode. The average count is defined by the "Number of Readings" on page 411 value.

Remote command:

```
[SENSe:]PMETer:MTIMe on page 685
[SENSe:]PMETer:MTIMe:AVERage[:STATe] on page 685
```

Duty Cycle

Sets the duty cycle to a percentage for the correction of pulse-modulated signals and activates the duty cycle correction. If enabled, the sensor calculates the signal pulse power from this value and the mean power.

Remote command:

```
[SENSe:]PMETer:DCYCle:STATe on page 683
[SENSe:]PMETer:DCYCle:VALue on page 683
```

Instrument Functions - Power Sensor (R&S FSV-K9)

Meas -> Ref

Sets the currently measured power as a reference value for the relative display. The reference value can also be set manually via the Reference Value setting.

Remote command:

CALCulate<n>:PMETer:RELative[:MAGNitude]:AUTO ONCE on page 585

Reference Value

Defines the reference value for relative measurements in the unit dBm.

Remote command:

CALCulate<n>:PMETer:RELative[:MAGNitude] on page 584

Use Ref Level Offset

If activated, takes the reference level offset set for the analyzer (Ref Level Offset softkey) into account for the measured power.

Remote command:

[SENSe:]PMETer:ROFFset[:STATe] on page 686

Number of Readings

Defines the number of readings (averagings) to be performed after a single sweep has been started. This setting is only available if manual averaging is selected (Meas Time / Average setting).

The values for the average count range from 0 to 256 in binary steps (1, 2, 4, 8, ...). For average count = 0 or 1, one reading is performed. The averaging and sweep count of the "Trace" menu are independent from this setting.

Results become more stable with extended averaging, particularly if signals with low power are measured. This setting can be used to minimize the influence of noise in the power sensor measurement.

Remote command:

[SENSe:] PMETer:MTIMe:AVERage:COUNt on page 685

External Power Trigger

Activates the creation of a trigger signal in the power sensor.

This option is only available in conjunction with a NRP-Z81, NRP-Z85 or NRP-Z86 power sensor.

For details see figure 3-46.

When you select this option, the following settings in the configuration dialog become unavailable:

- Unit/Scale
- Reference Value
- Use Ref Lev Offset
- Number of Readings

Instrument Functions - Power Sensor (R&S FSV-K9)

The following trigger settings become available.

Remote command:

```
[SENSe:]PMETer:TRIGger[:STATe] on page 686
```

Selecting this option causes the transmission of the following remote commands to the power sensor:

```
*RST
SENS:AVER:STAT OFF
TRIG:MAST:STAT ON
TRIG:SOUR INT
TRIG:SLOP POS
TRIG:DTIM 100e-6
INIT:CONT ON
```

External Trigger Level ← External Power Trigger

Defines the trigger level for the external power trigger.

Remote command:

```
[SENSe:]PMETer:TRIGger:LEVel on page 688
```

Hysteresis ← External Power Trigger

Defines the value for the trigger hysteresis. The hysteresis in dB is the value the input signal must stay below the IF power trigger level in order to allow a trigger to start the measurement. The range of the value is between 3 dB and 50 dB with a step width of 1 dB.

Remote command:

```
[SENSe:]PMETer:TRIGger:HYSTeresis on page 687
```

Holdoff ← External Power Trigger

Defines the holdoff value in s, which is the time which must pass before triggering, in case another trigger event happens.

Remote command:

```
[SENSe:]PMETer:TRIGger:HOLDoff on page 687
```

Dropout ← External Power Trigger

Defines the time the input signal must stay below the IF power trigger level in order to allow a trigger to start the measurement. The range of the value is between 0 s and 1 s with a step width of 100 ns.

Remote command:

```
[SENSe:] PMETer:TRIGger:DTIMe on page 687
```

Slope ← External Power Trigger

Defines whether the sweep starts after a positive or negative edge of the trigger signal. The default setting is "Pos".

Remote command:

```
[SENSe:]PMETer:TRIGger:SLOPe on page 688
```

Instrument Functions - Spectrogram Measurements

3.9.6 Error Messages

Error messages are entered in the error/event queue of the status reporting system in the remote control mode and can be queried with the command SYSTem:ERRor?.

A short explanation of the device-specific error messages for R&S FSV-K9 is given below.

Status bar message	Description
Zeroing could not be performed	Zeroing could not be performed because the RF power applied is too high.
Power sensor zero failed	

3.10 Instrument Functions - Spectrogram Measurements

Equipped with the firmware option R&S FSV-K14, the R&S FSV provides a graphical overview of changes in frequency and amplitude over a specified period of time.

Not all measurement types available in spectrum mode can be displayed in the "Spectrogram" result display. If the "Spectrogram Measurement" option is active and a measurement cannot be displayed in form of a spectrogram, the softkey of the corresponding measurement is disabled.

All settings of the base unit are also valid for the spectrogram view and vice versa.

The following chapter describes the instrument functions specific to "Spectrogram" measurements.

To open the Spectrogram view

The "Spectrogram" result display and its softkey menu is part of the "Trace" menu of the base unit.

- 1. Press the TRACE key.
- Press the "Spectrogram" softkey.
 The menu for the "Spectrogram" result display opens.

Menus and Softkeys

The main menu for the "Spectrogram" result display is part of the "Trace" menu of the base unit and is described in chapter 3.10.2, "Softkeys of the Spectrogram Menu", on page 417.

Furthermore, some special "Spectrogram" functions are included in the "Sweep" menu, see chapter 3.2.7.1, "Softkeys of the Sweep Menu", on page 117.

The "ASCII Trace Export" softkey stores the data for all frames in the history buffer of the spectrogram to a file. See chapter 3.10.4, "ASCII File Export Format for Spectrograms", on page 423 for details.

Instrument Functions - Spectrogram Measurements

Marker functions

The functions in the "Marker" menu (MKR key) are the same as for the base unit (see chapter 3.3.1.1, "Softkeys of the Marker Menu", on page 151). However, note the slightly different behavior as described in chapter 3.10.1, "General Information", on page 414.

Tasks

chapter 3.10.3, "Configuring Color Settings for Spectrograms", on page 418

Remote Operation

Remote commands for "Spectrogram" measurements are included in the following subsystems:

- "CALCulate:DELTamarker:SGRam subsystem" on page 488
- "CALCulate:MARKer:SGRam subsystem" on page 562
- "CALCulate:SGRam Subsystem" on page 587
- chapter 4.2.4.7, "MMEMory Subsystem", on page 777

3.10.1	General Information	414
3.10.2	Softkeys of the Spectrogram Menu	417
3.10.3	Configuring Color Settings for Spectrograms	418
3.10.3.1	Selecting the Color Scheme	418
3.10.3.2	Defining the Value Range of the Color Map	419
3.10.3.3	Defining the Shape and Focus of the Color Curve	420
3.10.3.4	Color Mapping Dialog	421
3.10.4	ASCII File Export Format for Spectrograms	423

3.10.1 General Information

This section provides some basic information about using the firmware application and about performing measurements with the firmware application.

Screen Layout

The Spectrogram view is divided into two screens: the spectrum analyzer result display (upper screen) and the spectrogram result display (lower screen).

Instrument Functions - Spectrogram Measurements

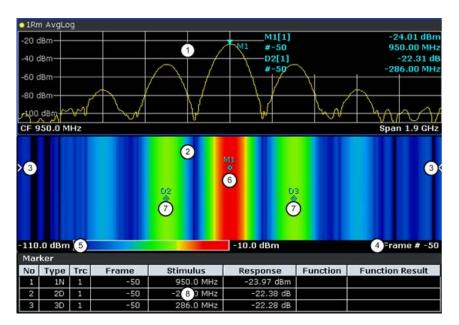


Fig. 3-47: Screen layout of the spectrogram result display

- 1 = Spectrum result display
- 2 = Spectrogram result display
- 3 = Frame indicator
- 4 = Time stamp / frame number
- 5 = Color map
- 6 = Marker
- 7 = Deltamarker
- 8 = Marker list
- Spectrum Analyzer result display (1 in figure 3-47)

This result display is the same as the Spectrum Analyzer with the x-axis representing the frequency span or time (span = 0) and the y-axis the power level. Configure and use this display in the same way as you would in Spectrum Analyzer mode.

All traces are available and you can view those traces just like in the base unit (see chapter 3.2.8.4, "Trace Mode Overview", on page 134). The trace modes View and Blank are not available for trace 1.

While performing a measurement the trace is updated continuously. You can also restore the trace to a point that has already been recorded by selecting a specific frame (see "Select Frame" on page 121). This is possible in Single Sweep mode or if the sweep has been stopped.

Spectrogram result display (2)

The data displayed in the Spectrogram is always based on the data of trace 1 in the Spectrum Analyzer result display. The Spectrogram can handle measurements in the frequency domain (span > 0) as well as measurements in the time domain (span = 0)

The Spectrogram is a cartesian diagram. The x-axis shows the power distribution of a measured signal over a specified frequency or time range. Different power levels are displayed in different colors. The y-axis represents the time with the top of the diagram being the current timeframe (the measurement runs from top to bottom). Each line (or trace) of the y-axis represents one captured frame. The frames are sorted in chronological order. One frame is equal to a certain number of sweep points, depending on the dimension of the x-axis. If there are more measurement values

Instrument Functions - Spectrogram Measurements

than measurement points, several measured values are combined in one measurement point using the selected detector (see chapter 3.2.8.6, "Detector Overview", on page 137). Frames are sorted in chronological order, beginning with the most recently recorded frame or frame number 0 at the top of the diagram. After that and below frame 0 is the frame recorded before the current frame (frame -1) and so on until the maximum number of captured frames is reached. The maximum number of frames that you can capture is summarized in the table below (see table 3-22. A marker in the form of an arrow (3) on the left and right border of the Spectrogram indicates the currently selected frame.

The actual number of the currently selected frame is shown below the diagram (4). If the time stamp is active, the R&S FSV shows the time stamp instead of the frame number (see Time Stamp (On Off).

Below the diagram there is also a color map (5) that shows the power levels corresponding to the displayed colors. The minimum value of the y-axis is on the left of the color map. The maximum value is on the right of the map. You can also change the color scheme in use (see Color Mapping. The colors corresponding to the power levels, however, are always assigned automatically.

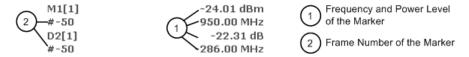
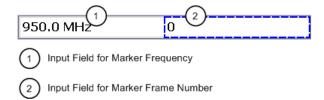

Markers and deltamarkers (6) (7) take the form of diamonds in the Spectrogram. They are only displayed in the Spectrogram, if the marker position is inside the visible area of the spectrogram. If more than two markers are active, it is possible to display a Marker Table at the bottom of the display (8).

Table 3-22: Correlation between number of sweep points and number of frames stored in the history buffer

Sweep Points	Max. History Depth
≤1250	20000
2001	12488
4001	6247
8.001	3124
16.001	1562
32.001	781


Markers and Marker Values

In the Spectrum Analyzer result display, the markers and their frequency and level values (1) are displayed in the marker field just like in the base unit (see chapter 3.3.1, "Using Markers and Delta Markers – MKR Key", on page 150). In addition to the base unit functionality, the frame number is displayed to indicate the position of the marker in time (2).

In the Spectrogram result display, you can activate up to 16 markers or deltamarkers at the same time. Any marker can be assigned to a different frame. Therefore, in addition to the frequency (1) you can set the frame number (2) when activating a new marker. If no frame number is specified, the marker is positioned on the currently selected frame.

Instrument Functions - Spectrogram Measurements

In the Spectrogram result display all markers are visible that are positioned on a visible frame

In the Spectrum Analyzer result display, only the markers positioned on the currently selected frame are visible. In Continuous Sweep mode this means that only markers positioned on frame 0 are visible. To view markers that are positioned on a frame other than frame 0 in the Spectrum Analyzer result display, it is necessary to stop the measurement and select the corresponding frame.

3.10.2 Softkeys of the Spectrogram Menu

The following chapter describes all softkeys available in the "Spectrogram" menu. It is possible that your instrument configuration does not provide all softkeys. If a softkey is only available with a special option, model or (measurement) mode, this information is delivered in the corresponding softkey description.

To display the "Spectrogram" menu, press the TRACE key and then select the "Spectogram" softkey.

Spectrogram	417
L Spectrogram (On Off)	417
L History Depth	417
L Color Mapping	418
L Time Stamp (On Off)	418
L Clear Spectrogram.	

Spectrogram

Opens the submenu for the spectrogram view.

Spectrogram (On Off) ← Spectrogram

Activates and deactivates the Spectrogram result display

Remote command:

CALCulate<n>:SGRam[:STATe] on page 590

History Depth ← **Spectrogram**

Sets the number of frames that the R&S FSV stores in its memory. The maximum number of frames depends on the Sweep Points (see chapter 3.10.1, "General Information", on page 414).

If the memory is full, the R&S FSV deletes the oldest frames stored in the memory and replaces them with the new data.

Remote command:

CALCulate<n>:SGRam:HDEPth on page 589

Instrument Functions - Spectrogram Measurements

Color Mapping ← Spectrogram

Displays the "Color Mapping" dialog box to configure the display of the spectrogram (assignment of colors to power levels).

For details see chapter 3.10.3, "Configuring Color Settings for Spectrograms", on page 418.

Remote command:

```
CALCulate<n>:SGRam:COLor on page 588

DISPlay:WINDow:SGRam:COLor:LOWer on page 607

DISPlay:WINDow:SGRam:COLor:UPPer on page 607
```

Time Stamp (On Off) ← Spectrogram

Activates and deactivates the time stamp. The time stamp shows the system time while the measurement is running. In single sweep mode or if the sweep is stopped, the time stamp shows the time and date of the end of the sweep.

When active, the time stamp replaces the display of the frame number.

Remote command:

```
CALCulate<n>:SGRam:TSTamp[:STATe] on page 590
```

Clear Spectrogram ← Spectrogram

Resets the Spectrogram result display and clears the history buffer.

Remote command:

```
CALCulate<n>:SGRam:CLEar[:IMMediate] on page 587
```

3.10.3 Configuring Color Settings for Spectrograms

Spectrograms assign power levels to different colors in order to visualize them. The color display is highly configurable to adapt the spectrograms to your needs. You can define:

- Which colors to use (Color scheme, see "Hot/Cold/Radar/Grayscale" on page 423)
- Which value range to apply the color scheme to (see chapter 3.10.3.2, "Defining the Value Range of the Color Map", on page 419)
- How the colors are distributed within the value range, i.e where the focus of the visualization lies (shape of the color curve, see chapter 3.10.3.3, "Defining the Shape and Focus of the Color Curve", on page 420)

3.10.3.1	Selecting the Color Scheme	.418
3.10.3.2	Defining the Value Range of the Color Map	.419
3.10.3.3	Defining the Shape and Focus of the Color Curve	.420
3.10.3.4	Color Mapping Dialog	.421

3.10.3.1 Selecting the Color Scheme

You can select which colors are assigned to the measured values. Four different color ranges or "schemes" are available:

Hot

Instrument Functions - Spectrogram Measurements

Uses a color range from blue to red. Blue colors indicate low levels, red colors indicate high ones.

Cold

Uses a color range from red to blue. Red colors indicate low levels, blue colors indicate high ones.

The "Cold" color scheme is the inverse "Hot" color scheme.

Radar

Uses a color range from black over green to light turquoise with shades of green in between. Dark colors indicate low levels, light colors indicate high ones.

Grayscale

Shows the results in shades of gray. Dark gray indicates low levels, light gray indicates high ones.

To select a color scheme

- 1. Tap the color map in the spectrogram display, or select the "Color Mapping" Softkey in the "Spectrogram" menu.
- 2. In the "Color Mapping" dialog box, select the option for the color scheme to be used.

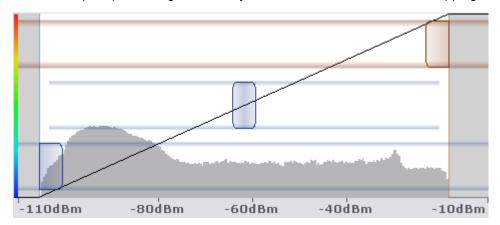
3.10.3.2 Defining the Value Range of the Color Map

If the measured values only cover a small area in the spectrogram, you can optimize the displayed value range so it becomes easier to distinguish between values that are close together, and only parts of interest are displayed at all.

The distribution of the measured values is displayed as a histogram in the "Color Mapping" dialog box (see figure 3-50). To cover the entire measurement value range, make sure the first and last bar of the histogram are included. To remove noise from the display, exclude the bottom 10 or 20 dB of the histogram.

The value range of the color map must cover at least 10% of the value range on the horizontal axis of the diagram.

The value range can be set numerically or graphically.


To set the value range graphically using the color range sliders

1. Tap the color map in the spectrogram display, or select the "Color Mapping" Softkey in the "Spectrogram" menu to display the "Color Mapping" dialog box.

Instrument Functions - Spectrogram Measurements

2. Select and drag the bottom color curve slider (indicated by a gray box at the left of the color curve pane) to the lowest value you want to include in the color mapping.

3. Select and drag the top color curve slider (indicated by a gray box at the right of the color curve pane) to the highest value you want to include in the color mapping.

To set the value range numerically

- 1. Tap the color map in the spectrogram display, or select the "Color Mapping" Softkey in the "Spectrogram" menu to display the "Color Mapping" dialog box.
- 2. In the "Start" field, enter the percentage from the left border of the histogram that marks the beginning of the value range.
- 3. In the "Stop" field, enter the percentage from the right border of the histogram that marks the end of the value range.

Example:

The color map starts at -100 dBm and ends at 0 dBm (i.e. a range of 100 dB). In order to suppress the noise, you only want the color map to start at -90 dBm. Thus, you enter 10% in the "Start" field. The R&S FSV shifts the start point 10% to the right, to -90 dBm.

Adjusting the reference level and level range

Note that changing the reference level and level range of the measurement also affects the color mapping in the spectrogram.

3.10.3.3 Defining the Shape and Focus of the Color Curve

The color mapping function assigns a specified color to a specified power level in the spectrogram display. By default, colors on the color map are distributed evenly, i.e. the color range is applied to the value range linearly. However, if a certain area of the value range is to be visualized in greater detail than the rest, you can set the focus of the color mapping to that area. Changing the focus is performed by changing the shape of the color curve.

The color curve is a tool to shift the focus of the color distribution on the color map. By default, the color curve is linear, i.e. the colors on the color map are distributed evenly. If

Instrument Functions - Spectrogram Measurements

you shift the curve to the left or right, the distribution becomes non-linear. The slope of the color curve increases or decreases. One end of the color palette then covers a large amount of results, while the other end distributes several colors over a relatively small result range.

You can use this feature to put the focus on a particular region in the diagram and to be able to detect small variations of the signal.

Example:

Fig. 3-48: Linear color curve shape = 0; colors are distributed evenly over the complete result range

In the color map based on the linear color curve, the range from -105.5 dBm to -60 dBm is covered by blue and a few shades of green only. The range from -60 dBm to -20 dBm is covered by red, yellow and a few shades of green.

Fig. 3-49: Non-linear color curve shape = -0.5

After shifting the color curve to the left (negative value), more colors cover the range from -105.5 dBm to -60 dBm (blue, green and yellow). The range from -60 dBm to -20 dBm on the other hand is dominated by various shades of red, but no other colors.

The color curve shape can be set numerically or graphically.

To set the color curve shape graphically using the slider

- 1. Tap the color map in the spectrogram display, or select the "Color Mapping" Softkey in the "Spectrogram" menu to display the "Color Mapping" dialog box.
- Select and drag the color curve shape slider (indicated by a gray box in the middle of the color curve) to the left or right. The area beneath the slider is focussed, i.e. more colors are distributed there.

To set the color curve shape numerically

- 1. Tap the color map in the spectrogram display, or select the "Color Mapping" Softkey in the "Spectrogram" menu to display the "Color Mapping" dialog box.
- 2. In the "Shape" field, enter a value to change the shape of the curve:
 - A negative value (-1 to <0) focusses the lower values
 - 0 defines a linear distribution
 - A positive value (>0 to 1) focusses the higher values

3.10.3.4 Color Mapping Dialog

The Color Mapping dialog box is displayed when you press the "Color Mapping" softkey in the "Spectrogram" menu, or tap the color map in the Spectrogram display.

Instrument Functions - Spectrogram Measurements

In addition to the available color settings, the dialog box displays the current color map and provides a preview of the display with the current settings.

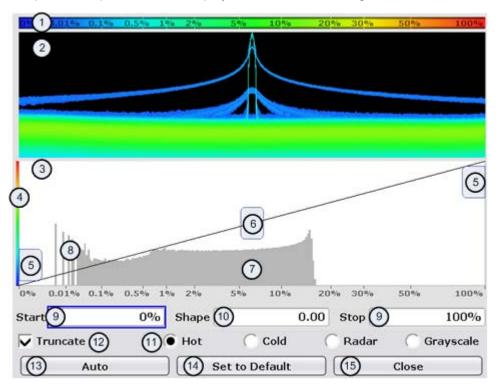


Fig. 3-50: Color Mapping dialog box

- 1 = Color map: shows the current color distribution
- 2 = Preview pane: shows a preview of the spectrogram with any changes that you make to the color scheme
- 3 = Color curve pane: graphical representation of all settings available to customize the color scheme
- 4 = Color curve in its linear form
- 5 = Color range start and stop sliders: define the range of the color map or amplitudes for the spectrogram
- 6 = Color curve slider: adjusts the focus of the color curve
- 7 = Histogram: shows the distribution of measured values
- 8 = Scale of the horizontal axis (value range)

Start

Defines the lower boundary of the value range of the spectrogram.

For details on defining the value range see chapter 3.10.3.2, "Defining the Value Range of the Color Map", on page 419.

Remote command:

DISPlay: WINDow: SGRam: COLor: LOWer on page 607

Shape

Defines the shape and focus of the color curve for the spectrogram result display.

For details see chapter 3.10.3.3, "Defining the Shape and Focus of the Color Curve", on page 420.

"-1 to <0" More colors are distributed amoung the lower values

"0" Colors are distributed linearly amoung the values

Instrument Functions - Spectrogram Measurements

">0 to 1" More colors are distributed amoung the higher values

Remote command:

DISPlay: WINDow: SGRam: COLor: SHAPe on page 607

Stop

Defines the upper boundary of the value range of the spectrogram.

For details on defining the value range see chapter 3.10.3.2, "Defining the Value Range of the Color Map", on page 419.

Remote command:

DISPlay: WINDow: SGRam: COLor: UPPer on page 607

Hot/Cold/Radar/Grayscale

Sets the color scheme for the spectrogram. For details see chapter 3.10.3.1, "Selecting the Color Scheme", on page 418

Remote command:

DISPlay: WINDow: SGRam: COLor[:STYLe] on page 608

Auto

Defines the color range automatically according to the existing measured values for optimized display.

Set to Default

Sets the color mapping to the default settings.

Remote command:

DISPlay: WINDow: SGRam: COLor: DEFault on page 607

Close

Closes the dialog box and adapts the display to the defined color settings.

3.10.4 ASCII File Export Format for Spectrograms

If the spectrogram display is selected when you select the "ASCII Trace Export" softkey, the entire histogram buffer with all frames is exported to a file. The data corresponding to a particular frame begins with information about the frame number and the time that frame was recorded.

The data of the file header consist of three columns, each separated by a semicolon: parameter name; numeric value; basic unit. The data section starts with the keyword "Trace <n>" (<n> = number of stored trace), followed by the measured data in one or several columns (depending on measurement) which are also separated by a semicolon.

File contents: header	Description
Type;R&S FSV;	Instrument model
Version;5.00;	Firmware version
Date;01.Oct 2006;	Date of data set storage

Instrument Functions - Spectrogram Measurements

File contents: header	Description
Mode;ANALYZER;SPECTROGRAM	Instrument mode
Center Freq;55000;Hz	Center frequency
Freq Offset;0;Hz	Frequency offset
Span;90000;Hz	Frequency range (0 Hz in zero span and statistics measurements)
x-Axis;LIN;	Scaling of x-axis linear (LIN) or logarithmic (LOG)
Start;10000;Hz	Start/stop of the display range.
Stop;100000;Hz	Unit: Hz for span > 0, s for span = 0, dBm/dB for statistics measurements
Ref Level;-30;dBm	Reference level
Level Offset;0;dB	Level offset
Ref Position;75; %	Position of reference level referred to diagram limits (0 % = lower edge)
y-Axis;LOG;	Scaling of y-axis linear (LIN) or logarithmic (LOG)
Level Range;100;dB	Display range in y direction. Unit: dB with x-axis LOG, % with x-axis LIN
Rf Att;20;dB	Input attenuation
RBW;100000;Hz	Resolution bandwidth
VBW;30000;Hz	Video bandwidth
SWT;0.005;s	Sweep time
Trace Mode;AVERAGE;	Display mode of trace: CLR/WRITE,AVERAGE,MAX-HOLD,MINHOLD
Detector;AUTOPEAK;	Detector set: AUTOPEAK,MAXPEAK,MINPEAK,AVER-AGE,RMS,SAMPLE,QUASIPEAK
Sweep Count;20;	Number of sweeps set

File contents: data section of the file	Description
Trace 1:;;	Selected trace
x-Unit;Hz;	Unit of x values: Hz with span > 0; s with span = 0; dBm/dB with statistics measurements
y-Unit;dBm;	Unit of y values: dB*/V/A/W depending on the selected unit with y-axis LOG or % with y-axis LIN
Values; 691;	Number of measurement points
Frames;2;	Number of exported frames
Frame;0;	Most recent frame number
Timestamp;17.Mar 11;11:27:05.990	Timestamp of this frame

Instrument Functions - Spectrogram Measurements

File contents:	Description
data section of the file	
10000;-10.3;-15.7	Measured values, identical to spectrum data:
10130;-11.5;-16.9	<x value="">, <y1>, <y2>; <y2> being available only with detector</y2></y2></y1></x>
10360;-12.0;-17.4	AUTOPEAK and containing in this case the smallest of the two measured values for a measurement point.
;;	measured values for a measurement point.
Frame;-1;	Next frame
Timestamp;17.Mar 11;11:27:05.342	Timestamp of this frame

4 Remote Control

This chapter describes how to control the R&S FSV via a remote computer. After an introduction to the basic principles of remote control, the individual commands are described in detail. At the end of this chapter, some helpful programming examples are provided.

Conventions used in SCPI command descriptions

Note the following conventions used in the remote command descriptions:

Command usage

If not specified otherwise, commands can be used both for setting and for querying parameters.

If a command can be used for setting or querying only, or if it initiates an event, the usage is stated explicitely.

• Parameter usage

If not specified otherwise, a parameter can be used to set a value and it is the result of a query.

Parameters required only for setting are indicated as **Setting parameters**. Parameters required only to refine a query are indicated as **Query parameters**. Parameters that are only returned as the result of a query are indicated as **Return values**.

Conformity

Commands that are taken from the SCPI standard are indicated as **SCPI confirmed**. All commands used by the R&S FSV follow the SCPI syntax rules.

Asynchronous commands

A command which does not automatically finish executing before the next command starts executing (overlapping command) is indicated as an **Asynchronous command**.

Reset values (*RST)

Default parameter values that are used directly after resetting the instrument (*RST command) are indicated as *RST values, if available.

Manual operation

If the result of a remote command can also be achieved in manual operation, a link to the description is inserted.

4.1	Remote Control - Basics	.421
4.1.1	Remote Control Interfaces and Protocols.	.428
4.1.2	Starting a Remote Control Session	.436
4.1.3	Returning to Manual Operation	.437
4.1.4	SCPI Command Structure	.437
4.1.5	Command Sequence and Synchronization	.445
4.1.6	Status Reporting System	.448
4.1.7	General Programming Recommendations	.464

4.1.8	The IECWIN Tool	465	
4.2	Remote Control – Commands	466	
4.2.1	Notation	467	
4.2.2	2 Common Commands		
4.2.3	Remote Control – Description of Analyzer Commands		
4.2.4	Remote Control – Description of Measurement-Independant Commands	757	
4.2.5	GPIB Commands of HP Models 856xE, 8566A/B, 8568A/B and 8594E	810	
4.2.6	Reference: Command Set of Emulated PSA Models	841	
4.3	Remote Control – Programming Examples	845	
4.3.1	Service Request	846	
4.3.2	Using Marker and Delta Marker	854	
4.3.3	Limit Lines and Limit Test	857	
4.3.4	1.3.4 Measuring the Channel and Adjacent Channel Power		
4.3.5	.5 Occupied Bandwidth Measurement		
4.3.6	Time Domain Power Measurement	863	
4.3.7	Fast Power Measurement on Power Ramps	863	
4.3.8	Fast Level Measurement Using Frequency Lists	867	
4.3.9	Level Correction of Transducers	869	
4.3.10	Measuring the Magnitude and Phase of a Signal	870	
4.3.11	Reading and Writing Files	872	
4.3.12	Spectrum Emission Mask Measurement	873	
4.3.13	Spurious Emissions Measurement	877	
4.3.14	Averaging I/Q Data	880	
4.3.15	Using IQ Gating	881	
4.3.16	Usage of Four Spectrum Instances	886	

4.1 Remote Control - Basics

This chapter provides basic information on operating an instrument via remote control.

The computer that is used for remote operation is called "controller" here.

Remote Control - Basics

4.1.1 Remote Control Interfaces and Protocols

The instrument supports different interfaces for remote control. The following table gives an overview.

Table 4-1: Remote control interfaces and protocols

Interface	Protocols, VISA*) address string	Remarks
Local Area Network (LAN)	Protocols: VXI-11 RSIB simple telnet (Raw Ethernet) VISA') address string: TCPIP::host address[::LAN device name][::INSTR]	A LAN connector is located on the rear panel of the instrument. The interface is based on TCP/IP and supports various protocols. For a description of the protocols refer to: "VXI-11 Protocol" on page 431 "RSIB Protocol" on page 431 "Telnet Protocol" on page 432
GPIB (IEC/ IEEE Bus Interface)	VISA*) address string: GPIB::primary address[::INSTR] (no secondary address)	A GPIB bus interface according to the IEC 625.1/IEEE 488.1 standard is located on the rear panel of the instrument. For a description of the interface refer to chapter 4.1.1.4, "GPIB Interface (IEC 625/IEEE 418 Bus Interface)", on page 432.

[&]quot;) VISA is a standardized software interface library providing input and output functions to communicate with instruments. A VISA installation on the controller is a prerequisite for remote control using the indicated interfaces (see also chapter 4.1.1.1, "VISA Libraries", on page 429).

Within this interface description, the term GPIB is used as a synonym for the IEC/IEEE bus interface.

SCPI (Standard Commands for Programmable Instruments)

SCPI commands - messages - are used for remote control. Commands that are not taken from the SCPI standard follow the SCPI syntax rules. The instrument supports the SCPI version 1999. The SCPI standard is based on standard IEEE 488.2 and aims at the standardization of device-specific commands, error handling and the status registers. The tutorial "Automatic Measurement Control - A tutorial on SCPI and IEEE 488.2" from John M. Pieper (R&S order number 0002.3536.00) offers detailed information on concepts and definitions of SCPI.

The requirements that the SCPI standard places on command syntax, error handling and configuration of the status registers are explained in detail in the following sections. Tables provide a fast overview of the bit assignment in the status registers. The tables are supplemented by a comprehensive description of the status registers.

Remote Control - Basics

4.1.1.1 VISA Libraries

VISA is a standardized software interface library providing input and output functions to communicate with instruments. The I/O channel (LAN or TCP/IP, USB, GPIB,...) is selected at initialization time by means of the channel–specific address string ("VISA resource string") indicated in table 4-1, or by an appropriately defined VISA alias (short name). A VISA installation is a prerequisite for remote control using the VXI-11 and RSIB protocols. The necessary VISA library is available as a separate product. For details contact your local R&S sales representative.

For more information on VISA refer to the user documentation.

4.1.1.2 Messages

The messages transferred on the data lines are divided into the following categories:

- Interface messages Interface messages are transmitted to the instrument on the data lines, with the attention line being active (LOW). They are used to communicate between the controller and the instrument. Interface messages can only be sent by instruments that have GPIB bus functionality. For details see the sections for the required interface.
- Instrument messages
 Instrument messages are employed in the same way for all interfaces, if not indicated otherwise in the description. Structure and syntax of the instrument messages are described in chapter 4.1.4, "SCPI Command Structure", on page 437. A detailed description of all messages available for the instrument is provided in the chapter "Remote Control Commands".

There are different types of instrument messages, depending on the direction they are sent:

- Commands
- Instrument responses

Commands

Commands (program messages) are messages the controller sends to the instrument. They operate the instrument functions and request information. The commands are subdivided according to two criteria:

- According to the effect they have on the instrument:
 - Setting commands cause instrument settings such as a reset of the instrument or setting the frequency.
 - Queries cause data to be provided for remote control, e.g. for identification of the instrument or polling a parameter value. Queries are formed by directly appending a question mark to the command header.
- According to their definition in standards:
 - Common commands: their function and syntax are precisely defined in standard IEEE 488.2. They are employed identically on all instruments (if implemented).
 They refer to functions such as management of the standardized status registers, reset and self test.

Remote Control - Basics

Instrument control commands refer to functions depending on the features of the instrument such as frequency settings. Many of these commands have also been standardized by the SCPI committee. These commands are marked as "SCPI confirmed" in the command reference chapters. Commands without this SCPI label are device-specific; however, their syntax follows SCPI rules as permitted by the standard.

Instrument responses

Instrument responses (response messages and service requests) are messages the instrument sends to the controller after a query. They can contain measurement results, instrument settings and information on the instrument status.

4.1.1.3 LAN Interface

To be integrated in a LAN, the instrument is equipped with a LAN interface, consisting of a connector, a network interface card and protocols. The network card can be operated with a 10 MHz Ethernet IEEE 802.3 or a 100 MHz Ethernet IEEE 802.3u interface. For remote control via a network, the PC and the instrument must be connected via the LAN interface to a common network with TCP/IP network protocol. They are connected using a commercial RJ45 cable (shielded or unshielded twisted pair category 5). The TCP/IP network protocol and the associated network services are preconfigured on the instrument. Software for instrument control and the VISA program library must be installed on the controller.

VISA library

Instrument access via VXI-11 or RSIB protocols is usually achieved from high level programming platforms using VISA as an intermediate abstraction layer. VISA encapsulates the low level VXI, RSIB or even GPIB function calls and thus makes the transport interface transparent for the user. See chapter 4.1.1.1, "VISA Libraries", on page 429 for details.

IP address

Only the IP address or the computer name (LAN device name) is required to set up the connection. The IP address/computer name is part of the "visa resource string" used by the programs to identify and control the instrument.

The visa resource string has the form:

TCPIP::host address[::LAN device name][::INSTR]

where:

- TCPIP designates the network protocol used
- host address is the IP address of the device
 The IP address for the R&S FSV is factory-set to 10.0.0.10, subnet mask 255.255.255.0.
- LAN device name is the computer name of the instrument (alternative to IP address)
- INSTR indicates that the VXI-11 protocol is used

Remote Control - Basics

Example:

Instrument has the IP address 192.1.2.3; the valid resource string is:

TCPIP::192.1.2.3::INSTR

The instrument name is *RSFSV*; the valid resource string is:

TCPIP::RSFSV::INSTR

Identifying instruments in a network

If several instruments are connected to the network, each instrument has its own IP address and associated resource string. The controller identifies these instruments by means of the resource string.

For details on configuring the LAN connection, see "Setting Up a Network (LAN) Connection" in the R&S FSV Quick Start Guide.

VXI-11 Protocol

The VXI-11 standard is based on the ONC RPC (Open Network Computing Remote Procedure Call) protocol which in turn relies on TCP/IP as the network/transport layer. The TCP/IP network protocol and the associated network services are preconfigured. TCP/IP ensures connection-oriented communication, where the order of the exchanged messages is adhered to and interrupted links are identified. With this protocol, messages cannot be lost.

RSIB Protocol

The R&S defined RSIB protocol uses the TCP/IP protocol for communication with the instrument. Remote control over RSIB is done on a message level basis using the SCPI command set of the instrument. The RSIB protocol allows you to control the instrument for example via Visual C++- and Visual Basic programs, via the Windows applications Word and Excel, as well as via National Instruments LabView, LabWindows/CVI, Agilent VEE and others. The control applications run on an external computer in the network.

RSIB Interface Functions

The library functions are adapted to the interface functions of National Instruments for GPIB programming. The functions supported by the libraries are listed in the following table.

Function	Description
RSDLLibfind()	Provides a handle for access to a device.
RSDLLibwrt()	Sends a zero-terminated string to a device.
RSDLLilwrt()	Sends a certain number of bytes to a device.
RSDLLibwrtf()	Sends the contents of a file to a device.
RSDLLibrd()	Reads data from a device into a string.
RSDLLilrd()	Reads a certain number of bytes from a device.
RSDLLibrdf()	Reads data from a device into a file.

Remote Control - Basics

Function	Description
RSDLLibtmo()	Sets timeout for RSIB functions.
RSDLLibsre()	Switches a device to the local or remote state.
RSDLLibloc()	Temporarily switches a device to the local state.
RSDLLibeot()	Enables/disables the END message for write operations.
RSDLLibrsp()	Performs a serial poll and provides the status byte.
RSDLLibonI()	Sets the device online/offline.
RSDLLTestSrq()	Checks whether a device has generated an SRQ.
RSDLLWaitSrq()	Waits until a device generates an SRQ.
RSDLLSwapBytes	Swaps the byte sequence for binary numericdisplay (only required for non- Intel platforms).

Telnet Protocol

As an alternative to remote control the instrument can use a simple telnet protocol (port 5025). Unlike using the VXI-11 protocol, no VISA installation is necessary on the remote controller side. This protocol is sometimes also referred to as "socket communication" or "Raw Ethernet mode". To control the instrument, only a Telnet program is required. The Telnet program is part of every operating system.

4.1.1.4 GPIB Interface (IEC 625/IEEE 418 Bus Interface)

To be able to control the instrument via the GPIB bus, the instrument and the controller must be linked by a GPIB bus cable. A GPIB bus card, the card drivers and the program libraries for the programming language used must be provided in the controller. The controller must address the instrument with the GPIB bus address (see "GPIB Instrument Address" on page 435).

Notes and Conditions

In connection with the GPIB interface, note the following:

- Up to 15 instruments can be connected
- The total cable length is restricted to a maximum of 15 m or 2 m times the number of devices, whichever is less; the cable lenth between two instruments should not exceed 2 m.
- A wired "OR"-connection is used if several instruments are connected in parallel.
- Any connected IEC-bus cables should be terminated by an instrument or controller.

GPIB Interface Messages

Interface messages are transmitted to the instrument on the data lines, with the attention line (ATN) being active (LOW). They are used for communication between the controller and the instrument and can only be sent by a computer which has the function of a GPIB bus controller. GPIB interface messages can be further subdivided into:

Remote Control - Basics

 Universal commands: act on all instruments connected to the GPIB bus without previous addressing

Addressed commands: only act on instruments previously addressed as listeners

The following figure provides an overview of the available communication lines used by the GPIB interface.

Remote Control - Basics

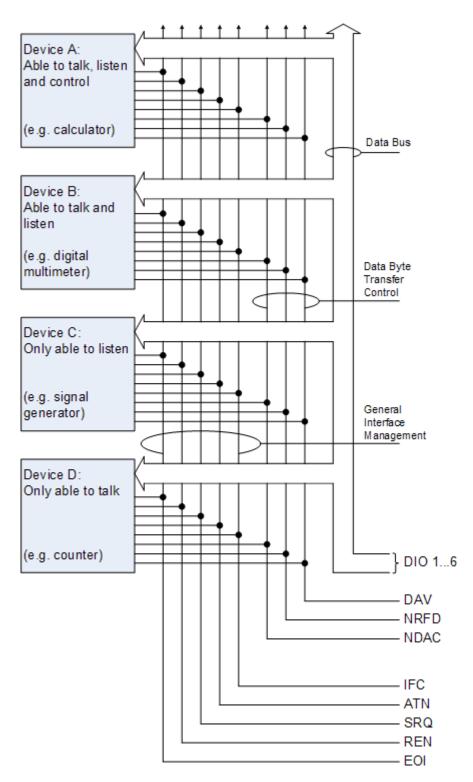


Fig. 4-1: Communication lines used by the GPIB interface

Remote Control - Basics

Universal Commands

Universal commands are encoded in the range 10 through 1F hex. They affect all instruments connected to the bus and do not require addressing.

Command	Effect on the instrument
DCL (Device Clear)	Aborts the processing of the commands just received and sets the command processing software to a defined initial state. Does not change the instrument settings.
IFC (Interface Clear) *)	Resets the interfaces to the default setting.
LLO (Local Lockout)	The LOC/IEC ADDR key is disabled.
SPE (Serial Poll Enable)	Ready for serial poll.
SPD (Serial Poll Disable)	End of serial poll.
PPU (Parallel Poll Unconfigure)	End of the parallel-poll state.
the second secon	

^{*)} IFC is not a real universal command, it is sent via a separate line; however, it also affects all instruments connected to the bus and does not require addressing

Addressed Commands

Addressed commands are encoded in the range 00 through 0F hex. They only affect instruments addressed as listeners.

Command	Effect on the instrument
GET (Group Execute Trigger)	Triggers a previously active instrument function (e.g. a sweep). The effect of the command is the same as with that of a pulse at the external trigger signal input.
GTL (Go to Local)	Transition to the "local" state (manual control).
REN (Remote Enable)	Transition to the "remote" state (remote control). Transition to the "remote" state (remote control). (Not really an addressed command, uses a separate line.)
PPC (Parallel Poll Configure)	Configures the instrument for parallel poll.
SDC (Selected Device Clear)	Aborts the processing of the commands just received and sets the command processing software to a defined initial state. Does not change the instrument setting.

GPIB Instrument Address

In order to operate the instrument via remote control, it must be addressed using the GPIB address. The remote control address is factory-set to 20, but it can be changed if it does not fit in the network environment. For remote control, addresses 0 through 30 are allowed. The GPIB address is maintained after a reset of the instrument settings.

Setting the GPIB address

- 1. On the R&S FSV, press the SETUP key.
- 2. Press the "General Setup" softkey.

Remote Control - Basics

3. Press the "GPIB" softkey.

The submenu for setting the parameters of the remote control interface is displayed.

4. Press the "GPIB Address" softkey.

The edit dialog box for the GPIB address is displayed.

5. Enter a value between 0 and 30.

Remote command: SYST:COMM:GPIB:ADDR 18

4.1.2 Starting a Remote Control Session

When you switch on the instrument, it is always in manual operation state ("local" state) and can be operated via the front panel.

Starting remote control

 Send an addressed command (GTR - Go to Remote) from a controller to the instrument.

The instrument is switched to remote control ("remote" state). Operation via the front panel is disabled. Only the "Local" softkey is displayed to return to manual operation. The instrument remains in the remote state until it is reset to the manual state via the instrument or via remote control interfaces. Switching from manual operation to remote control and vice versa does not affect the other instrument settings.

- 2. During program execution, send the SYSTem: DISPlay: UPDate ON command to activate the display of results.
 - The changes in the device settings and the recorded measurement values are displayed on the instrument screen.
- To obtain optimum performance during remote control, send the SYSTem:DISPlay:UPDate OFF command to hide the display of results and diagrams again (default setting in remote control).
- 4. To prevent unintentional return to manual operation, disable the keys of the instrument using the universal command LLO.
 - Switching to manual mode is only possible via remote control then. This function is only available for the GPIB interface.
- 5. To enable the keys of the R&S FSV again, switch the instrument to local mode (GTL Go to Local), i.e. deactivate the REN line of the remote control interface.

If the instrument is operated exclusively in remote control, it is recommended that you switch on the power-save mode for the display. For more details on this mode refer to the R&S FSV Quick Start Guide.

Remote Control - Basics

4.1.3 Returning to Manual Operation

Before you switch back to manual operation, all remote command processing must be completed. Otherwise, the instrument will switch back to remote control immediately.

► Press the "Local" softkey or the PRESET key, or use the following GPIB command: status = viGpibControlREN(vi, VI_GPIB_REN_ADDRESS_GTL)

4.1.4 SCPI Command Structure

SCPI commands consist of a so-called header and, in most cases, one or more parameters. The header and the parameters are separated by a "white space" (ASCII code 0 to 9, 11 to 32 decimal, e.g. blank). The headers may consist of several mnemonics (keywords). Queries are formed by appending a question mark directly to the header.

The commands can be either device-specific or device-independent (common commands). Common and device-specific commands differ in their syntax.

4.1.4.1 Syntax for Common Commands

Common (=device-independent) commands consist of a header preceded by an asterisk (*) and possibly one or more parameters.

Examples:

*RST	RESET	Resets the instrument.
*ESE	EVENT STATUS ENABLE	Sets the bits of the event status enable registers.
*ESR?	EVENT STATUS QUERY	Queries the contents of the event status register.
*IDN?	IDENTIFICATION QUERY	Queries the instrument identification string.

Remote Control - Basics

4.1.4.2 Syntax for Device-Specific Commands

Not all commands used in the following examples are necessarily implemented in the instrument.

For demonstration purposes only, assume the existence of the following commands for this section:

- DISPlay[:WINDow<1...4>]:MAXimize <Boolean>
- FORMat:READings:DATA <type>[, <length>]
- HCOPy:DEVice:COLor <Boolean>
- HCOPy:DEVice:CMAP:COLor:RGB <red>, <green>, <blue>
- HCOPy[:IMMediate]
- HCOPy:ITEM:ALL
- HCOPy:ITEM:LABel <string>
- HCOPy:PAGE:DIMensions:QUADrant[<N>]
- HCOPy:PAGE:ORIentation LANDscape | PORTrait
- HCOPy:PAGE:SCALe <numeric value>
- MMEMory:COPY <file source>,<file destination>
- SENSE:BANDwidth|BWIDth[:RESolution] <numeric value>
- SENSe:FREQuency:STOP <numeric value>
- SENSe:LIST:FREQuency <numeric value>{,<numeric value>}

Long and short form

The mnemonics feature a long form and a short form. The short form is marked by upper case letters, the long form corresponds to the complete word. Either the short form or the long form can be entered; other abbreviations are not permitted.

Example:

HCOPy: DEVice: COLor ON is equivalent to HCOP: DEV: COL ON.

Case-insensitivity

Upper case and lower case notation only serves to distinguish the two forms in the manual, the instrument itself is case-insensitive.

Numeric suffixes

If a command can be applied to multiple instances of an object, e.g. specific channels or sources, the required instances can be specified by a suffix added to the command. Numeric suffixes are indicated by angular brackets (<1...4>, <n>, <i>) and are replaced by a single value in the command. Entries without a suffix are interpreted as having the suffix 1.

Remote Control - Basics

Example:

Definition: HCOPy: PAGE: DIMensions: QUADrant [<N>]

Command: HCOP: PAGE: DIM: QUAD2

This command refers to the quadrant 2.

Different numbering in remote control

For remote control, the suffix may differ from the number of the corresponding selection used in manual operation. SCPI prescribes that suffix counting starts with 1. Suffix 1 is the default state and used when no specific suffix is specified.

Some standards define a fixed numbering, starting with 0. If the numbering differs in manual operation and remote control, it is indicated for the corresponding command.

Optional mnemonics

Some command systems permit certain mnemonics to be inserted into the header or omitted. These mnemonics are marked by square brackets in the description. The instrument must recognize the long command to comply with the SCPI standard. Some commands are considerably shortened by these optional mnemonics.

Example:

Definition: HCOPy[:IMMediate]

Command: HCOP: IMM is equivalent to HCOP

Optional mnemonics with numeric suffixes

Do not omit an optional mnemonic if it includes a numeric suffix that is relevant for the effect of the command.

Example:

Definition:DISPlay[:WINDow<1...4>]:MAXimize <Boolean>

Command: DISP: MAX ON refers to window 1.

In order to refer to a window other than 1, you must include the optional WINDow parameter with the suffix for the required window.

DISP: WIND2: MAX ON refers to window 2.

Parameters

Parameters must be separated from the header by a "white space". If several parameters are specified in a command, they are separated by a comma (,). For a description of the parameter types, refer to chapter 4.1.4.3, "SCPI Parameters", on page 440.

Example:

Definition:HCOPy:DEVice:CMAP:COLor:RGB <red>, < green>, < blue>

Command: HCOP: DEV: CMAP: COL: RGB 3,32,44

Remote Control - Basics

Special characters

Parameters

A vertical stroke in parameter definitions indicates alternative possibilities in the sense of "or". The effect of the command differs, depending on which parameter is used.

Example:

Definition:HCOPy:PAGE:ORIentation LANDscape | PORTrait
Command HCOP:PAGE:ORI LAND specifies landscape orientation
Command HCOP:PAGE:ORI PORT specifies portrait orientation

Mnemonics

A selection of mnemonics with an identical effect exists for several commands. These mnemonics are indicated in the same line; they are separated by a vertical stroke. Only one of these mnemonics needs to be included in the header of the command. The effect of the command is independent of which of the mnemonics is used.

Example:

DefinitionSENSE:BANDwidth|BWIDth[:RESolution] <numeric_value>

The two following commands with identical meaning can be created:

SENS:BAND:RES 1 SENS:BWID:RES 1

[] Mnemonics in square brackets are optional and may be inserted into the header or omitted.

Example: HCOPy[:IMMediate]
HCOP:IMM is equivalent to HCOP

Parameters in curly brackets are optional and can be inserted once or several times, or omitted.

Example: SENSe:LIST:FREQuency <numeric_value>{,<numeric_value>}

The following are valid commands:

SENS:LIST:FREQ 10 SENS:LIST:FREQ 10,20 SENS:LIST:FREQ 10,20,30,40

4.1.4.3 SCPI Parameters

Many commands are supplemented by a parameter or a list of parameters. The parameters must be separated from the header by a "white space" (ASCII code 0 to 9, 11 to 32 decimal, e.g. blank). Allowed parameters are:

- Numeric values
- Special numeric values
- Boolean parameters
- Text
- Character strings
- Block data

The parameters required for each command and the allowed range of values are specified in the command description.

Remote Control - Basics

Numeric values

Numeric values can be entered in any form, i.e. with sign, decimal point and exponent. Values exceeding the resolution of the instrument are rounded up or down. The mantissa may comprise up to 255 characters, the exponent must lie inside the value range -32000 to 32000. The exponent is introduced by an "E" or "e". Entry of the exponent alone is not allowed. In the case of physical quantities, the unit can be entered. Allowed unit prefixes are G (giga), MA (mega), MOHM and MHZ are also allowed), K (kilo), M (milli), U (micro) and N (nano). If the unit is missing, the basic unit is used.

Example: SENS: FREQ: STOP 1.5GHz = SENS: FREQ: STOP 1.5E9

Units

For physical quantities, the unit can be entered. Allowed unit prefixes are:

- G (giga)
- MA (mega), MOHM, MHZ
- K (kilo)
- M (milli)
- U (micro)
- N (nano)

If the unit is missing, the basic unit is used.

Example:

```
SENSe: FREQ: STOP 1.5GHz = SENSe: FREQ: STOP 1.5E9
```

Some settings allow relative values to be stated in percent. According to SCPI, this unit is represented by the PCT string.

Example:

HCOP: PAGE: SCAL 90PCT

Special numeric values

The texts listed below are interpreted as special numeric values. In the case of a query, the numeric value is provided.

MIN/MAX

MINimum and MAXimum denote the minimum and maximum value.

DEF

DEFault denotes a preset value which has been stored in the EPROM. This value conforms to the default setting, as it is called by the *RST command.

UP/DOWN

UP, DOWN increases or reduces the numeric value by one step. The step width can be specified via an allocated step command for each parameter which can be set via UP, DOWN.

INF/NINF

Remote Control - Basics

INFinity, Negative INFinity (NINF) represent the numeric values 9.9E37 or -9.9E37, respectively. INF and NINF are only sent as instrument responses.

NAN

Not A Number (NAN) represents the value 9.91E37. NAN is only sent as a instrument response. This value is not defined. Possible causes are the division of zero by zero, the subtraction of infinite from infinite and the representation of missing values.

Example:

Setting command: SENSe:LIST:FREQ MAXimum Query: SENS:LIST:FREQ?, Response: 3.5E9

Queries for special numeric values

The numeric values associated to MAXimum/MINimum/DEFault can be queried by adding the corresponding mnemonics to the command. They must be entered following the quotation mark.

Example: SENSe:LIST:FREQ? MAXimum

Returns the maximum numeric value as a result.

Boolean Parameters

Boolean parameters represent two states. The "ON" state (logically true) is represented by "ON" or a numeric value 1. The "OFF" state (logically untrue) is represented by "OFF" or the numeric value 0. The numeric values are provided as the response for a query.

Example:

Setting command: HCOPy: DEV: COL ON

Query: HCOPy: DEV: COL?

Response: 1

Text parameters

Text parameters observe the syntactic rules for mnemonics, i.e. they can be entered using a short or long form. Like any parameter, they have to be separated from the header by a white space. In the case of a query, the short form of the text is provided.

Example:

Setting command: HCOPy: PAGE: ORIentation LANDscape

Query: HCOP: PAGE: ORI?

Response: LAND

Character strings

Strings must always be entered in quotation marks (' or ").

Remote Control - Basics

Example:

```
HCOP:ITEM:LABel "Test1" Or HCOP:ITEM:LABel 'Test1'
```

Block data

Block data is a format which is suitable for the transmission of large amounts of data. A command using a block data parameter has the following structure:

Example:

```
FORMat:READings:DATA #45168xxxxxxxx
```

The ASCII character # introduces the data block. The next number indicates how many of the following digits describe the length of the data block. In the example the 4 following digits indicate the length to be 5168 bytes. The data bytes follow. During the transmission of these data bytes all end or other control signs are ignored until all bytes are transmitted.

#0 specifies a data block of indefinite length. The use of the indefinite format requires a NL^END message to terminate the data block. This format is useful when the length of the transmission is not known or if speed or other considerations prevent segmentation of the data into blocks of definite length.

4.1.4.4 Overview of Syntax Elements

The following table provides an overview of the syntax elements:

:	The colon separates the mnemonics of a command. In a command line the separating semicolon marks the uppermost command level.
;	The semicolon separates two commands of a command line. It does not alter the path.
,	The comma separates several parameters of a command.
?	The question mark forms a query.
*	The asterisk marks a common command.
	Quotation marks introduce a string and terminate it (both single and double quotation marks are possible).
#	The hash symbol introduces binary, octal, hexadecimal and block data. Binary: #B10110 Octal: #O7612 Hexa: #HF3A7 Block: #21312
	A "white space" (ASCII-Code 0 to 9, 11 to 32 decimal, e.g. blank) separates the header from the parameters.

4.1.4.5 Structure of a command line

A command line may consist of one or several commands. It is terminated by one of the following:

a <New Line>

Remote Control - Basics

- a <New Line> with EOI
- an EOI together with the last data byte

Several commands in a command line must be separated by a semicolon ";". If the next command belongs to a different command system, the semicolon is followed by a colon.

Example:

```
MMEM:COPY "Test1", "MeasurementXY"; : HCOP:ITEM ALL
```

This command line contains two commands. The first command belongs to the MMEM system, the second command belongs to the HCOP system.

If the successive commands belong to the same system, having one or several levels in common, the command line can be abbreviated. To this end, the second command after the semicolon starts with the level that lies below the common levels. The colon following the semicolon must be omitted in this case.

Example:

```
HCOP: ITEM ALL; : HCOP: IMM
```

This command line contains two commands. Both commands are part of the HCOP command system, i.e. they have one level in common.

When abbreviating the command line, the second command begins with the level below HCOP. The colon after the semicolon is omitted. The abbreviated form of the command line reads as follows:

```
HCOP: ITEM ALL; IMM
```

A new command line always begins with the complete path.

Example:

HCOP:ITEM ALL
HCOP:IMM

4.1.4.6 Responses to Queries

A query is defined for each setting command unless explicitly specified otherwise. It is formed by adding a question mark to the associated setting command. According to SCPI, the responses to queries are partly subject to stricter rules than in standard IEEE 488.2.

The requested parameter is transmitted without a header.

```
Example: HCOP: PAGE: ORI?, Response: LAND
```

 Maximum values, minimum values and all other quantities that are requested via a special text parameter are returned as numeric values.

```
Example: SENSe: FREQuency: STOP? MAX, Response: 3.5E9
```

- Numeric values are output without a unit. Physical quantities are referred to the basic units or to the units set using the Unit command. The response 3.5E9 in the previous example stands for 3.5 GHz.
- Truth values (Boolean values) are returned as 0 (for OFF) and 1 (for ON).

Remote Control - Basics

Example:

Setting command: HCOPy: DEV: COL ON

Query: HCOPy: DEV: COL?

Response: 1

Text (character data) is returned in a short form.

Example:

Setting command: HCOPy: PAGE: ORIentation LANDscape

Query: HCOP:PAGE:ORI?

Response: LAND

4.1.5 Command Sequence and Synchronization

IEEE 488.2 defines a distinction between overlapped and sequential commands:

- A sequential command is one which finishes executing before the next command starts executing. Commands that are processed quickly are usually implemented as sequential commands.
- An overlapping command is one which does not automatically finish executing before the next command starts executing. Usually, overlapping commands take longer to process and allow the program to do other tasks while being executed. If overlapping commands do have to be executed in a defined order, e.g. in order to avoid wrong measurement results, they must be serviced sequentially. This is called synchronization between the controller and the instrument.

Setting commands within one command line, even though they may be implemented as sequential commands, are not necessarily serviced in the order in which they have been received. In order to make sure that commands are actually carried out in a certain order, each command must be sent in a separate command line.

Example: Commands and queries in one message

The response to a query combined in a program message with commands that affect the queried value is not predictable.

The following commands always return the specified result:

:FREQ:STAR 1GHZ; SPAN 100 :FREQ:STAR?

Result:

1000000000 (1 GHz)

Whereas the result for the following commands is not specified by SCPI:

```
:FREQ:STAR 1GHz;STAR?;SPAN 1000000
```

The result could be the value of STARt before the command was sent since the instrument might defer executing the individual commands until a program message terminator is received. The result could also be 1 GHz if the instrument executes commands as they are received.

As a general rule, send commands and queries in different program messages.

Remote Control - Basics

Example: Overlapping command with *OPC

The instrument implements <code>INITiate[:IMMediate]</code> as an overlapped command. Assuming that <code>INITiate[:IMMediate]</code> takes longer to execute than <code>*OPC</code>, sending the following command sequence results in initiating a sweep and, after some time, setting the <code>OPC</code> bit in the <code>ESR</code>:

INIT; *OPC.

Sending the following commands still initiates a sweep:

INIT; *OPC; *CLS

However, since the operation is still pending when the instrument executes *CLS, forcing it into the "Operation Complete Command Idle" State (OCIS), *OPC is effectively skipped. The OPC bit is not set until the instrument executes another *OPC command.

The following list includes the commands for which a synchronization via *OPC, *OPC? or *WAI is mandatory:

Command	Purpose
INIT	start measurement
INIT:CONM	continue measurement
CALC:MARK:FUNC:ZOOM	zoom frequency range around marker 1
CALC:STAT:SCAL:AUTO ONCE	optimize level settings for signal statistic measurement functions
[SENS:]POW:ACH:PRES:RLEV	optimize level settings for adjacent channel power measurements

4.1.5.1 Preventing Overlapping Execution

To prevent an overlapping execution of commands, one of the commands *OPC, *OPC? or *WAI can be used. All three commands cause a certain action only to be carried out after the hardware has been set. By suitable programming, the controller can be forced to wait for the corresponding action to occur.

Table 4-2: Synchronization using *OPC, *OPC? and *WAI

Com- mand	Action	Programming the controller
*OPC	Sets the Operation Complete bit in the ESR after all previous commands have been executed.	 Setting bit 0 in the ESE Setting bit 5 in the SRE Waiting for service request (SRQ)
*OPC?	Stops command processing until 1 is returned. This is only the case after the Operation Complete bit has been set in the ESR. This bit indicates that the previous setting has been completed.	Sending *OPC? directly after the command whose processing should be terminated before other commands can be executed.
*WAI	Stops further command processing until all commands sent before *WAI have been executed.	Sending *WAI directly after the command whose processing should be terminated before other commands are executed.

Remote Control - Basics

Command synchronization using *WAI or *OPC? appended to an overlapped command is a good choice if the overlapped command takes only little time to process. The two synchronization techniques simply block overlapped execution of the command.

For time consuming overlapped commands it is usually desirable to allow the controller or the instrument to do other useful work while waiting for command execution. Use one of the following methods:

*OPC with a service request

- Set the OPC mask bit (bit no. 0) in the ESE: *ESE 1
- 2. Set bit no. 5 in the SRE: *SRE 32 to enable ESB service request.
- 3. Send the overlapped command with *OPC
- 4. Wait for a service request

The service request indicates that the overlapped command has finished.

*OPC? with a service request

- 1. Set bit no. 4 in the SRE: *SRE 16 to enable MAV service request.
- 2. Send the overlapped command with *OPC?
- 3. Wait for a service request

The service request indicates that the overlapped command has finished.

Event Status Register (ESE)

- 1. Set the OPC mask bit (bit no. 0) in the ESE: *ESE 1
- 2. Send the overlapped command without *OPC, *OPC? or *WAI
- Poll the operation complete state periodically (by means of a timer) using the sequence: *OPC; *ESR?

A return value (LSB) of 1 indicates that the overlapped command has finished.

*OPC? with short timeout

- 1. Send the overlapped command without *OPC, *OPC? or *WAI
- Poll the operation complete state periodically (by means of a timer) using the sequence: <short timeout>; *OPC?
- 3. A return value (LSB) of 1 indicates that the overlapped command has finished. In case of a timeout, the operation is ongoing.
- 4. Reset timeout to former value
- Clear the error queue with SYStem: ERROr? to remove the "-410, Query interrupted" entries.

Remote Control - Basics

Using several threads in the controller application

As an alternative, provided the programming environment of the controller application supports threads, separate threads can be used for the application GUI and for controlling the instrument(s) via SCPI.

A thread waiting for a *OPC? thus will not block the GUI or the communication with other instruments.

4.1.6 Status Reporting System

The status reporting system stores all information on the current operating state of the instrument, and on errors which have occurred. This information is stored in the status registers and in the error queue. Both can be queried via GPIB bus or LAN interface (STATus... commands).

4.1.6.1 Hierarchy of Status Registers

As shown in the following figure, the status information is of hierarchical structure.

Remote Control - Basics

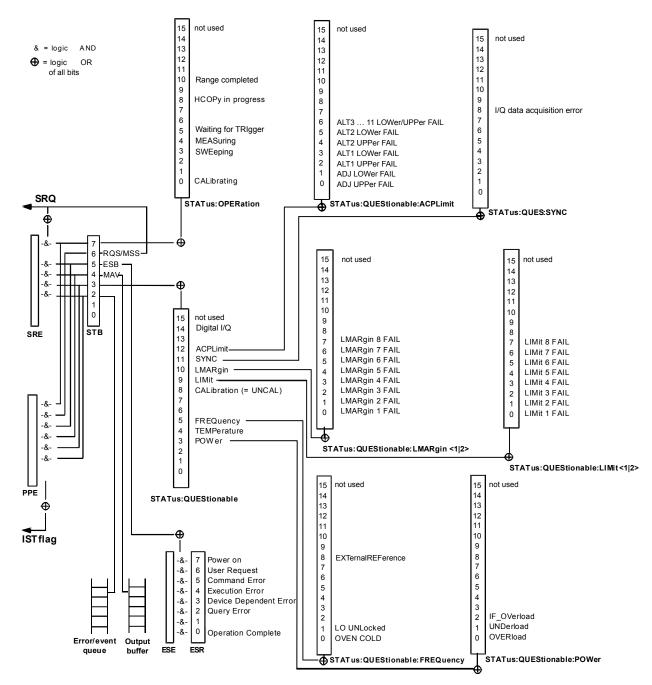


Fig. 4-2: Overview of status registers in the R&S FSV

STB, SRE

The STatus Byte (STB) register and its associated mask register Service Request Enable (SRE) form the highest level of the status reporting system. The STB provides a rough overview of the instrument status, collecting the information of the lower-level registers.

ESR, SCPI registers

The STB receives its information from the following registers:

 The Event Status Register (ESR) with the associated mask register standard Event Status Enable (ESE)

Remote Control - Basics

 The STATus:OPERation and STATus:QUEStionable registers which are defined by SCPI and contain detailed information on the instrument

• IST, PPE

The IST flag ("Individual STatus"), like the SRQ, combines the entire instrument status in a single bit. The PPE fulfills the same function for the IST flag as the SRE for the service request.

Output buffer

The output buffer contains the messages the instrument returns to the controller. It is not part of the status reporting system but determines the value of the MAV bit in the STB and thus is represented in the overview.

All status registers have the same internal structure.

SRE, ESE

The service request enable register SRE can be used as ENABle part of the STB if the STB is structured according to SCPI. By analogy, the ESE can be used as the ENABle part of the ESR.

4.1.6.2 Structure of a SCPI Status Register

Each standard SCPI register consists of 5 parts. Each part has a width of 16 bits and has different functions. The individual bits are independent of each other, i.e. each hardware status is assigned a bit number which is valid for all five parts. Bit 15 (the most significant bit) is set to zero for all parts. Thus the contents of the register parts can be processed by the controller as positive integers.

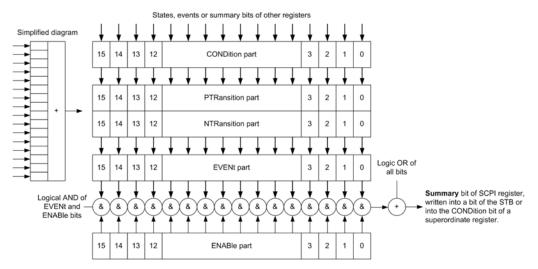


Fig. 4-3: The status-register model

Description of the five status register parts

The five parts of a SCPI register have different properties and functions:

CONDition

Remote Control - Basics

The CONDition part is written into directly by the hardware or the sum bit of the next lower register. Its contents reflect the current instrument status. This register part can only be read, but not written into or cleared. Its contents are not affected by reading.

PTRansition / NTRansition

The two transition register parts define which state transition of the CONDition part (none, 0 to 1, 1 to 0 or both) is stored in the EVENt part.

The **Positive-TRansition** part acts as a transition filter. When a bit of the CONDition part is changed from 0 to 1, the associated PTR bit decides whether the EVENt bit is set to 1.

- PTR bit =1: the EVENt bit is set.
- PTR bit =0: the EVENt bit is not set.

This part can be written into and read as required. Its contents are not affected by reading.

The **Negative-TRansition** part also acts as a transition filter. When a bit of the CONDition part is changed from 1 to 0, the associated NTR bit decides whether the EVENt bit is set to 1.

- NTR bit =1: the EVENt bit is set.
- NTR bit =0: the EVENt bit is not set.

This part can be written into and read as required. Its contents are not affected by reading.

EVENt

The EVENt part indicates whether an event has occurred since the last reading, it is the "memory" of the condition part. It only indicates events passed on by the transition filters. It is permanently updated by the instrument. This part can only be read by the user. Reading the register clears it. This part is often equated with the entire register.

ENABle

The ENABle part determines whether the associated EVENt bit contributes to the sum bit (see below). Each bit of the EVENt part is "ANDed" with the associated ENABle bit (symbol '&'). The results of all logical operations of this part are passed on to the sum bit via an "OR" function (symbol '+').

ENABle bit = 0: the associated EVENt bit does not contribute to the sum bit ENABle bit = 1: if the associated EVENt bit is "1", the sum bit is set to "1" as well. This part can be written into and read by the user as required. Its contents are not affected by reading.

Sum bit

The sum bit is obtained from the EVENt and ENABle part for each register. The result is then entered into a bit of the CONDition part of the higher-order register.

The instrument automatically generates the sum bit for each register. Thus an event can lead to a service request throughout all levels of the hierarchy.

4.1.6.3 Contents of the Status Registers

In the following sections, the contents of the status registers are described in more detail.

Remote Control - Basics

Status Byte (STB) and Service Request Enable Register (SRE)

The STatus Byte (STB) is already defined in IEEE 488.2. It provides a rough overview of the instrument status by collecting the pieces of information of the lower registers. A special feature is that bit 6 acts as the sum bit of the remaining bits of the status byte.

The STB can thus be compared with the CONDition part of an SCPI register and assumes the highest level within the SCPI hierarchy.

The STB is read using the command *STB? or a serial poll.

The STatus Byte (STB) is linked to the Service Request Enable (SRE) register. Each bit of the STB is assigned a bit in the SRE. Bit 6 of the SRE is ignored. If a bit is set in the SRE and the associated bit in the STB changes from 0 to 1, a service request (SRQ) is generated. The SRE can be set using the command *SRE and read using the command *SRE?.

Table 4-3: Meaning of the bits used in the status byte

Bit No.	Meaning
01	Not used
2	Error Queue not empty The bit is set when an entry is made in the error queue. If this bit is enabled by the SRE, each entry of the error queue generates a service request. Thus an error can be recognized and specified in greater detail by polling the error queue. The poll provides an informative error message. This procedure is to be recommended since it considerably reduces the problems involved with remote control.
3	QUEStionable status register summary bit The bit is set if an EVENt bit is set in the QUEStionable status register and the associated ENABle bit is set to 1. A set bit indicates a questionable instrument status, which can be specified in greater detail by querying the STATUS: QUEStionable status register.
4	MAV bit (message available) The bit is set if a message is available in the output queue which can be read. This bit can be used to enable data to be automatically read from the instrument to the controller.
5	ESB bit Sum bit of the event status register. It is set if one of the bits in the event status register is set and enabled in the event status enable register. Setting of this bit indicates a serious error which can be specified in greater detail by polling the event status register.
6	MSS bit (master status summary bit) The bit is set if the instrument triggers a service request. This is the case if one of the other bits of this registers is set together with its mask bit in the service request enable register SRE.
7	STATus:OPERation status register summary bit The bit is set if an EVENt bit is set in the OPERation status register and the associated ENABle bit is set to 1. A set bit indicates that the instrument is just performing an action. The type of action can be determined by querying the STATUS:OPERation status register.

IST Flag and Parallel Poll Enable Register (PPE)

As with the SRQ, the IST flag combines the entire status information in a single bit. It can be read by means of a parallel poll (see "Parallel Poll" on page 462) or using the command *IST?.

Remote Control - Basics

The parallel poll enable register (PPE) determines which bits of the STB contribute to the IST flag. The bits of the STB are "ANDed" with the corresponding bits of the PPE, with bit 6 being used as well in contrast to the SRE. The IST flag results from the "ORing" of all results. The PPE can be set using commands *PRE and read using command *PRE?.

Event Status Register (ESR) and Event Status Enable Register (ESE)

The Event Status Register (ESR) is the source for the registers on the highest levels and is similar to the EVENt part of a SCPI register. It is defined by IEEE 488.2. You can read out the ESR with *ESR?.

The corresponding ENABle part of the ESR is the Event Status Enable mask register (ESE). The ESE is directly linked to the ESR. You can control the ESE with *ESE.

Table 4-4: Meaning of the bits used in the event status register

Bit No.	Meaning
0	Operation Complete This bit is set on receipt of the command *OPC exactly when all previous commands have been executed.
1	Unused
2	Query Error This bit is set if either the controller wants to read data from the instrument without having sent a query, or if it does not fetch requested data and sends new instructions to the instrument instead. The cause is often a query which is faulty and hence cannot be executed.
3	Device-dependent Error This bit is set if a device-dependent error occurs. The R&S FSV adds a number to the error queue. The number is either in the range between -300
	and -399 or greater than 0. If the number is positive, it indicates the error type in greater detail.
4	Execution Error This bit is set if a received command is syntactically correct but cannot be performed for other reasons. An error message with a number between -200 and -300, which denotes the error in greater detail, is entered into the error queue.
5	Command Error This bit is set if a remote command is undefined or has a incorrect syntax. The R&S FSV adds a number to the error queue. The number is in the range between -100 and -200 and indicates the error type in greater detail.
6	User Request This bit is set when you press the "Local" softkey.
7	Power On (supply voltage on) This bit is set when you turn on the instrument.

STATus: OPERation Register

The STATus:OPERation register contains information on current activities of the R&S FSV. It also contains information on activities that have been executed since the last read out.

Remote Control - Basics

You can read out the register with STATus: OPERation: CONDition or STATus: OPERation[:EVENt].

Table 4-5: Meaning of the bits used in the STATus: OPERation register

Bit No.	Meaning
0	CALibrating
	This bit is set as long as the instrument is performing a calibration.
1-2	Not used
3	SWEeping
	Sweep is being performed; identical to bit 4
4	MEASuring
	Measurement is being performed; identical to bit 3
5	Waiting for TRIgger
	Instrument is ready to trigger and waiting for trigger signal
6-7	Not used
8	HardCOPy in progress
	This bit is set while the instrument is printing a hardcopy.
9	Not used
10	Stop after Range
	This bit is set when a range in the sweep list has been completed if "Stop after Range" has been activated.
11-14	Not used
15	This bit is always 0.

STATus: QUEStionable Register

The STATus:QUEStionable register contains information on instrument states that do not meet the specifications.

You can read out the register with STAT: QUES: COND or STAT: QUES: EVEN.

Table 4-6: Meaning of the bits used in the STATus:QUEStionable register

Bit No.	Meaning
0 - 2	Unused
3	POWer
	This bit is set if the measured power level is questionable.
	The STATus:QUEStionable:POWer Register provides more information on the error type.
4	TEMPerature
	This bit is set if the temperature is questionable.
5	FREQuency
	This bit is set if there is anything wrong with the frequency of the local oscillator or the reference frequency.
	The STATus:QUEStionable:FREQuency Register provides more information on the error type.

Remote Control - Basics

Bit No.	Meaning
6 - 7	Unused
8	CALibration
	This bit is set if the R&S FSV is unaligned ("UNCAL" display)
9	LIMit (device-specific)
	This bit is set if a limit value is violated.
	The STATus:QUEStionable:LIMit Register provides more information on the error type.
10	LMARgin (device-specific)
	This bit is set if a margin is violated.
	The STATus:QUEStionable:LMARgin Register provides more information on the error type.
11	SYNC (device-specific)
	This bit is set if the R&S FSV is not synchronized to the signal that is applied.
	The R&S FSV is not synchronized if
	 it cannot synchronize to midamble during a measurement or premeasurement it cannot find a burst during a measurement or premeasurement
	the results deviate too much from the expected value during premeasurements
12	ACPLimit (device-specific)
	This bit is set if a limit during ACLR measurements is violated.
	The STATus:QUEStionable:ACPLimit Register provides more information on the error type.
13	Not used
14	Digital I/Q (device-specific)
	This bit is set if a connection error occurs at the R&S Digital I/Q Interface (R&S FSV-B17 option), see "STATus:QUEStionable:DIQ Register" on page 456
	The STATus:QUEStionable:DIQ Register provides more information on the error type.
15	This bit is always 0.

STATus:QUEStionable:ACPLimit Register

The STATus:QUEStionable:ACPLimit register contains information about the results of a limit check during ACLR measurements.

You can read out the register with STATus: QUEStionable: ACPLimit: CONDition? or STATus: QUEStionable: ACPLimit[:EVENt]?

Table 4-7: Meaning of the bits used in the STATus:QUEStionable:ACPLimit register

Bit No.	Meaning
0	ADJ UPPer FAIL This bit is set if the limit is exceeded in the upper adjacent channel
1	ADJ LOWer FAIL This bit is set if the limit is exceeded in the lower adjacent channel.
2	ALT1 UPPer FAIL This bit is set if the limit is exceeded in the upper 1st alternate channel.
3	ALT1 LOWer FAIL This bit is set if the limit is exceeded in the lower 1st alternate channel.

Remote Control - Basics

Bit No.	Meaning
4	ALT2 UPPer FAIL This bit is set if the limit is exceeded in the upper 2nd alternate channel.
5	ALT2 LOWer FAIL This bit is set if the limit is exceeded in the lower 2nd alternate channel.
6	ALT3 11 LOWer/UPPer FAIL This bit is set if the limit is exceeded in one of the lower or upper alternate channels 3 11.
7 to 14	Unused
15	This bit is always 0.

STATus:QUEStionable:DIQ Register

This register contains information about the state of the digital I/Q input and output. This register is available with option R&S FSV-B17.

The status of the ${\tt STATus:QUESTionable:DIQ}$ register is indicated in bit 14 of the "STATus:QUESTionable" register.

You can read out the state of the register with STATus:QUEStionable:DIQ: CONDition? on page 719 and STATus:QUEStionable:DIQ[:EVENt]? on page 719.

Bit No.	Meaning				
0	Digital I/Q Input Device connected				
	This bit is set if a device is recognized and connected to the R&S Digital I/Q Interface of the analyzer.				
1	Digital I/Q Input Connection Protocol in progress				
	This bit is set while the connection between analyzer and digital baseband data signal source (e.g. R&S SMU, R&S Ex-I/Q-Box) is established.				
2	Digital I/Q Input Connection Protocol error				
	This bit is set if an error occurred during establishing of the connect between analyzer and digital I/Q data signal source (e.g. R&S SMU, R&S Ex-I/Q-Box) is established.				
3-5	not used				
6	Digital I/Q Input FIFO Overload				
	This bit is set if the input transfer rate is too high. The R&S FSV can process a maximum transfer rate of 128MHz.				
7	not used				
8	Digital I/Q Output Device connected				
	This bit is set if a device is recognized and connected to the Digital I/Q Output.				
9	Digital I/Q Output Connection Protocol in progress				
	This bit is set while the connection between analyzer and digital I/Q data signal sink (e.g. R&S SMU, R&S Ex-I/Q-Box) is established.				

Remote Control - Basics

Bit No.	Meaning					
10	Digital I/Q Output Connection Protocol error					
	This bit is set if an error occurred while the connection between analyzer and digital I/Q data signal sink (e.g. R&S SMU, R&S Ex-I/Q-Box) is established.					
11-14	not used					
15	This bit is always set to 0.					

STATus:QUEStionable:FREQuency Register

The STATus:QUEStionable:FREQuency register contains information about the condition of the local oscillator and the reference frequency.

You can read out the register with STATus:QUEStionable:FREQuency: CONDition? or STATus:QUEStionable:FREQuency[:EVENt]?.

Table 4-8: Meaning of the bits used in the STATus:QUEStionable:FREQuency register

Bit No.	Meaning
0	OVEN COLD
	This bit is set if the reference oscillator has not yet attained its operating temperature. "OCXO" is displayed.
1	LO UNLocked
	This bit is set if the local oscillator no longer locks. "LOUNL" is displayed.
2 to 7	Unused
8	EXTernalREFerence
	This bit is set if you have selected an external reference oscillator but did not connect a useable external reference source.
	In that case the synthesizer can not lock. The frequency in all probability is not accurate.
9 to 14	Unused
15	This bit is always 0.

STATus:QUEStionable:LIMit Register

The STATus:QUEStionable:LIMit register contains information about the results of a limit check when you are working with limit lines.

The number of LIMit registers depends on the number of measurement windows available in any operating mode.

You can read out the register with STATus:QUEStionable:LIMit<m>:
CONDition? or STATus:QUEStionable:LIMit<m>:CONDition?.

Table 4-9: Meaning of the bits used in the STATus:QUEStionable:LIMit register

Bit No.	Meaning			
0	LIMit 1 FAIL			
	This bit is set if limit line 1 is violated.			
1	LIMit 2 FAIL			
	This bit is set if limit line 2 is violated.			

Remote Control - Basics

Bit No.	Meaning
2	LIMit 3 FAIL
	This bit is set if limit line 3 is violated.
3	LIMit 4 FAIL
	This bit is set if limit line 4 is violated.
4	LIMit 5 FAIL
	This bit is set if limit line 5 is violated.
5	LIMit 6 FAIL
	This bit is set if limit line 6 is violated.
6	LIMit 7 FAIL
	This bit is set if limit line 7 is violated.
7	LIMit 8 FAIL
	This bit is set if limit line 8 is violated.
8 to 14	Unused
15	This bit is always 0.

STATus:QUEStionable:LMARgin Register

This register contains information about the observance of limit margins.

It can be read using the commands

STATus:QUEStionable:LMARgin:CONDition? and STATus:QUEStionable:LMARgin[:EVENt]?.

Table 4-10: Meaning of the bits used in the STATus:QUEStionable:LMARgin register

Bit No.	Meaning
0	LMARgin 1 FAIL This bit is set if limit margin 1 is violated.
1	LMARgin 2 FAIL This bit is set if limit margin 2 is violated.
2	LMARgin 3 FAIL This bit is set if limit margin 3 is violated.
3	LMARgin 4 FAIL This bit is set if limit margin 4 is violated.
4	LMARgin 5 FAIL This bit is set if limit margin 5 is violated.
5	LMARgin 6 FAIL This bit is set if limit margin 6 is violated.
6	LMARgin 7 FAIL This bit is set if limit margin 7 is violated.
7	LMARgin 8 FAIL This bit is set if limit margin 8 is violated.

Remote Control - Basics

Bit No.	Meaning
8 to 14	Not used
15	This bit is always 0.

STATus:QUEStionable:POWer Register

The STATus:QUEStionable:POWer register contains information about possible overload situations that may occur during operation of the R&S FSV.

You can read out the register with STATus:QUEStionable:POWer:CONDition? or STATus:QUEStionable:POWer[:EVENt]?

Table 4-11: Meaning of the bits used in the STATus:QUEStionable:POWer register

Bit No.	Meaning
0	OVERload
	This bit is set if an overload occurs at the RF input.
	The R&S FSV displays the enhancement label "OVLD".
1	UNDerload
	This bit is set if an underload occurs at the RF input.
	The R&S FSV displays the enhancement label "UNLD".
2	IF_OVerload
	This bit is set if an overload occurs in the IF path.
	The R&S FSV displays the enhancement label "IFOVL".
3 to 14	Unused
15	This bit is always 0.

STATus: QUEStionable: SYNC Register

This register contains information about the state of the I/Q data acquisition. This register is used with option Digital Baseband Interface (R&S FSV-B17).

The status of the STATus:QUESTionable:SYNC register is indicated in bit 11 of the STATus:QUESTionable register.

You can read out the state of the register with STATus:QUEStionable:SYNC: CONDition? on page 726 and STATus:QUEStionable:SYNC[:EVENt]? on page 726.

Bit No.	Meaning				
0-7	not used				
8	I/Q data acquisition error				
	This bit is set if an error occurs during I/Q data acquisition because the input sample rates or number of samples between the signal source and the R&S FSV do not match.				
9-14	not used				
15	This bit is always set to 0.				

Remote Control - Basics

STATus:QUEStionable:SYNC:CONDition?	460
STATus:QUEStionable:SYNC:ENABle	460
STATus:QUEStionable:SYNC:NTRansition	460
STATus:QUEStionable:SYNC:PTRansition	460
STATus:QUEStionable:SYNC[:EVENt]?	461

STATus:QUEStionable:SYNC:CONDition? < ChannelName>

This command reads out the CONDition section of the status register.

The command does not delete the contents of the EVENt section.

Query parameters:

<ChannelName> String containing the name of the channel.

The parameter is optional. If you omit it, the command works for

the currently active channel.

Usage: Query only

STATus:QUEStionable:SYNC:ENABle <BitDefinition>, <ChannelName>

This command controls the ENABle part of a register.

The ENABle part allows true conditions in the EVENt part of the status register to be reported in the summary bit. If a bit is 1 in the enable register and its associated event bit transitions to true, a positive transition will occur in the summary bit reported to the next higher level.

Parameters:

<BitDefinition> Range: 0 to 65535

<ChannelName> String containing the name of the channel.

The parameter is optional. If you omit it, the command works for

the currently active channel.

STATus:QUEStionable:SYNC:NTRansition <BitDefinition>,<ChannelName>

This command controls the Negative TRansition part of a register.

Setting a bit causes a 1 to 0 transition in the corresponding bit of the associated register. The transition also writes a 1 into the associated bit of the corresponding EVENt register.

Parameters:

<BitDefinition> Range: 0 to 65535

<ChannelName> String containing the name of the channel.

The parameter is optional. If you omit it, the command works for

the currently active channel.

STATus:QUEStionable:SYNC:PTRansition <BitDefinition>,<ChannelName>

These commands control the Positive TRansition part of a register.

Remote Control - Basics

Setting a bit causes a 0 to 1 transition in the corresponding bit of the associated register. The transition also writes a 1 into the associated bit of the corresponding EVENt register.

Parameters:

<BitDefinition> Range: 0 to 65535

<ChannelName> String containing the name of the channel.

The parameter is optional. If you omit it, the command works for

the currently active channel.

STATus:QUEStionable:SYNC[:EVENt]? < ChannelName>

This command reads out the EVENt section of the status register.

The command also deletes the contents of the EVENt section.

Query parameters:

<ChannelName> String containing the name of the channel.

The parameter is optional. If you omit it, the command works for

the currently active channel.

Usage: Query only

4.1.6.4 Application of the Status Reporting System

The purpose of the status reporting system is to monitor the status of one or several devices in a measuring system. To do this and react appropriately, the controller must receive and evaluate the information of all devices. The following standard methods are used:

- Service request (SRQ) initiated by the instrument
- **Serial poll** of all devices in the bus system, initiated by the controller in order to find out who sent a SRQ and why
- Parallel poll of all devices
- Query of a specific instrument status by means of commands
- Query of the error queue

Service Request

Under certain circumstances, the instrument can send a service request (SRQ) to the controller. Usually this service request initiates an interrupt at the controller, to which the control program can react appropriately. As evident from figure 4-2, an SRQ is always initiated if one or several of bits 2, 3, 4, 5 or 7 of the status byte are set and enabled in the SRE. Each of these bits combines the information of a further register, the error queue or the output buffer. The ENABle parts of the status registers can be set such that arbitrary bits in an arbitrary status register initiate an SRQ. In order to make use of the possibilities of the service request effectively, all bits should be set to "1" in enable registers SRE and ESE.

Remote Control - Basics

Use of the command *OPC to generate an SRQ at the end of a sweep

- CALL InstrWrite (analyzer, "*ESE 1") 'Set bit 0 in the ESE (Operation Complete)
- 2. CALL InstrWrite(analyzer, "*SRE 32") 'Set bit 5 in the SRE (ESB)
- CALL InstrWrite (analyzer, "*INIT; *OPC") 'Generate an SRQ after operation complete

After its settings have been completed, the instrument generates an SRQ.

The SRQ is the only possibility for the instrument to become active on its own. Each controller program should cause the instrument to initiate a service request if errors occur. The program should react appropriately to the service request.

A detailed example for a service request routine can be found in chapter 4.3.1, "Service Request", on page 846.

Serial Poll

In a serial poll, just as with command *STB, the status byte of an instrument is queried. However, the guery is realized via interface messages and is thus clearly faster.

The serial poll method is defined in IEEE 488.1 and used to be the only standard possibility for different instruments to poll the status byte. The method also works for instruments which do not adhere to SCPI or IEEE 488.2.

The serial poll is mainly used to obtain a fast overview of the state of several instruments connected to the controller.

Parallel Poll

In a parallel poll, up to eight instruments are simultaneously requested by the controller using a single command to transmit 1 bit of information each on the data lines, i.e., to set the data line allocated to each instrument to a logical "0" or "1".

In addition to the SRE register, which determines the conditions under which an SRQ is generated, there is a Parallel Poll Enable register (PPE) which is ANDed with the STB bit by bit, considering bit 6 as well. This register is ANDed with the STB bit by bit, considering bit 6 as well. The results are ORed, the result is possibly inverted and then sent as a response to the parallel poll of the controller. The result can also be queried without parallel poll using the command *IST?.

The instrument first has to be set for the parallel poll using the command PPC. This command allocates a data line to the instrument and determines whether the response is to be inverted. The parallel poll itself is executed using PPE.

The parallel poll method is mainly used to find out quickly which one of the instruments connected to the controller has sent a service request. To this effect, SRE and PPE must be set to the same value.

Remote Control - Basics

Query of an instrument status

Each part of any status register can be read using queries. There are two types of commands:

- The common commands *ESR?, *IDN?, *IST?, *STB? query the higher-level registers.
- The commands of the STATus system query the SCPI registers (STATus:QUEStionable...)

The returned value is always a decimal number that represents the bit pattern of the queried register. This number is evaluated by the controller program.

Queries are usually used after an SRQ in order to obtain more detailed information on the cause of the SRQ.

Decimal representation of a bit pattern

The STB and ESR registers contain 8 bits, the SCPI registers 16 bits. The contents of a status register are specified and transferred as a single decimal number. To make this possible, each bit is assigned a weighted value. The decimal number is calculated as the sum of the weighted values of all bits in the register that are set to 1.

Example:

The decimal value 40 = 32 + 8 indicates that bits no. 3 and 5 in the status register (e.g. the QUEStionable status summary bit and the ESB bit in the STatus Byte) are set.

Error Queue

Each error state in the instrument leads to an entry in the error queue. The entries of the error queue are detailed plain text error messages that can be looked up in the Error Log or queried via remote control using SYSTem: ERRor [:NEXT]? or

SYSTem: ERROr: ALL?. Each call of SYSTem: ERROr[:NEXT]? provides one entry from the error queue. If no error messages are stored there any more, the instrument responds with 0, "No error".

The error queue should be queried after every SRQ in the controller program as the entries describe the cause of an error more precisely than the status registers. Especially in the test phase of a controller program the error queue should be queried regularly since faulty commands from the controller to the instrument are recorded there as well.

4.1.6.5 Reset Values of the Status Reporting System

The following table contains the different commands and events causing the status reporting system to be reset. None of the commands, except *RST and

Remote Control - Basics

SYSTem: PRESet, influence the functional instrument settings. In particular, DCL does not change the instrument settings.

Table 4-12: Resetting the status reporting system

Event	Switching on supply voltage Power-On-Status- Clear		DCL, SDC (Device Clear, Selected	*RST or SYS- Tem:PRE- Set	STA- Tus:PRE- Set	*CLS
Effect	0	1	Device Clear)			
Clear STB, ESR	-	yes	-	-	-	yes
Clear SRE, ESE	-	yes	-	-	-	-
Clear PPE	-	yes	-	-	-	-
Clear EVENt parts of the registers	-	yes	-	-	-	yes
Clear ENABle parts of all OPERation and QUEStionable registers; Fill ENABle parts of all other reg- isters with "1".	-	yes	-	-	yes	-
Fill PTRansition parts with "1"; Clear NTRansition parts	-	yes	-	-	yes	-
Clear error queue	yes	yes	-	-	-	yes
Clear output buffer	yes	yes	yes	1)	1)	1)
Clear command processing and input buffer	yes	yes	yes	-	-	-

¹⁾ The first command in a command line that immediately follows a <PROGRAM MESSAGE TERMINATOR> clears the output buffer.

4.1.7 General Programming Recommendations

Initial instrument status before changing settings

Manual operation is designed for maximum possible operating convenience. In contrast, the priority of remote control is the "predictability" of the instrument status. Thus, when a command attempts to define incompatible settings, the command is ignored and the instrument status remains unchanged, i.e. other settings are not automatically adapted. Therefore, control programs should always define an initial instrument status (e.g. using the *RST command) and then implement the required settings.

Command sequence

As a general rule, send commands and queries in different program messages. Otherwise, the result of the query may vary depending on which operation is performed first (see also Preventing Overlapping Execution).

Remote Control - Basics

Reacting to malfunctions

The service request is the only possibility for the instrument to become active on its own. Each controller program should instruct the instrument to initiate a service request in case of malfunction. The program should react appropriately to the service request.

Error queues

The error queue should be queried after every service request in the controller program as the entries describe the cause of an error more precisely than the status registers. Especially in the test phase of a controller program the error queue should be queried regularly since faulty commands from the controller to the instrument are recorded there as well.

4.1.8 The IECWIN Tool

The R&S FSV is delivered with *IECWIN* installed, an auxiliary tool provided free of charge by R&S. IECWIN is a program to send SCPI commands to a measuring instrument either interactively or from a command script.

The R&S IECWIN32 tool is provided free of charge. The functionality may change in a future version without notice.

IECWIN offers the following features:

- Connection to instrument via several interfaces/protocols (GPIB, VISA, named pipe (if IECWIN is run on the instrument itself), RSIB)
- Interactive command entry
- Browsing available commands on the instrument
- Error checking following every command
- Execution of command scripts
- Storing binary data to a file
- Reading binary data from a file
- Generation of a log file

For command scripts, IECWIN offers the following features:

- Synchronization with the instrument on every command
- Checking expected result for query commands (as string or numeric value)
- Checking for expected errors codes
- Optional pause on error
- Nested command scripts
- Single step mode
- Conditional execution, based on the *IDN and *OPT strings

Remote Control - Commands

You can use the IECWIN to try out the programming examples provided in the R&S FSV User Manuals.

Starting IECWIN

IECWIN is available from the Windows task bar on the R&S FSV, or by executing the following file:

C:\Program Files (x86)\Rohde-Schwarz\FSWG\<version_number>\
iecwin32.exe

You can also copy the program to any Windows PC or laptop. Simply copy the iecwin32.exe, iecwin.chm and rsib32.dll files from the location above to the same folder on the target computer.

When the tool is started, a "Connection settings" dialog box is displayed. Define the connection from the computer the IECWIN tool is installed on to the R&S FSV you want to control. If you are using the tool directly on the R&S FSV, you can use an NT Pipe (COM Parser) connection, which requires no further configuration. For help on setting up other connection types, check the tool's online help (by clicking the "Help" button in the dialog box).

The IECWIN offers an online help with extensive information on how to work with the tool.

4.2 Remote Control – Commands

This chapter describes all remote control commands for the "Spectrum" mode (Analyzer) functions, and the basic measurment-mode independent functions of the R&S FSV in detail.

Each subsystem starts with a list of commands, which provides quick access to all commands of the subsystem. Be aware, that for one subsystem more than one SCPI command lists can exist, depending on the functionality (analyzer and basic functions, and possibly firmware-option specific functions). For details on the notation refer to chapter 4.2.1, "Notation", on page 467.

Remote commands of the base unit firmware

- chapter 4.2.3, "Remote Control Description of Analyzer Commands", on page 474
- chapter 4.2.4, "Remote Control Description of Measurement-Independent Commands", on page 757

Remote Control – Commands

4.2.1 Notation

In the following sections, all commands implemented in the instrument are first listed and then described in detail, arranged according to the command subsystems. The notation is adapted to the SCPI standard. The SCPI conformity information is included in the individual description of the commands.

Individual Description

The individual description contains the complete notation of the command. An example for each command, the *RST value and the SCPI information are included as well.

The options and operating modes for which a command can be used are indicated by the following abbreviations:

Abbreviation	Description
Α	spectrum analysis
A-F	spectrum analysis – span > 0 only (frequency mode)
A-T	spectrum analysis – zero span only (time mode)
ADEMOD	analog demodulation (option R&S FSV-K7)
вт	Bluetooth (option R&S FSV-K8)
CDMA	CDMA 2000 base station measurements (option R&S FSV-K82)
EVDO	1xEV-DO base station analysis (option R&S FSV-K84)
GSM	GSM/Edge measurements (option R&S FSV-K10)
IQ	IQ Analyzer mode
OFDM	WiMAX IEEE 802.16 OFDM measurements (option R&S FSV-K93)
OFDMA/WiBro	WiMAX IEEE 802.16e OFDMA/WiBro measurements (option R&S FSV-K93)
NF	Noise Figure measurements (R&S FSV-K30)
PHN	Phase Noise measurements (R&S FSV-K40)
PSM	Power Sensor measurements (option R&S FSV-K9)
SFM	Stereo FM measurements (optionR&S FSV-K7S)
SPECM	Spectogram mode (option R&S FSV-K14)
TDS	TD-SCDMA base station / UE measurements (option R&S FSV-K76/K77)
VSA	Vector Signal Analysis (option R&S FSV-K70)
WCDMA	3GPP Base Station measurements (option R&S FSV-K72), 3GPP UE measurements (option R&S FSV-K73)
WLAN	WLAN TX measurements (option R&S FSV-K91)

The spectrum analysis mode is implemented in the basic unit. For the other modes, the corresponding options are required.

Remote Control - Commands

Upper/Lower Case Notation

Upper/lower case letters are used to mark the long or short form of the key words of a command in the description. The instrument itself does not distinguish between upper and lower case letters.

Special Characters

A selection of key words with an identical effect exists for several commands. These keywords are indicated in the same line; they are separated by a vertical stroke. Only one of these keywords needs to be included in the header of the command. The effect of the command is independent of which of the keywords is used.

Example:

SENSe: FREQuency: CW |: FIXed

The two following commands with identical meaning can be created. They set the frequency of the fixed frequency signal to 1 kHz:

SENSe:FREQuency:CW 1E3
SENSe:FREQuency:FIXed 1E3

A vertical stroke in parameter indications marks alternative possibilities in the sense of "or". The effect of the command differs, depending on which parameter is used.

Example: Selection of the parameters for the command

[SENSe<1...4>:]AVERage<1...4>:TYPE VIDeo | LINear

- [] Key words in square brackets can be omitted when composing the header. The full command length must be accepted by the instrument for reasons of compatibility with the SCPI standards.

 Parameters in square brackets can be incorporated optionally in the command or omitted as well.
- Parameters in braces can be incorporated optionally in the command, either not at all, once or several times.

Description of Parameters

Due to the standardization, the parameter section of SCPI commands consists always of the same syntactical elements. SCPI has therefore specified a series of definitions, which are used in the tables of commands. In the tables, these established definitions are indicated in angled brackets (<...>) and is briefly explained in the following.

For details see chapter 4.1.4.3, "SCPI Parameters", on page 440.

<Boolean>

This keyword refers to parameters which can adopt two states, "on" and "off". The "off" state may either be indicated by the keyword OFF or by the numeric value 0, the "on" state is indicated by ON or any numeric value other than zero. Parameter queries are always returned the numeric value 0 or 1.

Remote Control - Commands

<numeric_value> <num>

These keywords mark parameters which may be entered as numeric values or be set using specific keywords (character data). The following keywords given below are permitted:

- MAXimum: This keyword sets the parameter to the largest possible value.
- MINimum: This keyword sets the parameter to the smallest possible value.
- DEFault: This keyword is used to reset the parameter to its default value.
- UP: This keyword increments the parameter value.
- DOWN: This keyword decrements the parameter value.

The numeric values associated to MAXimum/MINimum/DEFault can be queried by adding the corresponding keywords to the command. They must be entered following the quotation mark.

Example:

SENSe: FREQuency: CENTer? MAXimum

Returns the maximum possible numeric value of the center frequency as result.

<arbitrary block program data>

This keyword is provided for commands the parameters of which consist of a binary data block.

4.2.2 Common Commands

Common commands are described in the IEEE 488.2 (IEC 625-2) standard. These commands have the same effect and are employed in the same way on different devices. The headers of these commands consist of "*" followed by three letters. Many common commands are related to the Status Reporting System.

Available common commands:

*CAL?	470
*CLS	470
*ESE	470
*ESR?	470
*IDN?	470
*IST?	471
*OPC	471
	471
	472
*PRE	472
*PSC	472
*RST	472
*SRE	473
*STB?	473

Remote Control – Commands

*TRG	473
*TST?	473
	473

*CAL?

Calibration Query

Initiates a calibration of the instrument and subsequently queries the calibration status. Responses > 0 indicate errors.

Usage: Query only

*CLS

CLear Status

Sets the status byte (STB), the standard event register (ESR) and the EVENt part of the QUEStionable and the OPERation registers to zero. The command does not alter the mask and transition parts of the registers. It clears the output buffer.

Usage: Setting only

*ESE <Value>

Event Status Enable

Sets the event status enable register to the specified value. The query returns the contents of the event status enable register in decimal form.

Parameters:

<Value> Range: 0 to 255

*ESR?

Event Status Read

Returns the contents of the event status register in decimal form and subsequently sets the register to zero.

Return values:

<Contents> Range: 0 to 255

Usage: Query only

*IDN? <Format>

IDeNtification: returns the instrument identification.

Remote Control - Commands

Query parameters:

<Format> LEGacy | NEW

LEGacy

"Rohde&Schwarz,<device type>,<serial number>/

<model>.<firmware version>"

NEW

"Rohde&Schwarz,<device type>,<part number>/<serial num-

ber>,<firmware version>"

Example: LEGacy format:

Rohde&Schwarz, R&S FSV-7, 101768/007, 1.05

NEW format:

Rohde&Schwarz, R&S

FSV-7,1307.9002K07/101768,1.05

Usage: Query only

*IST?

Individual STatus query

Returns the contents of the IST flag in decimal form. The IST flag is the status bit which is sent during a parallel poll.

Return values:

<ISTflag> 0 | 1

Usage: Query only

*OPC

OPeration Complete

Sets bit 0 in the event status register when all preceding commands have been executed. This bit can be used to initiate a service request. The query form writes a "1" into the output buffer as soon as all preceding commands have been executed. This is used for command synchronization.

*OPT?

OPTion identification query

Queries the options included in the instrument. For a list of all available options and their description refer to the CD-ROM.

Return values:

<Options> The query returns a list of all installed and activated options, sep-

arated by commas, where:

B<number> describes hardware options K<number> describes software options

Example: B4,B5,B6,B7,B8,B10,B22,B30,B31,K7,K9

Remote Control - Commands

Usage: Query only

*PCB <Address>

Pass Control Back

Indicates the controller address to which remote control is returned after termination of the triggered action.

Setting parameters:

<Address> Range: 0 to 30

Usage: Setting only

*PRE <Value>

Parallel poll Register Enable

Sets parallel poll enable register to the indicated value. The query returns the contents of the parallel poll enable register in decimal form.

Parameters:

<Value> Range: 0 to 255

*PSC <Action>

Power on Status Clear

Determines whether the contents of the ENABle registers are preserved or reset when the instrument is switched on. Thus a service request can be triggered when the instrument is switched on, if the status registers ESE and SRE are suitably configured. The query reads out the contents of the "power-on-status-clear" flag.

Parameters:

<Action> 0 | 1

0

The contents of the status registers are preserved.

1

Resets the status registers.

*RST

ReSeT

Sets the instrument to a defined default status. The default settings are indicated in the description of commands.

The command is equivalent to SYSTem: PRESet.

Note that the factory set default values can be modified to user-defined settings (see MMEMory: LOAD: STATE on page 783). For more details on default values see chapter 3.2.1, "Initializing the Configuration – PRESET Key", on page 86.

Remote Control - Commands

Usage: Setting only

*SRE <Contents>

Service Request Enable

Sets the service request enable register to the indicated value. This command determines under which conditions a service request is triggered.

Parameters:

<Contents> Contents of the service request enable register in decimal form.

Bit 6 (MSS mask bit) is always 0.

Range: 0 to 255

*STB?

STatus Byte query

Reads the contents of the status byte in decimal form.

Usage: Query only

*TRG

TRiGger

Triggers all actions waiting for a trigger event. In particular, *TRG generates a manual trigger signal (Manual Trigger). This common command complements the commands of the TRIGger subsystem.

*TRG corresponds to the INITiate: IMMediate command. For details, see the "Remote Control - Description of Analyzer Commands", "TRIGger Subsystem".

Usage: Event

*TST?

self TeST query

Triggers selftests of the instrument and returns an error code in decimal form (see Service Manual supplied with the instrument). "0" indicates no errors occured.

Usage: Query only

*WAI

WAIt to continue

Prevents servicing of the subsequent commands until all preceding commands have been executed and all signals have settled (see also command synchronization and *OPC).

Remote Control – Commands

Usage: Event

4.2.3 Remote Control – Description of Analyzer Commands

In this section all remote control commands for "Spectrum" mode functions are described in detail. For details on commands that are independent of a particular measurement mode refer to chapter 4.2.4, "Remote Control – Description of Measurement-Independent Commands", on page 757.

Subsystems of the analyzer

ABORt Subsystem	474
CALCulate Subsystem	475
• CALibration:PMETer Subsystem (Power Sensor, R&S FSV-K9)	598
DISPlay Subsystem	599
DISPlay Commands for Spectrograms	606
• FETCh:PMETer Subsystem (Power Sensor, R&S FSV-K9)	608
FORMat Subsytem	609
INITiate Subsystem	
INPut Subsystem	612
INSTrument Subsystem	618
MMEMory Subsystem	622
OUTPut Subsystem	625
PROBe subsystem	627
READ:PMETer Subsystem	628
SENSe Subsystem	629
SOURce Subsystem	707
STATus:QUEStionable Subsystem	717
SYSTem Subsystem	727
TRACe Subsystem	732
TRIGger Subsystem	
UNIT Subsystem	
 Formats for Returned Values: ASCII Format and Binary Format 	756

4.2.3.1 ABORt Subsystem

The ABORt subsystem contains the commands for aborting triggered actions. An action can be triggered again immediately after being aborted. All commands trigger events, and therefore they have no *RST value.

ABORt

This command aborts a current measurement and resets the trigger system.

Example: ABOR; INIT: IMM

Mode: all

Remote Control – Commands

4.2.3.2 CALCulate Subsystem

The CALCulate subsystem contains commands for converting instrument data, transforming and carrying out corrections. These functions are carried out subsequent to data acquisition, i.e. following the SENSe subsystem.

Some applications offer up to four measurement windows. For those, the suffix <n> for CALCulate selects the measurement window. For all other applications, the suffix is irrelevant.

•	CALCulate:DELTamarker Subsystem	475
•	CALCulate:DELTamarker:SGRam subsystem	488
•	CALCulate:DLINe Subsystem	493
•	CALCulate:ESPectrum Subsystem	494
•	CALCulate:FLINe Subsystem	495
•	CALCulate:LIMit Subsystem	496
•	CALCulate:LIMit:ACPower Subsystem	500
•	CALCulate:LIMit:CONTrol Subsystem	508
•	CALCulate:LIMit:ESPectrum subsystem	511
•	CALCulate:LIMit:LOWer Subsystem	515
•	CALCulate:LIMit:UPPer Subsystem	519
•	CALCulate:MARKer Subsystem	522
•	CALCulate:MARKer:FUNCtion Subsystem	535
•	CALCulate:MARKer:FUNCtion:HARMonics Subsystem	552
•	CALCulate:MARKer:FUNCtion:POWer Subsystem	555
•	CALCulate:MARKer:SGRam subsystem	562
•	Predefined CP/ACLR Standards	568
•	CALCulate:MARKer:FUNCtion:STRack Subsystem	568
•	CALCulate:MARKer:FUNCtion:SUMMary Subsystem	570
•	CALCulate:MATH Subsystem	583
•	CALCulate: PMETer Subsystem (Power Sensor, R&S FSV-K9)	584
•	CALCulate:PSEarch PEAKsearch Subsystem	586
•	CALCulate:SGRam Subsystem	587
•	CALCulate:STATistics Subsystem	591
•	CALCulate:THReshold Subsystem	596
•	CALCulate:TLINe Subsystem	
•	CALCulate:UNIT Subsystem	
•	Other commands in the Calculate subsystem	508

CALCulate: DELTamarker Subsystem

The CALCulate:DELTamarker subsystem controls the delta marker functions of the instrument.

Commands of the CALCulate:DELTamarker Subsystem

CALCulate <n>:DELTamarker<m>[:STATe]</m></n>	476
CALCulate <n>:DELTamarker<m>:AOFF</m></n>	
CALCulate <n>:DELTamarker<m>:FUNCtion:BPOWer:MODE</m></n>	477
CAL Culate <n>:DEL Tamarker<m>:ELINCtion:BPOWer:RESult?</m></n>	477

Remote Control – Commands

CALCulate <n>:DELTamarker<m>:FUNCtion:BPOWer:SPAN</m></n>	477
CALCulate <n>:DELTamarker<m>:FUNCtion:BPOWer[:STATe]</m></n>	478
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed[:STATe]</m></n>	478
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:MAXimum[:PEAK]</m></n>	479
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:X</m></n>	
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y</m></n>	479
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y:OFFSet</m></n>	480
CALCulate <n>:DELTamarker<m>:FUNCtion:PNOise[:STATe]</m></n>	480
CALCulate <n>:DELTamarker<m>:FUNCtion:PNOise:AUTO</m></n>	481
CALCulate <n>:DELTamarker<m>:FUNCtion:PNOise:RESult?</m></n>	481
CALCulate <n>:DELTamarker<m>:LINK</m></n>	482
CALCulate <n>:DELTamarker<m>:MODE</m></n>	482
CALCulate <n>:DELTamarker<m>:MAXimum[:PEAK]</m></n>	482
CALCulate <n>:DELTamarker<m>:MAXimum:LEFT</m></n>	483
CALCulate <n>:DELTamarker<m>:MAXimum:NEXT</m></n>	483
CALCulate <n>:DELTamarker<m>:MAXimum:RIGHt</m></n>	483
CALCulate <n>:DELTamarker<m>:MINimum[:PEAK]</m></n>	484
CALCulate <n>:DELTamarker<m>:MINimum:LEFT</m></n>	484
CALCulate <n>:DELTamarker<m>:MINimum:RIGHt</m></n>	485
CALCulate <n>:DELTamarker<m>:MINimum:NEXT</m></n>	485
CALCulate <n>:DELTamarker<m>:MREF</m></n>	485
CALCulate <n>:DELTamarker<m>:TRACe</m></n>	486
CALCulate <n>:DELTamarker<m>:X</m></n>	
CALCulate <n>:DELTamarker<m>:X:RELative</m></n>	
CALCulate <n>:DELTamarker<m>:Y?</m></n>	

CALCulate<n>:DELTamarker<m>[:STATe] <State>

This command turns delta markers on and off.

If the corresponding marker was a normal marker, it is turned into a delta marker.

No suffix at DELTamarker turns on delta marker 1.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:DELT1 ON

Switches marker 1 to delta marker mode.

CALCulate<n>:DELTamarker<m>:AOFF

This command turns all active delta markers off.

Suffix:

<n> Selects the measurement window.

Remote Control – Commands

<m> Selects the marker.

Example: CALC: DELT: AOFF

Switches off all delta markers.

CALCulate<n>:DELTamarker<m>:FUNCtion:BPOWer:MODE < Mode>

This command selects the way the results for a band power delta marker are displayed.

Suffix:

<n> irrelevant <m> irrelevant

Parameters:

<Mode> POWer

Result is displayed as a power in dBm.

DENSity

Result is displayed as a density in dBm/Hz.

*RST: POW

Example: CALC:DELT:BPOW:MODE DENS

CALCulate<n>:DELTamarker<m>:FUNCtion:BPOWer:RESult?

This command queries the results of the band power measurement.

Suffix:

<n> irrelevant <m> irrelevant

Return values:

<Power> Signal power over the delta marker bandwidth.

Example: Activate the delta band power marker:

CALC: DELT: BPOW: STAT ON

Select the density mode for the result: CALC:DELT:BPOW:MODE DENS

Query the result:

CALC:DELT:BPOW:RES?

Response: 20dBm/Hz

Usage: Query only

CALCulate<n>:DELTamarker<m>:FUNCtion:BPOWer:SPAN

This command defines the bandwidth around the delta marker position. The span is indicated by lines in the diagram.

Suffix:

<n> irrelevant

Remote Control - Commands

<m> irrelevant

Parameters:

 Numeric value that defines the span in Hz.

The maximum span depends on the marker position and R&S FSV

model.

*RST: 5% of current span

Example: CALC:DELT:BPOW:SPAN 20

CALCulate<n>:DELTamarker<m>:FUNCtion:BPOWer[:STATe] <State>

This command turns delta markers for band power measurements on and off.

If neccessary, the command also turns on a reference marker.

For details see chapter 3.3.3.8, "Performing Band Power Measurements", on page 171.

Suffix:

<n> irrelevant <m> irrelevant

Parameters:

<State> ON | OFF

When switched to on, if no marker is active yet, marker 1 is activated. Otherwise, the currently active marker is used as a delta band power marker (all other marker functions for this marker are

deactivated).

*RST: OFF

Example: CALC:DELT:BPOW:STAT ON

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed[:STATe] <State>

This command switches the relative measurement to a fixed reference value on or off. Marker 1 is activated previously and a peak search is performed, if necessary. If marker 1 is activated, its position becomes the reference point for the measurement. The reference point can then be modified with the CALCulate<n>: DELTamarker<m>:

FUNCtion:FIXed:RPOint:X commands and CALCulate<n>:DELTamarker<m>:
FUNCtion:FIXed:RPOint:Y independently of the position of marker 1 and of a trace.
It applies to all delta markers as long as the function is active.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Remote Control - Commands

Example: CALC:DELT:FUNC:FIX ON

Switches on the measurement with fixed reference value for all

delta markers.

CALC:DELT:FUNC:FIX:RPO:X 128 MHZ
Sets the frequency reference to 128 MHz.
CALC:DELT:FUNC:FIX:RPO:Y 30 DBM
Sets the reference level to +30 dBm.

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:MAXimum[:PEAK]

This command moves the fixed reference marker to the peak power.

When measuring the phase noise, the command defines a new reference point level for delta marker 2.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:DELT:FUNC:FIX:RPO:MAX

Sets the reference point level for delta markers to the peak of the

selected trace.

Usage: Event

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:X <Reference>

This command defines the horizontal position of the fixed delta marker reference point. The coordinates of the reference may be anywhere in the diagram.

When measuring the phase noise, the command defines the frequency reference for delta marker 2.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<Reference> Numeric value that defines the horizontal position of the reference.

For frequency domain measurements, it is a frequency in Hz. For

time domain measurements, it is a point in time in s.

*RST: Fixed reference: OFF

Example: CALC:DELT:FUNC:FIX:RPO:X 128 MHz

Sets the frequency reference to 128 MHz.

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y <RefPointLevel>

This command defines the vertical position of the fixed delta marker reference point. The coordinates of the reference may be anywhere in the diagram.

Remote Control - Commands

When measuring the phase noise, the command defines the level reference for delta marker 2.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<RefPointLevel> Numeric value that defines the vertical position of the reference.

The unit and value range is variable.

*RST: Fixed reference: OFF

Example: CALC:DELT:FUNC:FIX:RPO:Y -10dBm

Sets the reference point level for delta markers to -10 dBm.

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y:OFFSet < Offset>

This command defines a level offset for the fixed delta marker reference point.

When measuring the phase noise, the command defines an additional level offset for delta marker 2.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<Offset> Level offset that is added to the display of all delta markers.

*RST: 0 dB

Example: CALC:DELT:FUNC:FIX:RPO:Y:OFFS 10dB

Sets the level offset for the measurement with fixed reference

value or the phase-noise measurement to 10 dB.

CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise[:STATe] <State>

This command turns the phase noise measurement at the delta marker position on and off.

The correction values for the bandwidth and the log amplifier are taken into account in the measurement.

The reference marker for phase noise measurements is either a normal marker or a fixed reference. If necessary, the command turns on the reference marker

A fixed reference point can be modified with the CALCulate<n>:DELTamarker<m>:
FUNCtion:FIXed:RPOint:X and CALCulate<n>:DELTamarker<m>:FUNCtion:
FIXed:RPOint:Y commands independent of the position of marker 1 and of a trace.

Suffix:

<n> Selects the measurement window.

Remote Control - Commands

<m> irrelevant

Note: marker 2 is always the deltamarker for phase noise mea-

surement results.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC: DELT: FUNC: PNO ON

Switches on the phase-noise measurement with all delta markers.

CALC: DELT: FUNC: FIX: RPO: X 128 MHZ

Sets the frequency reference to 128 MHz.

CALC: DELT: FUNC: FIX: RPO: Y 30 DBM

Sets the reference level to +30 dBm

CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise:AUTO <State>

This command turns an automatic peak search for the fixed reference marker at the end of a sweep on and off.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:DELT:FUNC:PNO:AUTO ON

Activates an automatic peak search for the reference marker in a

phase-noise measurement.

CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise:RESult?

This command queries the result of the phase noise measurement.

If necessary, the command activates the measurement first..

Suffix:

<n> Selects the measurement window.

<m> 2

Marker 2 is always the deltamarker for phase noise measure-

ments.

Example: CALC:DELT2:FUNC:PNO:RES?

Outputs the result of phase-noise measurement of the delta-

marker 2.

Usage: Query only

Remote Control - Commands

CALCulate<n>:DELTamarker<m>:LINK <State>

This command links delta marker 1 to marker 1.

If you change the horizontal position of the marker, so does the delta marker.

Suffix:

<n> Selects the measurement window.

<m> 1

irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:DELT:LINK ON

CALCulate<n>:DELTamarker<m>:MODE < Mode>

This command selects the delta marker mode.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<Mode> ABSolute

Delta marker position in absolute terms.

RELative

Delta marker position in relation to a reference marker.

*RST: REL

Example: CALC: DELT: MODE ABS

Absolute delta marker position.

CALCulate<n>:DELTamarker<m>:MAXimum[:PEAK]

This command positions the delta marker to the current trace maximum. If necessary, the corresponding delta marker is activated first.

In "Spectrogram" mode, this command positions the specified delta marker on the current peak level of the x-axis. The search is performed within the current frame. It does not change the position of the deltamarker on the y-axis.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:DELT3:MAX

Sets delta marker 3 to the maximum value of the associated trace.

Remote Control - Commands

CALCulate<n>:DELTamarker<m>:MAXimum:LEFT

This command positions the delta marker to the next smaller trace maximum on the left of the current value (i.e. descending X values). The corresponding delta marker is activated first, if necessary.

If no next higher minimum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

In "Spectrogram" mode, this command positions the specified delta marker on the next peak level of the x-axis. The search includes only the data to the left of the current marker position in the current frame. It does not change the position of the deltamarker on the y-axis.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:DELT:MAX:LEFT

Sets delta marker 1 to the next smaller maximum value to the left

of the current value.

CALCulate<n>:DELTamarker<m>:MAXimum:NEXT

This command positions the delta marker to the next smaller trace maximum. The corresponding delta marker is activated first, if necessary.

If no next higher minimum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

In "Spectrogram" mode, this command positions the specified delta marker on the next peak level of the x-axis. The search includes the data in both directions of the current marker position in the current frame. It does not change the position of the delta marker on the y-axis.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC: DELT2: MAX: NEXT

Sets delta marker 2 to the next smaller maximum value.

CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt

This command positions the delta marker to the next smaller trace maximum on the right of the current value (i.e. ascending X values). The corresponding delta marker is activated first, if necessary.

If no next higher minimum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

Remote Control - Commands

In "Spectrogram" mode, this command positions the specified delta marker on the next peak level of the x-axis. The search includes only the data to the right of the current marker position in the current frame. It does not change the position of the delta marker on the y-axis.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:DELT:MAX:RIGH

Sets delta marker 1 to the next smaller maximum value to the right

of the current value.

CALCulate<n>:DELTamarker<m>:MINimum[:PEAK]

This command positions the delta marker to the current trace minimum. The corresponding delta marker is activated first, if necessary.

In "Spectrogram" mode, this command positions the specified delta marker on the current minimum level of the x-axis. The search is performed within a specific frame. It does not change the position of the deltamarker on the y-axis.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:DELT3:MIN

Sets delta marker 3 to the minimum value of the associated trace.

CALCulate<n>:DELTamarker<m>:MINimum:LEFT

This command positions the delta marker to the next higher trace minimum on the left of the current value (i.e. descending X values). The corresponding delta marker is activated first, if necessary.

If no next higher minimum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

In "Spectrogram" mode, this command positions the specified delta marker on the next minimum level of the x-axis. The search includes only the data to the left of the current marker position in the current frame. It does not change the position of the delta marker on the y-axis.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:DELT:MIN:LEFT

Sets delta marker 1 to the next higher minimum to the left of the

current value.

Remote Control - Commands

CALCulate<n>:DELTamarker<m>:MINimum:RIGHt

This command positions the delta marker to the next higher trace minimum on the right of the current value (i.e. ascending X values). The corresponding delta marker is activated first, if necessary.

If no next higher minimum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

In "Spectrogram" mode, this command positions the specified delta marker on the next minimum level of the x-axis. The search includes only the data to the right of the current marker position in the current frame. It does not change the position of the delta marker on the y-axis.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:DELT:MIN:RIGH

Sets delta marker 1 to the next higher minimum value to the right

of the current value.

CALCulate<n>:DELTamarker<m>:MINimum:NEXT

This command positions the delta marker to the next higher trace minimum. The corresponding delta marker is activated first, if necessary.

If no next higher minimum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

In "Spectrogram" mode, this command positions the specified delta marker on the next minimum level of the x-axis. The search includes the data in both directions of the current marker position in the current frame. It does not change the position of the delta marker on the y-axis.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC: DELT2:MIN: NEXT

Sets delta marker 2 to the next higher minimum value.

CALCulate<n>:DELTamarker<m>:MREF <RefMarkerNo>

This command defines the reference marker for a delta marker other than marker 1.

The reference may be another marker or the fixed reference.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Remote Control - Commands

Parameters:

<RefMarkerNo> 1 ... 16

Selects markers 1 to 16 as the reference.

FIXed

Selects the fixed reference as the reference.

Example: CALC:DELT3:MREF 2

Specifies that the values of delta marker 3 are relative to marker

2.

CALCulate<n>:DELTamarker<m>:TRACe <TraceNumber>

This command selects the trace a delta marker is positioned on.

The corresponding trace must have a trace mode other than "Blank".

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<TraceNumber> 1 ... 6

Trace number the marker is positioned on.

Example: CALC:DELT3:TRAC 2

Assigns delta marker 3 to trace 2.

CALCulate<n>:DELTamarker<m>:X <Position>

This command positions a delta marker on a particular coordinate on the x-axis.

The position is an absolute value.

You can enter a relative value, if you activate relative entry first with CALCulate<n>: DELTamarker<m>: MODE.

If fixed reference is active, the position is relative to the fixed reference (CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed[:STATe] is ON). A query always returns the absolute position.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<Position> 0 to maximum frequency or sweep time

Example: CALC: DELT: X?

Outputs the absolute frequency/time of delta marker 1.

Remote Control - Commands

CALCulate<n>:DELTamarker<m>:X:RELative

This command queries the x-value of the selected delta marker relative to marker 1 or to the reference position (for CALC: DELT: FUNC: FIX: STAT ON). The command activates the corresponding delta marker, if necessary.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:DELT3:X:REL?

Outputs the frequency of delta marker 3 relative to marker 1 or

relative to the reference position.

CALCulate<n>:DELTamarker<m>:Y?

This command queries the measured value of a delta marker. The corresponding delta marker is activated, if necessary. The output is always a relative value referred to marker 1 or to the reference position (reference fixed active).

To obtain a correct query result, a complete sweep with synchronization to the sweep end must be performed between the activation of the delta marker and the query of the y value. This is only possible in single sweep mode.

Depending on the unit defined with CALC: UNIT: POW or on the activated measuring functions, the query result is output in the units below:

Table 4-13: Base unit

Parameter, measuring function or result display	Output unit
DBM DBPW DBUV DBMV DBUA	dB (lin/log)
WATT VOLT AMPere	dB (lin), % (log)
statistics function (APD or CCDF) on	dimensionless output

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: INIT:CONT OFF

Switches to single sweep mode.

INIT; *WAI

Starts a sweep and waits for its end.

CALC: DELT2 ON

Switches on delta marker 2.

CALC: DELT2: Y?

Outputs measurement value of delta marker 2.

Usage: Query only

Remote Control – Commands

CALCulate:DELTamarker:SGRam subsystem

The following commands control the deltamarkers when you are using the spectrogram.

The spectrogram is available if option R&S FSV-K14 is installed.

CALCulate <n>:DELTamarker<m>:SGRam:FRAMe</m></n>	488
CALCulate <n>:DELTamarker<m>:SGRam:SARea</m></n>	488
CALCulate <n>:DELTamarker<m>:SGRam:XY:MAXimum[:PEAK]</m></n>	489
CALCulate <n>:DELTamarker<m>:SGRam:XY:MINimum[:PEAK]</m></n>	
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum:ABOVe</m></n>	
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum:BELow</m></n>	
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum:NEXT</m></n>	
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum[:PEAK]</m></n>	
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum:ABOVe</m></n>	
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum:BELow</m></n>	492
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum:NEXT</m></n>	
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum[:PEAK]</m></n>	

CALCulate<n>:DELTamarker<m>:SGRam:FRAMe <Frame> | <Time>

This command positions the delta marker on a particular frame. The frame is relative to the position of marker 1.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Parameters:

<Frame> | <Time>

<Frame> (if time stamp is off)

Defines the distance of the deltamarker in frames and in relation

to the position of marker 1.

<time> (if time stamp is on)

Defines the distance of the deltamarker in seconds and in relation to the position of marker 1. The reference is the time stamp of

marker 1.

Example: CALC:DELT4:SGR:FRAM -20

Sets fourth deltamarker 20 frames below marker 1.

CALC:DELT4:SGR:FRAM 2 s

Sets fourth deltamarker 2 seconds above the position of marker

1.

CALCulate<n>:DELTamarker<m>:SGRam:SARea <SearchArea>

This command defines the deltamarker search area.

The command is available for the spectrogram.

Remote Control - Commands

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Parameters:

<SearchArea> VISible

Performs a search in the visible frames.

Note that VISible is ignored if Spectrogram is not visible for any reason (e.g. if the Spectrum Analyzer is in full screen mode or

display update is inactive).

MEMory

Performs a search over all frames in the memory.

*RST: VISible

Example: CALC:DELT:SGR:SAR MEM

Performs a search over all frames in the memory.

CALCulate<n>:DELTamarker<m>:SGRam:XY:MAXimum[:PEAK]

This command positions the specified delta marker on the current peak level of the spectrogram. The possible position depends on the deltamarker search area.

The command is available for the spectrogram.

For more information, see CALCulate<n>: DELTamarker<m>: SGRam: SARea on page 488.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:DELT2:SGR:SAR VIS

CALC:DELT2:SGR:XY:MAX

Activates and positions delta marker 2 on the peak level in the

visible Spectrogram.

Usage: Event

CALCulate<n>:DELTamarker<m>:SGRam:XY:MINimum[:PEAK]

This command positions the specified delta marker on the current minimum level of the spectrogram. The possible position depends on the deltamarker search area.

The command is available for the spectrogram.

For more information, see CALCulate<n>:DELTamarker<m>:SGRam:SARea on page 488.

Remote Control - Commands

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:DELT3:SGR:SAR VIS

CALC: DELT3: SGR: XY: MIN

Activates and positions delta marker 3 on the minimum level in the

visible Spectrogram.

Usage: Event

CALCulate<n>:DELTamarker<m>:SGRam:Y:MAXimum:ABOVe

This command positions the specified delta marker on the next peak level of the vertical axis. The search includes only frames above the current marker position. It does not change the horizontal position of the delta marker.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:DELT2:SGR:Y:MAX

Activates and positions delta marker 2 on the peak level of the y-

axis.

CALC: DELT2: SGR: Y: MAX: ABOV

Positions delta marker 2 on the next higher level found in the dia-

gram area above the current marker position.

Usage: Event

CALCulate<n>:DELTamarker<m>:SGRam:Y:MAXimum:BELow

This command positions the specified delta marker on the next peak level of the vertical axis. The search includes only frames below the current marker position. It does not change the horizontal position of the delta marker.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Remote Control - Commands

Example: CALC: DELT2: SGR: Y: MAX

Activates and positions delta marker 2 on the peak level of the y-

axis.

CALC: DELT2: SGR: Y: MAX: BEL

Positions delta marker 2 on the next higher level found in the dia-

gram area below the current marker position.

Usage: Event

CALCulate<n>:DELTamarker<m>:SGRam:Y:MAXimum:NEXT

This command positions the specified delta marker on the next peak level of the vertical axis. The search includes frames above and below the current marker position. It does not change the horizontal position of the delta marker.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC: DELT2: SGR: Y: MAX

Activates and positions delta marker 2 on the peak level of the y-

axis.

CALC: DELT2: SGR: Y: MAX: NEXT

Positions delta marker 2 on the next higher level.

Usage: Event

CALCulate<n>:DELTamarker<m>:SGRam:Y:MAXimum[:PEAK]

This command positions the specified delta marker on the current peak level of the vertical axis. The search is performed over all frames. It does not change the horizontal position of the deltamarker.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:DELT2:SGR:Y:MAX

Activates and positions delta marker 2 on the peak level of the y-

axis.

Usage: Event

Remote Control - Commands

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum:ABOVe

This command positions the specified delta marker on the next minimum level of the vertical axis. The search includes only frames above the current marker position. It does not change the horizontal position of the delta marker.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:DELT2:SGR:Y:MIN

Activates and positions delta marker 2 on the minimum level of the

y-axis.

CALC: DELT2: SGR: Y: MIN: ABOV

Positions delta marker 2 on the next minimum level found in the

diagram area above the current marker position.

Usage: Event

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum:BELow

This command positions the specified delta marker on the next minimum level of the vertical axis. The search includes only frames below the current marker position. It does not change the horizontal position of the delta marker.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:DELT2:SGR:Y:MIN

Activates and positions delta marker 2 on the minimum level of the

y-axis.

CALC: DELT2: SGR: Y: MAX: BEL

Positions delta marker 2 on the next minimum level found in the

diagram area below the current marker position.

Usage: Event

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum:NEXT

This command positions the specified delta marker on the next minimum level of the vertical axis. The search includes frames above and below the current marker position. It does not change the horizontal position of the delta marker.

Remote Control - Commands

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:DELT2:SGR:Y:MIN

Activates and positions delta marker 2 on the minimum level of the

y-axis.

CALC: DELT2: SGR: Y:MIN: NEXT

Positions delta marker 2 on the next minimum level.

Usage: Event

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum[:PEAK]

This command positions the specified delta marker on the current minimum level of the vertical axis. The search is performed over all captured frames. It does not change the horizontal position of the delta marker.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:DELT2:SGR:Y:MIN

Activates and positions delta marker 2 on the minimum level of the

y-axis.

Usage: Event

CALCulate: DLINe Subsystem

The CALCulate:DLINe subsystem defines the position of the display lines.

CALCulate<n>:DLINe<k> < Position>

This command defines the (vertical) position of a display line.

Suffix:

<n> Selects the measurement window.

<k> 1 | 2

Selects the display line.

Remote Control – Commands

Parameters:

<Position> The value range is variable.

The unit depends on CALCulate<n>:UNIT:POWer.

*RST: (state is OFF)

Example: CALC:DLIN -20dBm

CALCulate<n>:DLINe<k>:STATe <State>

This command turns a display line on and off.

Suffix:

<n> Selects the measurement window.

<k> 1 | 2

Selects the display line.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:DLIN2:STAT OFF

CALCulate:ESPectrum Subsystem

The CALCulate:ESPectrum subsystem contains the remote commands for Spectrum Emission Mask (SEM) measurements. Both groups of commands (PSEarch and PEAKsearch) perform the same functions.

494	CALCulate <n>:ESPectrum:PSEarch :PEAKsearch:[IMMediate].</n>
	CALCulate <n>:ESPectrum:PSEarch :PEAKsearch:AUTO</n>
495	CALCulate <n>:ESPectrum:PSEarch :PEAKsearch:MARGin</n>
495	CALCulate <n>:ESPectrum:PSEarchl:PEAKsearch:PSHow</n>

CALCulate<n>:ESPectrum:PSEarch|:PEAKsearch:[IMMediate]

This command starts the list evaluation.

Suffix:

<n> Selects the measurement window.

Example: CALC:ESP:PSE

Usage: Event

CALCulate<n>:ESPectrum:PSEarch|:PEAKsearch:AUTO <State>

This command activates or deactivates the list evaluation.

Suffix:

<n> Selects the measurement window.

Remote Control - Commands

Parameters:

<State> ON | OFF

*RST: ON

Example: CALC:ESP:PSE:AUTO OFF

Deactivates the list evaluation.

CALCulate<n>:ESPectrum:PSEarch|:PEAKsearch:MARGin < Margin>

This command sets the margin used for the limit check/peak search.

Suffix:

<n> Selects the measurement window.

Parameters:

<Margin> -200 to 200 dB

*RST: 200 dB

Example: CALC:ESP:PSE:MARG 100

Sets the margin to 100 dB.

CALCulate<n>:ESPectrum:PSEarch|:PEAKsearch:PSHow <State>

This command marks all peaks with blue squares in the diagram.

Suffix:

<n> Selects the measurement window.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:ESP:PSE:PSH ON

Marks all peaks with blue squares.

CALCulate:FLINe Subsystem

The CALCulate:FLINe subsystem defines the position of the frequency lines.

CALCulate <n>:FLINe<k></k></n>	495
CAL Culate <n>:FLINe<k>:STATe</k></n>	496

CALCulate<n>:FLINe<k> <Frequency>

This command defines the position of a frequency line.

Suffix:

<n> Selects the measurement window.

<k> 1 | 2

Selects the frequency line.

Remote Control – Commands

Parameters:

<Frequency> Range: 0 Hz to fmax

*RST: (STATe to OFF)

Example: CALC:FLIN2 120MHz

CALCulate<n>:FLINe<k>:STATe <State>

This command turns a frequency line on and off.

Suffix:

<n> Selects the measurement window.

<k> 1 | 2

Selects the frequency line.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:FLIN2:STAT ON

CALCulate:LIMit Subsystem

The CALCulate:LIMit subsystem contains commands for the limit lines and the corresponding limit checks. Limit lines can be defined as upper or lower limit lines. The individual Y values of the limit lines correspond to the values of the x-axis (CONTrol). The number of X and Y values must be identical. For details on limit lines refer to chapter 3.3.7, "Using Limit Lines and Display Lines – LINES Key", on page 285.

Further information

chapter 4.3.3, "Limit Lines and Limit Test", on page 857

CALCulate <n>:LIMit<k>:ACTive?</k></n>	496
CALCulate <n>:LIMit<k>:CLEar[:IMMediate]</k></n>	497
CALCulate <n>:LIMit<k>:COMMent</k></n>	497
CALCulate <n>:LIMit<k>:COPY</k></n>	497
CALCulate <n>:LIMit<k>:DELete</k></n>	498
CALCulate <n>:LIMit<k>:FAIL?</k></n>	498
CALCulate <n>:LIMit<k>:NAME</k></n>	499
CALCulate <n>:LIMit<k>:STATe</k></n>	499
CALCulate <n>:LIMit<k>:UNIT</k></n>	500
CALCulate <n>:LIMit<k>:TRACe</k></n>	500

CALCulate<n>:LIMit<k>:ACTive?

This command queries the names of all active limit lines.

Suffix:

<n> irrelevant <k> irrelevant

Remote Control - Commands

Return values:

<LimitLines> String containing the names of all active limit lines in alphabetical

order.

Example: CALC:LIM:ACT?

Queries the names of all active limit lines.

Usage: Query only

CALCulate<n>:LIMit<k>:CLEar[:IMMediate]

This command deletes the result of the current limit check for all limit lines in all windows.

Suffix:

<n> irrelevant <k> irrelevant

Example: CALC:LIM:CLE

Deletes the result of the limit check.

Usage: Event

CALCulate<n>:LIMit<k>:COMMent <Comment>

This command defines a comment for the selected limit line in all windows.

Suffix:

<n> irrelevant

<k> Selects the limit line.

Parameters:

<Comment> String containing the comment. The maximum number of charac-

ters the string may contain is 40.

Example: CALC:LIM5:COMM 'Upper limit for spectrum'

Defines the comment for limit line 5.

CALCulate<n>:LIMit<k>:COPY <Line>

This command copies a limit line.

Suffix:

<n> irrelevant

<k> Selects the limit line.

Parameters:

<Line> 1 to 8

number of the new limit line

<name>

String containing the name of the limit line.

Remote Control – Commands

Example: CALC:LIM1:COPY 2

Copies limit line 1 to line 2. CALC:LIM1:COPY 'FM2'

Copies limit line 1 to a new line named FM2.

CALCulate<n>:LIMit<k>:DELete

This command deletes a limit line.

Suffix:

<n> irrelevant

<k> Selects the limit line.

Example: CALC:LIM1:DEL

Deletes limit line 1.

Usage: Event

CALCulate<n>:LIMit<k>:FAIL?

This command queries the result of a limit check.

Note that for SEM measurements, the limit line suffix <k> is irrelevant, as only one specific SEM limit line is checked for the currently relevant power class.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> irrelevant <k> limit line

For option WLAN TX Measurements, R&S FSV-K91/91n, see

table below

Return values:

<Result> 0

PASS 1 FAIL

Example: INIT; *WAI

Starts a new sweep and waits for its end.

CALC:LIM3:FAIL?

Queries the result of the check for limit line 3.

Usage: Query only

For option WLAN TX Measurements, R&S FSV-K91/91n, the numeric suffix <k> specifies the limit lines as follows:

Remote Control – Commands

Suffix	Limit
1 to 2	These indexes are not used
3	ETSI Spectrum Mask limit line
4	Spectrum Flatness (Upper) limit line
5	Spectrum Flatness (Lower) limit line
6	IEEE Spectrum Mask limit line
7	PVT Rising Edge max limit
8	PVT Rising Edge mean limit
9	PVT Falling Edge max limit
10	PVT Falling Edge mean limit

CALCulate<n>:LIMit<k>:NAME <Name>

This command selects a limit line that already exists or defines a name for a new limit line.

Suffix:

<n> irrelevant

<k> 1...8 (NF: 1...6)

Selects the limit line.

Parameters:

<Name> String containing the limit line name.

*RST: REM1 to REM8 for lines 1 to 8

Example: CALC:LIM1:NAME 'FM1'

Assigns the name FM1 to limit line 1.

CALCulate<n>:LIMit<k>:STATe <State>

This command turns the limit check on and off.

To query the limit check result, use CALCulate<n>:LIMit<k>:FAIL?.

Suffix:

<n> irrelevant

<k> Selects the limit line.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:LIM:STAT ON

Switches on the limit check for limit line 1.

Remote Control – Commands

CALCulate<n>:LIMit<k>:UNIT <Unit>

This command defines the unit of a limit line.

Upon selection of the unit DB the limit line is automatically switched to the relative mode. For units different from DB the limit line is automatically switched to absolute mode.

Suffix:

<n> irrelevant

<k> Selects the limit line.

Parameters:

<Unit> DBM | DBPW | WATT | DBUV | DBMV | VOLT | DBUA | AMPere |

DB | DBUV_M | DBUA_M | DEG | RAD | S | HZ | PCT | (unitless) If you select dB as the limit line unit, the command automatically

turns the limit line into a relative limit line.

In spectrum mode, units deg, rad, s, Hz and PCT are unavailable.

*RST: DBM

Example: CALC:LIM4:UNIT DBUV

Sets the unit of limit line 4 to dBµV.

CALCulate<n>:LIMit<k>:TRACe <TraceNumber>

This command links a limit line to one or more traces.

Suffix:

<n> irrelevant

<k> Selects the limit line.

Parameters:

<TraceNumber> Range: 1 to 6

*RST: 1

Example: CALC:LIM2:TRAC 3

Assigns limit line 2 to trace 3.

CALCulate:LIMit:ACPower Subsystem

The CALCulate:LIMit:ACPower subsystem defines the limit check for adjacent channel power measurement.

CALCulate <n>:LIMit<k>:ACPower[:STATe]</k></n>	501
CALCulate <n>:LIMit<k>:ACPower:ACHannel[:RELative]</k></n>	
CALCulate <n>:LIMit<k>:ACPower:ACHannel[:RELative]:STATe</k></n>	
CALCulate <n>:LIMit<k>:ACPower:ACHannel:ABSolute</k></n>	
CALCulate <n>:LIMit<k>:ACPower:ACHannel:ABSolute:STATe</k></n>	503
CALCulate <n>:LIMit<k>:ACPower:ACHannel:RESult</k></n>	504
CALCulate <n>:LIMit<k>:ACPower:ALTernate<channel>[:RELative]</channel></k></n>	504
CALCulate <n>:LIMit<k>:ACPower:ALTernate<channel>[:RELative]:STATe</channel></k></n>	

Remote Control - Commands

CALCulate <n>:LIMit<k>:ACPower:ALTernate<channel>:ABSolute</channel></k></n>	506
CALCulate <n>:LIMit<k>:ACPower:ALTernate<channel>:ABSolute:STATe</channel></k></n>	507
CALCulate <n>:LIMit<k>:ACPower:ALTernate<channel>:RESult?</channel></k></n>	507

CALCulate<n>:LIMit<k>:ACPower[:STATe] <State>

This command switches on and off the limit check for adjacent-channel power measurements. The commands CALCulate<n>:LIMit<k>:ACPower:ACHannel[:

RELative]:STATe or CALCulate<n>:LIMit<k>:ACPower:

ALTernate < Channel > [:RELative]: STATe must be used in addition to specify whether the limit check is to be performed for the upper/lower adjacent channel or for the alternate adjacent channels.

Suffix:

<n> Selects the measurement window.

<k> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:LIM:ACP ON

Switches on the ACLR limit check.

CALCulate<n>:LIMit<k>:ACPower:ACHannel[:RELative] <LowerLimit>, <UpperLimit>

This command defines the relative limit of the upper/lower adjacent channel for adjacentchannel power measurements. The reference value for the relative limit value is the measured channel power.

It should be noted that the relative limit value has no effect on the limit check as soon as it is below the absolute limit value defined with the CALCulate<n>:LIMit<k>:

ACPower: ACHannel: ABSolute command. This mechanism allows automatic checking of the absolute basic values of adjacent-channel power as defined in mobile radio standards.

Suffix:

<n> Selects the measurement window.

<k> irrelevant

Parameters:

<LowerLimit>, 0 to 100dB; the value for the lower limit must be lower than the

<UpperLimit> value for the upper limit

*RST: 0 dB

Example: CALC:LIM:ACP:ACH 30DB, 30DB

Sets the relative limit value for the power in the lower and upper

adjacent channel to 30 dB below the channel power.

Remote Control - Commands

CALCulate<n>:LIMit<k>:ACPower:ACHannel[:RELative]:STATe <State>

This command activates the limit check for the relative limit value of the adjacent channel when adjacent-channel power measurement is performed. Before this command, the limit check must be activated using CALCulate<n>:LIMit<k>:ACPower[:STATe].

The result can be queried with CALCulate<n>:LIMit<k>:ACPower:ACHannel: RESult. Note that a complete measurement must be performed between switching on the limit check and the result query, since otherwise no correct results are available.

Suffix:

<n> Selects the measurement window.

<k> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:LIM:ACP:ACH 30DB, 30DB

Sets the relative limit value for the power in the lower and upper

adjacent channel to 30 dB below the channel power. CALC:LIM:ACP:ACH:ABS -35DBM, -35DBM

Sets the absolute limit value for the power in the lower and upper

adjacent channel to -35 dBm.

CALC:LIM:ACP ON

Switches on globally the limit check for the channel/adjacent chan-

nel measurement.

CALC:LIM:ACP:ACH:STAT ON

Switches on the check of the relative limit values for adjacent

channels.

CALC:LIM:ACP:ACH:ABS:STAT ON

Switches on the check of absolute limit values for the adjacent

channels.
INIT; *WAI

Starts a new measurement and waits for the sweep end.

CALC:LIM:ACP:ACH:RES?

Queries the limit check result in the adjacent channels.

CALCulate<n>:LIMit<k>:ACPower:ACHannel:ABSolute <LowerLimit>, <UpperLimit>

This command defines the absolute limit value for the lower/upper adjacent channel during adjacent-channel power measurement (Adjacent Channel Power).

Note that the absolute limit value has no effect on the limit check as soon as it is below the relative limit value defined with CALCulate<n>:LIMit<k>:ACPower:

ACHannel [:RELative]. This mechanism allows automatic checking of the absolute basic values of adjacent-channel power as defined in mobile radio standards.

Suffix:

<n> Selects the measurement window.

Remote Control – Commands

<k> irrelevant

Parameters:

<LowerLimit>, first value: -200DBM to 200DBM; limit for the lower and the upper

<UpperLimit> adjacent channel

*RST: -200DBM

Example: CALC:LIM:ACP:ACH:ABS -35DBM, -35DBM

Sets the absolute limit value for the power in the lower and upper

adjacent channel to -35 dBm.

CALCulate<n>:LIMit<k>:ACPower:ACHannel:ABSolute:STATe <State>

This command activates the limit check for the adjacent channel when adjacent-channel power measurement (Adjacent Channel Power) is performed. Before the command, the limit check for the channel/adjacent-channel measurement must be globally switched on using CALCulate<n>:LIMit<k>:ACPower[:STATe].

The result can be queried with CALCulate < n > : LIMit < k > : ACPower : ACHannel : RESult. It should be noted that a complete measurement must be performed between

switching on the limit check and the result query, since otherwise no correct results are

available.

Suffix: <n>

Selects the measurement window.

<k> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:LIM:ACP:ACH 30DB, 30DB

Sets the relative limit value for the power in the lower and upper

adjacent channel to 30 dB below the channel power. CALC:LIM:ACP:ACH:ABS -35DBM, -35DBM

Sets the absolute limit value for the power in the lower and upper

adjacent channel to -35 dBm.

CALC:LIM:ACP ON

Switches on globally the limit check for the channel/adjacent-

channel measurement.

CALC:LIM:ACP:ACH:REL:STAT ON

Switches on the check of the relative limit values for adjacent

channels.

CALC:LIM:ACP:ACH:ABS:STAT ON

Switches on the check of absolute limit values for the adjacent

channels.
INIT; *WAI

Starts a new measurement and waits for the sweep end.

CALC:LIM:ACP:ACH:RES?

Queries the limit check result in the adjacent channels.

Remote Control – Commands

CALCulate<n>:LIMit<k>:ACPower:ACHannel:RESult

This command queries the result of the limit check for the upper/lower adjacent channel when adjacent channel power measurement is performed.

If the power measurement of the adjacent channel is switched off, the command produces a query error.

Suffix:

<n> Selects the measurement window.

<k> irrelevant

Return values:

Result The result is returned in the form <result>, <result> where <result>

= PASSED | FAILED, and where the first returned value denotes the lower, the second denotes the upper adjacent channel.

Example: CALC:LIM:ACP:ACH 30DB, 30DB

Sets the relative limit value for the power in the lower and upper

adjacent channel to 30 dB below the channel power. CALC:LIM:ACP:ACH:ABS -35DBM, -35DBM

Sets the absolute limit value for the power in the lower and upper

adjacent channel to -35 dB.

CALC:LIM:ACP ON

Switches on globally the limit check for the channel/adjacent chan-

nel measurement.

CALC:LIM:ACP:ACH:STAT ON

Switches on the limit check for the adjacent channels.

INIT; *WAI

Starts a new measurement and waits for the sweep end.

CALC:LIM:ACP:ACH:RES?

Queries the limit check result in the adjacent channels.

CALCulate<n>:LIMit<k>:ACPower:ALTernate<channel>[:RELative] <LowerLimit>, <UpperLimit>

This command defines the limit for the alternate adjacent channels for adjacent channel power measurements. The reference value for the relative limit value is the measured channel power.

Note that the relative limit value has no effect on the limit check as soon as it is below the absolute limit defined with CALCulate<n>:LIMit<k>:ACPower:

ALTernate < Channel >: ABSolute. This mechanism allows automatic checking of the absolute basic values of adjacent-channel power as defined in mobile radio standards.

Suffix:

<n> Selects the measurement window.

<k> irrelevant <Channel> 1...11

the alternate channel

Remote Control – Commands

Parameters:

<LowerLimit>, first value: 0 to 100dB; limit for the lower and the upper alternate

<UpperLimit> adjacent channel

*RST: 0 DB

Example: CALC:LIM:ACP:ALT2 30DB, 30DB

Sets the relative limit value for the power in the lower and upper second alternate adjacent channel to 30 dB below the channel

power.

CALCulate<n>:LIMit<k>:ACPower:ALTernate<Channel>[:RELative]:STATe <State>

This command activates the limit check for the alternate adjacent channels for adjacent channel power measurements. Before the command, the limit check must be activated using CALCulate<n>:LIMit<k>:ACPower[:STATe].

The result can be queried with CALCulate<n>:LIMit<k>:ACPower:

ALTernate<channel>[:RELative]. Note that a complete measurement must be performed between switching on the limit check and the result query, since otherwise no correct results are obtained.

Suffix:

<n> Selects the measurement window.

<k> irrelevant

<Channel> 1...11

the alternate channel

Parameters:

<State> ON | OFF

*RST: OFF

Remote Control - Commands

Example: CALC:LIM:ACP:ALT2 30DB, 30DB

Sets the relative limit value for the power in the lower and upper second alternate adjacent channel to 30 dB below the channel

power.

CALC:LIM:ACP:ALT2:ABS -35DBM, -35DBM

Sets the absolute limit value for the power in the lower and upper

second alternate adjacent channel to -35 dBm.

CALC:LIM:ACP ON

Switches on globally the limit check for the channel/adjacent channel measurement.

CALC:LIM:ACP:ALT2:STAT ON

Switches on the check of the relative limit values for the lower and upper second alternate adjacent channel.

CALC:LIM:ACP:ALT2:ABS:STAT ON

Switches on the check of absolute limit values for the lower and upper second alternate adjacent channel.

INIT; *WAI

Starts a new measurement and waits for the sweep end.

CALC:LIM:ACP:ALT2:RES?

Queries the limit check result in the second alternate adjacent channels.

CALCulate<n>:LIMit<k>:ACPower:ALTernate<Channel>:ABSolute <LowerLimit>, <UpperLimit>

This command defines the absolute limit value for the lower/upper alternate adjacentchannel power measurement (Adjacent Channel Power).

Note that the absolute limit value for the limit check has no effect as soon as it is below the relative limit value defined with CALCulate<n>:LIMit<k>:ACPower:

ACHannel [:RELative]. This mechanism allows automatic checking of the absolute basic values defined in mobile radio standards for the power in adjacent channels.

Suffix:

<n> Selects the measurement window.

<k> irrelevant <Channel> 1...11

the alternate channel

Parameters:

<LowerLimit>, first value: -200DBM to 200DBM; limit for the lower and the upper

<UpperLimit> alternate adjacent channel

*RST: -200DBM

Example: CALC:LIM:ACP:ALT2:ABS -35DBM, -35DBM

Sets the absolute limit value for the power in the lower and upper

second alternate adjacent channel to -35 dBm.

Remote Control - Commands

CALCulate<n>:LIMit<k>:ACPower:ALTernate<Channel>:ABSolute:STATe <State>

This command activates the limit check for the alternate adjacent channels for adjacentchannel power measurement (Adjacent Channel Power).

Before the command, the limit check must be globally switched on for the channel/adjacent-channel power with the CALCulate < n > : LIMit < k > : ACPower[:STATe] command.

The result can be queried with CALCulate<n>:LIMit<k>:ACPower:

ALTernate<channel>[:RELative]. Note that a complete measurement must be performed between switching on the limit check and the result query, since otherwise no correct results are available.

Suffix:

<n> Selects the measurement window.

<k> irrelevant

<Channel> 1...11

the alternate channel

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:LIM:ACP:ALT2 30DB, 30DB

Sets the relative limit value for the power in the lower and upper second alternate adjacent channel to 30 dB below the channel

power.

CALC:LIM:ACP:ALT2:ABS -35DBM, -35DBM

Sets the absolute limit value for the power in the lower and upper

second alternate adjacent channel to -35 dBm.

CALC:LIM:ACP ON

Switches on globally the limit check for the channel/adjacent chan-

nel measurement.

CALC:LIM:ACP:ALT2:STAT ON

Switches on the check of the relative limit values for the lower and

upper second alternative adjacent channels.

CALC:LIM:ACP:ALT2:ABS:STAT ON

Switches on the check of absolute limit values for the lower and

upper second alternative adjacent channels.

INIT; *WAI

Starts a new measurement and waits for the sweep end.

CALC:LIM:ACP:ALT2:RES?

Queries the limit check result in the second alternate adjacent

channels.

CALCulate<n>:LIMit<k>:ACPower:ALTernate<Channel>:RESult?

This command queries the result of the limit check for the alternate adjacent channels for adjacent channel power measurements.

Remote Control - Commands

If the power measurement of the adjacent channel is switched off, the command produces a query error.

Suffix:

<n> Selects the measurement window.

<k> irrelevant <Channel> 1...11

the alternate channel

Parameters:

The result is returned in the form <result>, <result> where <result> = PASSED | FAILED and where the first (second) returned value denotes the lower (upper) alternate adjacent channel.

Example: CALC:LIM:ACP:ALT2 30DB, 30DB

Sets the relative limit value for the power in the lower and upper second alternate adjacent channel to 30 dB below the channel

power.

CALC:LIM:ACP:ALT2:ABS -35DBM, -35DBM

Sets the absolute limit value for the power in the lower and upper

second alternate adjacent channel to -35 dBm.

CALC:LIM:ACP ON

Switches on globally the limit check for the channel/adjacent chan-

nel measurement.

CALC:LIM:ACP:ALT2:STAT ON

Switches on the limit check for the lower and upper second adja-

cent channel.
INIT; *WAI

Starts a new measurement and waits for the sweep end.

CALC:LIM:ACP:ALT2:RES?

Queries the limit check result in the second alternate adjacent

channels.

Usage: Query only

CALCulate:LIMit:CONTrol Subsystem

The CALCulate:LIMit:CONTrol subsystem defines the x-axis (CONTrol axis).

CALCulate <n>:LIMit<k>:CONTrol[:DATA]</k></n>	508
CALCulate <n>:LIMit<k>:CONTrol:DOMain</k></n>	509
CALCulate <n>:LIMit<k>:CONTrol:MODE</k></n>	509
CALCulate <n>:LIMit<k>:CONTrol:OFFSet</k></n>	510
CALCulate <n>:LIMit<k>:CONTrol:SHIFt</k></n>	510
CALCulate <n>:LIMit<k>:CONTrol:SPACing</k></n>	511

CALCulate<n>:LIMit<k>:CONTrol[:DATA] <LimitLinePoints>

This command defines the horizontal definition points of a lower limit line.

Suffix:

<n> Selects the measurement window.

Remote Control - Commands

<k> 1...8

Selects the limit line.

Parameters:

<LimitLinePoints> Variable number of x-axis values.

Note that the number of horizontal values has to be the same as

the number of vertical values set with CALCulate<n>:

LIMit<k>:LOWer[:DATA] or CALCulate<n>:LIMit<k>:
UPPer[:DATA]. If not, the R&S FSV either adds missing values

or ignores surplus values.

The unit is Hz or s, depending on CALCulate<n>:LIMit<k>:

CONTrol: DOMain.

*RST: - (CALC:LIM is set to OFF)

Example: CALC:LIM2:CONT 1 MHz, 30 MHz, 100 MHz, 300 MHz, 1

GHz

Defines 5 reference values for the x-axis of limit line 2.

CALC:LIM2:CONT?

Outputs the reference values for the x-axis of limit line 2 separated

by a comma.

CALCulate<n>:LIMit<k>:CONTrol:DOMain <SpanSetting>

This command selects the domain of the limit line.

Suffix:

<n> Selects the measurement window.

<k> 1...8

Selects the limit line.

Parameters:

<SpanSetting> FREQuency | TIME

*RST: FREQuency

Example: CALC:LIM2:CONT:DOM TIME

Defines zero span for the x-axis of limit line 2.

CALCulate<n>:LIMit<k>:CONTrol:MODE < Mode>

This command selects the horizontal limit line scaling.

Suffix:

<n> Selects the measurement window.

<k> 1...8

Selects the limit line.

Remote Control – Commands

Parameters:

<Mode> ABSolute

Limit line is defined by absolute physical values (Hz or s).

RELative

Limit line is defined by relative values related to the center frequency (frequency domain) or the left diagram border (time

domain).

*RST: ABSolute

Example: CALC:LIM2:CONT:MODE REL

Defines the x-axis of limit line 2 as relatively scaled.

CALCulate<n>:LIMit<k>:CONTrol:OFFSet <Offset>

This command defines an offset for a complete limit line.

Compared to shifting the limit line, an offset does not actually change the limit line definition points.

Suffix:

<n> Selects the measurement window.

<k> 1...8

Selects the limit line.

Parameters:

<Offset> Numeric value that defines the offset.

The unit of the offset depends on the scale of the x-axis.

*RST: 0

Example: CALC:LIM2:CONT:OFFS 100us

Sets the X offset for limit line 2 (defined in zero span) to 100µs.

CALCulate<n>:LIMit<k>:CONTrol:SHIFt < Distance>

This command moves a complete limit line horizontally.

Compared to defining an offset, this command actually changes the limit line definition points by the value you define.

Suffix:

<n> Selects the measurement window.

<k> Selects the limit line.

Parameters:

<Distance> Numeric value that defines the distance of the shift.

The unit depends on the scale of the x-axis.

Example: CALC:LIM2:CONT:SHIF 50KHZ

Shifts all reference values of limit line 2 by 50 kHz.

Remote Control – Commands

CALCulate<n>:LIMit<k>:CONTrol:SPACing <InterpolMode>

This command selects linear or logarithmic interpolation for the calculation of limit lines from frequency points.

Suffix:

<n> Selects the measurement window.

<k> 1...8

Selects the limit line.

Parameters:

<InterpolMode> LINear | LOGarithmic

*RST: LIN

Example: CALC:LIM:CONT:SPAC LIN

CALCulate:LIMit:ESPectrum subsystem

The CALCulate:LIMit:ESPectrum subsystem defines the limit check for the Spectrum Emission Mask.

CALCulate <n>:LIMit<k>:ESPectrum:LIMits</k></n>	511
CALCulate <n>:LIMit<k>:ESPectrum:MODE</k></n>	512
CALCulate <n>:LIMit<k>:ESPectrum:PCLass<class>[:EXCLusive]</class></k></n>	512
CALCulate <n>:LIMit<k>:ESPectrum:PCLass<class>:COUNt</class></k></n>	513
CALCulate <n>:LIMit<k>:ESPectrum:PCLass<class>:LIMit[:STATe]</class></k></n>	513
CALCulate <n>:LIMit<k>:ESPectrum:PCLass<class>:MAXimum</class></k></n>	514
CALCulate <n>:LIMit<k>:ESPectrum:PCLass<class>:MINimum</class></k></n>	514
CALCulate <n>:LIMit<k>:ESPectrum:RESTore</k></n>	514
CALCulate <n>:LIMit<k>:ESPectrum:VALue</k></n>	515

CALCulate<n>:LIMit<k>:ESPectrum:LIMits <Limits>

This command sets or queries up to 4 power classes in one step.

Suffix:

<n> irrelevant <k> irrelevant

Parameters:

<Limits> 1–3 numeric values between -200 and 200, separated by commas

-200, <0-3 numeric values between -200 and 200, in ascending

order, separated by commas>, 200

Remote Control – Commands

Example: CALC:LIM:ESP:LIM -50,50,70

Defines the following power classes:

<-200, -50> <-50, 50> <50, 70> <70, 200> **Query:**

CALC:LIM:ESP:LIM?

Response:

-200, -50, 50, 70, 200

CALCulate<n>:LIMit<k>:ESPectrum:MODE < Mode>

This command activates or deactivates the automatic selection of the limit line in the Spectrum Emission Mask measurement.

Suffix:

<n> 1...4

window

<k> irrelevant

Parameters:

<Mode> AUTO | MANUAL

AUTO

The limit line depends on the measured channel power.

MANUAL

One of the three specified limit lines is set. The selection is made with the "CALCulate:LIMit:ESPectrum subsystem" on page 511

command.

*RST: AUTO

Example: CALC:LIM:ESP:MODE AUTO

Activates automatic selection of the limit line.

CALCulate<n>:LIMit<k>:ESPectrum:PCLass<Class>[:EXCLusive] <State>

This command sets the power classes used in the spectrum emission mask measurement. It is only possible to use power classes for which limits are defined. Also, either only one power class at a time or all power classes together can be selected.

Suffix:

<n> irrelevant <k> irrelevant

<Class> 1...4

the power class to be evaluated

Parameters:

<State> ON | OFF

*RST: OFF

Remote Control – Commands

Example: CALC:LIM:ESP:PCL1 ON

Activates the first defined power class.

CALCulate<n>:LIMit<k>:ESPectrum:PCLass<Class>:COUNt <NoPowerClasses>

This command sets the number of power classes to be defined.

Suffix:

<n> irrelevant <k> irrelevant <Class> irrelevant

Parameters:

<NoPowerClasses> 1 to 4

*RST: 1

Example: CALC:LIM:ESP:PCL:COUN 2

Two power classes can be defined.

CALCulate<n>:LIMit<k>:ESPectrum:PCLass<Class>:LIMit[:STATe] <State>

This command defines which limits are evaluated in the measurement.

Suffix:

<n> irrelevant <k> irrelevant

<Class> 1...4

the power class to be evaluated

Parameters:

<State> ABSolute | RELative | AND | OR

ABSolute

Evaluates only limit lines with absolute power values

RELative

Evaluates only limit lines with relative power values

AND

Evaluates limit lines with relative and absolute power values. A

negative result is returned if both limits fail.

OR

Evaluates limit lines with relative and absolute power values. A

negative result is returned if at least one limit failed.

*RST: REL

Example: CALC:LIM:ESP:PCL:LIM ABS

Remote Control - Commands

CALCulate<n>:LIMit<k>:ESPectrum:PCLass<Class>:MAXimum <Level>

This command sets the upper limit level for one power class. The unit is dBm. The limit always ends at + 200 dBm, i.e. the upper limit of the last power class can not be set. If more than one power class is in use, the upper limit must equal the lower limit of the next power class.

Suffix:

<n> irrelevant <k> irrelevant

<Class> 1...4

the power class to be evaluated

Parameters:

<Level> <numeric value>

*RST: +200

Example: CALC:LIM:ESP:PCL1:MAX -40 dBm

Sets the maximum power value of the first power class to -40 dBm.

CALCulate<n>:LIMit<k>:ESPectrum:PCLass<Class>:MINimum <Level>

This command sets the minimum lower level limit for one power class. The unit is dBm. The limit always start at -200 dBm, i.e. the first lower limit can not be set. If more than one power class is in use, the lower limit must equal the upper limit of the previous power class.

Suffix:

<n> irrelevant <k> irrelevant

<Class> 1...4

the power class to be evaluated

Parameters:

<Level> <numeric_value>

*RST: -200 for class1, otherwise +200

Example: CALC:LIM:ESP:PCL2:MIN -40 dBm

Sets the minimum power value of the second power class to -40

dBm.

CALCulate<n>:LIMit<k>:ESPectrum:RESTore

This command restores the predefined limit lines for the Spectrum Emission Mask measurement. All modifications made to the predefined limit lines are lost and the factory-set values are restored.

Remote Control – Commands

Suffix:

<n> 1...4

window

<k> irrelevant

Example: CALC:LIM:ESP:REST

Resets the limit lines for the Spectrum Emission Mask to the

default setting.

CALCulate<n>:LIMit<k>:ESPectrum:VALue <Power>

This command activates the manual limit line selection and specifies the expected power as a value. Depending on the entered value, one of the predefined limit lines is selected.

Suffix:

<n> 1...4

window

<k> irrelevant

Parameters:

<Power> 33 | 28 | 0

33 P ≥ 33 **28**

28 < P < 33

0 P < 28

*RST: 0

Example: CALC:LIM:ESP:VAL 33

Activates manual selection of the limit line and selects the limit line

for P = 33.

CALCulate:LIMit:LOWer Subsystem

The CALCulate:LIMit:LOWer subsystem defines the lower limit line.

CALCulate <n>:LIMit<k>:LOWer[:DATA]</k></n>	515
CALCulate <n>:LIMit<k>:LOWer:MARGin</k></n>	
CALCulate <n>:LIMit<k>:LOWer:MODE</k></n>	516
CALCulate <n>:LIMit<k>:LOWer:OFFSet</k></n>	517
CALCulate <n>:LIMit<k>:LOWer:SHIFt</k></n>	517
CALCulate <n>:LIMit<k>:LOWer:SPACing</k></n>	518
CALCulate <n>:LIMit<k>:LOWer:STATe</k></n>	518
CALCulate <n>:LIMit<k>:LOWer:THReshold</k></n>	518

CALCulate<n>:LIMit<k>:LOWer[:DATA] <LimitLinePoints>

This command defines the vertical definition points of a lower limit line.

Remote Control - Commands

If the measured values are smaller than the LOWer limit line, the limit check is violated.

The units DEG, RAD, S, HZ, PCT are not available in the "Spectrum" mode.

Suffix:

<n> irrelevant

<k> 1...8

Selects the limit line.

Parameters:

<LimitLinePoints> Variable number of x-axis values.

Note that the number of horizontal values has to be the same as

the number of vertical values set with CALCulate<n>:

LIMit<k>: CONTrol[:DATA]. If not, the R&S FSV either adds

missing values or ignores surplus values.

The unit depends on CALCulate<n>:LIMit<k>:UNIT.

*RST: (LIMit:STATe is set to OFF)

Example: CALC:LIM2:LOW -30,-40,-10,-40,-30

Defines 5 lower limit values for limit line 2 in the preset unit.

CALC:LIM2:LOW?

Outputs the lower limit values of limit line 2 separated by a comma.

CALCulate<n>:LIMit<k>:LOWer:MARGin < Margin>

This command defines an area around a lower limit line where limit check violations are still tolerated.

Suffix:

<n> irrelevant

<k> 1...8

Selects the limit line.

Parameters:

<Margin> Numeric value that defines the margin.

In spectrum mode, the unit is always dB.

*RST: 0

Example: CALC:LIM:LOW:MARG 10dB

CALCulate<n>:LIMit<k>:LOWer:MODE < Mode>

This command selects the vertical limit line scaling.

Suffix:

<n> irrelevant

<k> 1...8

Selects the limit line.

Remote Control - Commands

Parameters:

<Mode> ABSolute

Limit line is defined by absolute physical values. The unit is vari-

able.

RELative

Limit line is defined by values relative to the reference level (dB).

*RST: ABSolute

Example: CALC:LIM:LOW:MODE REL

Defines the y-axis of limit line 2 as relative scaled.

CALCulate<n>:LIMit<k>:LOWer:OFFSet <Offset>

This command defines an offset for a complete lower limit line.

Compared to shifting the limit line, an offset does not actually change the limit line definition points.

Suffix:

<n> irrelevant

<k> 1...8

Selects the limit line.

Parameters:

<Offset> Numeric value that defines the offset.

*RST: C

Example: CALC:LIM2:LOW:OFFS 3dB

Shifts limit line 2 by 3 dB upwards.

CALCulate<n>:LIMit<k>:LOWer:SHIFt <Distance>

This command moves a complete lower limit line vertically.

Compared to defining an offset, this command actually changes the limit line definition points by the value you define.

Suffix:

<n> irrelevant

<k> Selects the limit line.

Parameters:

<Distance> Numeric value that defines the distance of the shift.

The unit depends on CALCulate<n>:LIMit<k>:UNIT

on page 500.

Example: CALC:LIM3:LOW:SHIF 20DB

Shifts all Y values of limit line 3 by 20 dB.

Remote Control – Commands

CALCulate<n>:LIMit<k>:LOWer:SPACing <InterpolType>

This command selects linear or logarithmic interpolation for the lower limit line.

Suffix:

<n> irrelevant

<k> 1...8

Selects the limit line.

Parameters:

<InterpolType> LINear | LOGarithmic

*RST: LIN

Example: CALC:LIM:LOW:SPAC LIN

CALCulate<n>:LIMit<k>:LOWer:STATe <State>

This command turns a lower limit line on and off.

Before you can use this command, you have to select a limit line with

CALCulate<n>:LIMit<k>:NAME.

The limit check is activated separately with CALCulate < n > :LIMit < k > :STATe. The result of the limit check can be queried with CALCulate < n > :LIMit < k > :FAIL?.

Suffix:

<n> irrelevant

<k> 1...8

Selects the limit line.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:LIM4:LOW:STAT ON

Switches on limit line 4 (lower limit).

CALCulate<n>:LIMit<k>:LOWer:THReshold <Threshold>

This command defines a threshold for relative limit lines.

The R&S FSV uses the threshold for the limit check, if the limit line violates the threshold.

Suffix:

<n> irrelevant

<k> 1...8

Selects the limit line.

Parameters:

<Threshold> Numeric value that defines the threshold.

The unit depends on CALCulate<n>:LIMit<k>:UNIT.

*RST: -200 dBm

Remote Control – Commands

Example: CALC:LIM2:LOW:THR -35DBM

Defines an absolute threshold value for limit line 2.

CALCulate:LIMit:UPPer Subsystem

The CALCulate:LIMit:UPPer subsystem defines the upper limit line.

CALCulate <n>:LIMit<k>:UPPer[:DATA]</k></n>	519
CALCulate <n>:LIMit<k>:UPPer:MARGin</k></n>	
CALCulate <n>:LIMit<k>:UPPer:MODE</k></n>	520
CALCulate <n>:LIMit<k>:UPPer:OFFSet</k></n>	520
CALCulate <n>:LIMit<k>:UPPer:SHIFt</k></n>	520
CALCulate <n>:LIMit<k>:UPPer:SPACing</k></n>	521
CALCulate <n>:LIMit<k>:UPPer:STATe</k></n>	
CALCulate <n>:LIMit<k>:UPPer:THReshold</k></n>	522

CALCulate<n>:LIMit<k>:UPPer[:DATA] <LimitLinePoints>

This command defines the vertical definition points of an upper limit line.

If the measured values exceed the UPPer limit line, the limit is violated.

Suffix:

<n> irrelevant

<k> 1...8

Selects the limit line.

Parameters:

<LimitLinePoints> Variable number of x-axis values.

Note that the number of horizontal values has to be the same as

the number of vertical values set with CALCulate<n>:

LIMit<k>: CONTrol[:DATA]. If not, the R&S FSV either adds

missing values or ignores surplus values.

The unit depends on CALCulate<n>:LIMit<k>:UNIT.

*RST: (LIMit:STATe is set to OFF)

Example: CALC:LIM2:UPP -10,0,0,-10,-5

Defines 5 upper limit values for limit line 2 in the preset unit.

CALC:LIM2:UPP?

Outputs the upper limit values for limit line 2 separated by a

comma.

CALCulate<n>:LIMit<k>:UPPer:MARGin < Margin>

This command defines an area around a upper limit line where limit check violations are still tolerated.

Suffix:

<n> irrelevant

<k> 1...8

Selects the limit line.

Remote Control - Commands

Parameters:

<Margin> Numeric value that defines the margin.

In spectrum mode, the unit is always dB.

*RST: 0

Example: CALC:LIM2:UPP:MARG 10dB

Defines the margin of limit line 2 to 10 dB below the limit value.

CALCulate<n>:LIMit<k>:UPPer:MODE < Mode>

This command selects the vertical limit line scaling.

Suffix:

<n> irrelevant

<k> 1...8

Selects the limit line.

Parameters:

<Mode> ABSolute

Limit line is defined by absolute physical values. The unit is vari-

able.

RELative

Limit line is defined by values relative to the reference level (dB).

*RST: ABSolute

Example: CALC:LIM2:UPP:MODE REL

Defines the y-axis of limit line 2 as relative scaled.

CALCulate<n>:LIMit<k>:UPPer:OFFSet <Offset>

This command defines an offset for a complete upper limit line.

Compared to shifting the limit line, an offset does not actually change the limit line definition points.

Suffix:

<n> irrelevant

<k> 1...8

Selects the limit line.

Parameters:

<Offset> Numeric value that defines the offset.

*RST: 0

Example: CALC:LIM2:UPP:OFFS 3dB

Shifts limit line 2 by 3 dB upwards.

CALCulate<n>:LIMit<k>:UPPer:SHIFt <Value>

This command moves a complete upper limit line vertically.

Remote Control - Commands

Compared to defining an offset, this command actually changes the limit line definition points by the value you define.

Suffix:

<n> irrelevant <k> 1...8

Selects the limit line.

Parameters:

<Distance> Numeric value that defines the distance of the shift.

The unit depends on CALCulate<n>:LIMit<k>:UNIT

on page 500.

Example: CALC:LIM3:UPP:SHIF 20

Shifts all Y values of limit line 3 by 20 limit line units, e.g. dB.

Usage: Event

CALCulate<n>:LIMit<k>:UPPer:SPACing <InterpolType>

This command selects linear or logarithmic interpolation for the upper limit line.

Suffix:

<n> irrelevant

<k> 1...8

Selects the limit line.

Parameters:

<InterpolType> LINear | LOGarithmic

*RST: LIN

Example: CALC:LIM:UPP:SPAC LIN

CALCulate<n>:LIMit<k>:UPPer:STATe <State>

This command turns a lower limit line on and off.

Before you can use this command, you have to select a limit line with CALCulate<n>:LIMit<k>:NAME.

The limit check is activated separately with CALCulate < n > :LIMit < k > :STATe. The result of the limit check can be queried with CALCulate < n > :LIMit < k > :FAIL?.

Suffix:

<n> irrelevant

<k> 1...8

Selects the limit line.

Parameters:

<State> ON | OFF

*RST: OFF

Remote Control – Commands

Example: CALC:LIM4:UPP:STAT ON

Switches on limit line 4 (upper limit).

CALCulate<n>:LIMit<k>:UPPer:THReshold <Threshold>

This command defines a threshold for relative limit lines.

The R&S FSV uses the threshold for the limit check, if the limit line violates the threshold.

Suffix:

<n> irrelevant

<k> 1...8

Selects the limit line.

Parameters:

<Threshold> Numeric value that defines the threshold.

The unit depends on ${\tt CALCulate < n > : LIMit < k > : UNIT.}$

*RST: -200 dBm

Example: CALC:LIM2:UPP:THR -35DBM

Defines an absolute threshold value for limit line 2.

CALCulate: MARKer Subsystem

The CALCulate:MARKer subsystem checks the marker functions of the instrument.

CALCUIALE < n > : MARKET < m > [:51ATE]	523
CALCulate <n>:MARKer<m>:AOFF</m></n>	523
CALCulate <n>:MARKer<m>:COUNt</m></n>	
CALCulate <n>:MARKer<m>:COUNt:FREQuency?</m></n>	524
CALCulate <n>:MARKer<m>:COUNt:RESolution</m></n>	524
CALCulate <n>:MARKer<m>:LINK</m></n>	525
CALCulate <n>:MARKer<m>:LOEXclude</m></n>	525
CALCulate <n>:MARKer<m>:MAXimum[:PEAK]</m></n>	526
CALCulate <n>:MARKer<m>:MAXimum:AUTO</m></n>	526
CALCulate <n>:MARKer<m>:MAXimum:LEFT</m></n>	527
CALCulate <n>:MARKer<m>:MAXimum:NEXT</m></n>	527
CALCulate <n>:MARKer<m>:MAXimum:RIGHt</m></n>	527
CALCulate <n>:MARKer<m>:MINimum[:PEAK]</m></n>	528
CALCulate <n>:MARKer<m>:MINimum:AUTO</m></n>	528
CALCulate <n>:MARKer<m>:MINimum:LEFT</m></n>	529
CALCulate <n>:MARKer<m>:MINimum:NEXT</m></n>	529
CALCulate <n>:MARKer<m>:MINimum:RIGHt</m></n>	530
CALCulate <n>:MARKer<m>:PEXCursion</m></n>	
CALCulate <n>:MARKer<m>:SEARch</m></n>	531
CALCulate <n>:MARKer<m>:TRACe</m></n>	
CALCulate <n>:MARKer<m>:X</m></n>	532
CALCulate <n>:MARKer<m>:X:SLIMits[:STATe]</m></n>	532
CALCulate <n>:MARKer<m>:X:SLIMits:LEFT</m></n>	532
CALCulate <n>:MARKer<m>:X:SLIMits:RIGHT</m></n>	533
CALCulate <n>:MARKer<m>:X:SLIMits:ZOOM</m></n>	533

Remote Control – Commands

CALCulate <n>:MARKer<m>:X:SSIZe</m></n>	534
CALCulate <n>:MARKer<m>:Y?</m></n>	534
CALCulate <n>:MARKer<m>:Y:PERCent</m></n>	535

CALCulate<n>:MARKer<m>[:STATe] <State>

This command turns markers on and off.

If the corresponding marker number is currently active as a deltamarker, it is turned into a normal marker.

Suffix:

<n> Selects the measurement window.

<m> depends on mode

Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK3 ON

Switches on marker 3 or switches to marker mode.

CALCulate<n>:MARKer<m>:AOFF

This command all markers off, including delta markers and marker measurement functions.

Suffix:

<n> Selects the measurement window.

<m> depends on mode

irrelevant

Example: CALC:MARK:AOFF

Switches off all markers.

Usage: Event

CALCulate<n>:MARKer<m>:COUNt <State>

This command turns the frequency counter at the marker position for marker 1 on and off.

The count result is queried with CALCulate<n>:MARKer<m>:COUNt:FREQuency?.

The frequency counter works for one marker only. If you perform a frequency count with another marker, the R&S FSV deactivates the frequency count of the first marker.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Remote Control - Commands

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: INIT:CONT OFF

Switches to single sweep mode.

CALC:MARK ON

Switches on marker 1.

CALC:MARK:COUN ON

Switches on the frequency counter for marker 1.

INIT; *WAI

Starts a sweep and waits for the end.

CALC: MARK: COUN: FREQ?

Outputs the measured value.

CALCulate<n>:MARKer<m>:COUNt:FREQuency?

This command queries the result of the frequency counter for marker 1.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Return values:

<Frequency> Frequency at the marker position.

Example: INIT:CONT OFF

Switches to single sweep mode.

CALC:MARK ON
Switches on marker 2.
CALC:MARK:COUN ON

Activates the frequency counter for marker 1.

INIT; *WAI

Starts a sweep and waits for the end.

CALC:MARK:COUN:FREQ?

Outputs the measured value of marker 1.

Usage: Query only

CALCulate<n>:MARKer<m>:COUNt:RESolution < Resolution>

This command specifies the resolution of the frequency counter (marker 1).

Remote Control - Commands

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

<Resolution> 0.001 | 0.01 | 0.1 | 1 | 10 | 1000 | 10000 Hz

*RST: 0.1 Hz

Example: CALC:MARK:COUN:RES 1kHz

Sets the resolution of the frequency counter to 1 kHz.

CALCulate<n>:MARKer<m>:LINK <DisplayType>

Links the markers in all displays of the specified type.

Suffix:

<n> 1...4

window

<m> 1...16

marker

Parameters:

<DisplayType> TIME | SPECtrum | BOTH | NONE

TIME

Links the markers in all time domain diagrams

SPECtrum

Links the markers in all AF Spectrum displays

вотн

Links the markers both in the time domain diagrams and in the AF

Spectrum displays

NONE

Markers are not linked.

*RST: NONE

Example: CALC1:MARK1:LINK TIME

Links the marker 1 in all time domain diagrams in screen A.

Mode: ADEMOD

CALCulate<n>:MARKer<m>:LOEXclude <State>

This command turns the local oscillator suppression during a peak search on or off.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

<State> ON | OFF

*RST: ON

Remote Control - Commands

Example: CALC:MARK:LOEX ON

CALCulate<n>:MARKer<m>:MAXimum[:PEAK]

This command positions the marker on the current trace maximum.

The corresponding marker is activated first or switched to the marker mode.

If no maximum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

In "Spectrogram" mode, this command positions the specified marker on the current peak level of the x-axis. The search is performed within the current frame. It does not change the position of the marker on the y-axis.

Suffix:

<n> Selects the measurement window.

<m> depends on mode

Selects the marker.

Example: CALC:MARK2:MAX

Positions marker 2 to the maximum value of the trace.

Usage: Event

CALCulate<n>:MARKer<m>:MAXimum:AUTO <State>

This command turns an automatic marker peak search for a trace maximum on and off. The command performs the peak search after each sweep.

An automatic peak search may be used during adjustments of a device under test to keep track of the actual peak marker position and level.

If no maximum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:MAX:AUTO ON

Activates the automatic peak search function for marker 1 at the

end of each particular sweep.

Usage: Event

Remote Control - Commands

CALCulate<n>:MARKer<m>:MAXimum:LEFT

This command positions a marker to the next smaller trace maximum on the left of the current position (i.e. in descending X values).

If no next smaller maximum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

In "Spectrogram" mode, this command positions the specified marker on the next peak level of the x-axis. The search includes only the data to the left of the current marker position in the current frame. It does not change the position of the marker on the y-axis.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:MARK2:MAX:LEFT

Positions marker 2 to the next lower maximum value to the left of

the current value.

Usage: Event

CALCulate<n>:MARKer<m>:MAXimum:NEXT

This command positions the marker to the next smaller trace maximum.

If no next smaller maximum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

In "Spectrogram" mode, this command positions the specified marker on the next peak level of the x-axis. The search includes the data in both directions of the current marker position in the current frame. It does not change the position of the marker on the y-axis.

Suffix

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:MARK2:MAX:NEXT

Positions marker 2 to the next lower maximum value.

Usage: Event

CALCulate<n>:MARKer<m>:MAXimum:RIGHt

This command positions a marker to the next smaller trace maximum on the right of the current value (i.e. in ascending X values).

If no next smaller maximum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

In "Spectrogram" mode, this command positions the specified marker on the next peak level of the x-axis. The search includes only the data to the right of the current marker position in the current frame. It does not change the position of the delta marker on the y-axis.

Remote Control - Commands

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:MARK2:MAX:RIGH

Positions marker 2 to the next lower maximum value to the right

of the current value.

Usage: Event

CALCulate<n>:MARKer<m>:MINimum[:PEAK]

This command positions the marker on the current trace minimum.

The corresponding marker is activated first or switched to marker mode, if necessary.

If no minimum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

In "Spectrogram" mode, this command positions the specified marker on the current minimum level of the x-axis. The search is performed within the current frame. It does not change the position of the marker on the y-axis / frames.

Suffix:

<n> Selects the measurement window.

<m> depends on mode

Selects the marker.

Example: CALC:MARK2:MIN

Positions marker 2 to the minimum value of the trace.

Usage: Event

CALCulate<n>:MARKer<m>:MINimum:AUTO <State>

This command turns an automatic marker peak search for a trace maximum on and off. The command performs the peak search after each sweep.

An automatic peak search may be used during adjustments of a device under test to keep track of the actual peak marker position and level.

If no maximum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Remote Control - Commands

Example: CALC:MARK:MIN:AUTO ON

Activates the automatic minimum value search function for marker

1 at the end of each particular sweep.

CALCulate<n>:MARKer<m>:MINimum:LEFT

This command positions a marker to the next higher trace minimum on the left of the current value (i.e. in descending X direction).

If no next higher minimum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

In "Spectrogram" mode, this command positions the specified marker on the next minimum level of the x-axis. The search includes only the data to the left of the current marker position in the current frame. It does not change the position of the marker on the y-axis.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:MARK2:MIN

Positions marker 2 to the minimum value of the trace.

CALC:MARK2:MIN:LEFT

Positions marker 2 to the next higher minimum value to the left of

the current value.

Usage: Event

CALCulate<n>:MARKer<m>:MINimum:NEXT

This command positions ae marker to the next higher trace minimum.

If no next higher minimum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

In "Spectrogram" mode, this command positions the specified marker on the next minimum level of the x-axis. The search includes the data in both directions of the current marker position in the current frame. It does not change the position of the marker on the y-axis.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:MARK2:MIN

Positions marker 2 to the minimum value of the trace.

CALC:MARK2:MIN:NEXT

Positions marker 2 to the next higher maximum value.

Usage: Event

Remote Control – Commands

CALCulate<n>:MARKer<m>:MINimum:RIGHt

This command positions a marker to the next higher trace minimum on the right of the current value (i.e. in ascending X direction).

If no next higher minimum value is found on the trace (level spacing to adjacent values < peak excursion), an execution error (error code: -200) is produced.

In "Spectrogram" mode, this command positions the specified marker on the current peak level of the x-axis. The search is performed within the current frame. It does not change the position of the marker on the y-axis.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:MARK2:MIN

Positions marker 2 to the minimum value of the trace.

CALC:MARK2:MIN:RIGH

Positions marker 2 to the next higher minimum value to the right

of the current value.

Usage: Event

CALCulate<n>:MARKer<m>:PEXCursion < Excursion>

This command defines the peak excursion

The peak excursion sets the requirements for a peak to be detected during a peak search.

The unit depends on the selected operating mode and measurement.

Mode/Display mode	Unit
Spectrum	dB
ADEMOD, RF display	dB
ADEMOD, AM display	PCT
ADEMOD, FM display	kHz
ADEMOD, PM display	RAD

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Remote Control - Commands

Parameters:

<Excursion> The peak excursion is the distance to a trace maximum that must

be attained before a new maximum is recognized, or the distance to a trace minimum that must be attained before a new minimum

is recognized

*RST: 6dB in "Spectrum" mode and RF displays; 5 PCT in

AM displays, 50 kHz in FM displays, (0.5 RAD in PM

displays

Example: CALC:MARK:PEXC 10dB

Defines peak excursion 10 dB.

CALCulate<n>:MARKer<m>:SEARch <MarkRealImag>

This command selects the trace type a marker search is performed on.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<MarkRealImag> REAL

Marker search functions are performed on the real trace of the "I/

Q" measurement.

IMAG

Marker search functions are performed on the imaginary trace of

the "I/Q" measurement.

MAGN

Marker search functions are performed on the magnitude of the I

and Q data.

*RST: REAL

Example: CALC4:MARK:SEAR IMAG

CALCulate<n>:MARKer<m>:TRACe <Trace>

This command selects the trace a marker is positioned on.

The corresponding trace must have a trace mode other than "Blank".

If necessary, the corresponding marker is switched on prior to the assignment.

Suffix:

<n> Selects the measurement window.

<m> depends on mode

Selects the marker.

Parameters:

<Trace> 1 ... 6

Trace number the marker is positioned on.

Remote Control - Commands

Example: CALC:MARK3:TRAC 2

Assigns marker 3 to trace 2.

CALCulate<n>:MARKer<m>:X <Position>

This command positions a marker on a particular coordinate on the x-axis.

If marker 2, 3 or 4 is selected and used as delta marker, it is switched to marker mode.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<Position> Numeric value that defines the marker position on the x-axis. The

unit is either Hz (frequency domain) or s (time domain) or dB (sta-

tistics).

Range: The range depends on the current x-axis range.

Example: CALC:MARK2:X 1.7MHz

Positions marker 2 to frequency 1.7 MHz.

CALCulate<n>:MARKer<m>:X:SLIMits[:STATe] <State>

This command turns marker search limits on and off.

If the power measurement in zero span is active, this command limits the evaluation range on the trace.

Suffix:

<n> Selects the measurement window.

<m> marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:X:SLIM ON

Switches on search limitation.

CALCulate<n>:MARKer<m>:X:SLIMits:LEFT <Limit>

This command sets the left limit of the marker search range.

If the power measurement in zero span is active, this command limits the evaluation range to the trace.

Note: The function is only available if the search limit for marker and delta marker is switched on (see CALCulate<n>:MARKer<m>:X:SLIMits[:STATe]).

Suffix:

<n> Selects the measurement window.

Remote Control – Commands

<m> irrelevant

Parameters:

<Limit> The value range depends on the span or sweep time.

The unit is Hz for frequency domain measurements and s for time

domain measurements.

Range: 0 to MAX

*RST: left diagram border

Example: CALC:MARK:X:SLIM ON

Switches the search limit function on. CALC:MARK:X:SLIM:LEFT 10MHz

Sets the left limit of the search range to 10 MHz.

CALCulate<n>:MARKer<m>:X:SLIMits:RIGHT <Limit>

This command sets the right limit of the marker search range.

If the power measurement in zero span is active, this command limits the evaluation range to the trace.

Note: The function is only available if the search limit for marker and delta marker is switched on (CALCulate<n>:MARKer<m>:X:SLIMits[:STATe]).

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

<Limit> The value range depends on the span or sweep time.

The unit is Hz for frequency domain measurements and s for time

domain measurements.

Range: 0 to MAX

*RST: left diagram border

Example: CALC:MARK:X:SLIM ON

Switches the search limit function on. CALC:MARK:X:SLIM:RIGH 20MHz

Sets the right limit of the search range to 20 MHz.

CALCulate<n>:MARKer<m>:X:SLIMits:ZOOM <State>

This command sets the limits of the marker search range to the zoom area.

Note: The function is only available if the search limit for marker and delta marker is switched on (see CALCulate<n>:MARKer<m>:X:SLIMits[:STATe]).

Suffix:

<n> irrelevant <m> irrelevant

Remote Control - Commands

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:X:SLIM:ZOOM ON

Switches the search limit function on. CALC:MARK:X:SLIM:RIGH 20MHz

Sets the right limit of the search range to 20 MHz.

CALCulate<n>:MARKer<m>:X:SSIZe <StepSize>

This command defines the step size of the rotary knob for marker or delta marker value changes. It only takes effect in manual operation.

The marker step size is unavailable for statistical measurements.

Suffix:

<n> irrelevant <m> irrelevant

Parameters:

<StepSize> STANdard

step size corresponds to space between two pixels

POINts

step size corresponds to space between two measured values

(number of measured values is defined via the

[SENSe<n>:]SWEep:POINts command, see [SENSe:

] SWEep: POINts on page 704)

*RST: POINts

Example: CALC:MARK:X:SSIZ STAN

Sets the measured value step size.

CALCulate<n>:MARKer<m>:Y?

This command queries the measured value of a marker.

The corresponding marker is activated before or switched to marker mode, if necessary.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Remote Control - Commands

Return values:

<Result> The measured value of the selected marker is returned.

The unit is variable and depends on the one you have currently

set.

In I/Q Analyzer mode, if the result display configuration "Real/Imag (I/Q)" is selected, this query returns the Real (I) value of the marker

first, then the Imag (Q) value.

Example: INIT:CONT OFF

Switches to single sweep mode.

CALC: MARK2 ON Switches marker 2.

INIT; *WAI

Starts a sweep and waits for the end.

CALC:MARK2:Y?

Outputs the measured value of marker 2.

In I/Q Analyzer mode, for "Real/Imag (I/Q)", for example:

1.852719887E-011,0

Usage: Query only

CALCulate<n>:MARKer<m>:Y:PERCent < Probability>

This command positions the selected marker to the given probability.

If you use the command in combination with a delta marker, that delta marker is turned into a normal marker.

Note: The command is only available for CCDF measurements. You can query the associated level value with CALCulate<n>:MARKer<m>:X.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<Probability> Range: 0 to 100

Default unit: PCT

Example: CALC1:MARK:Y:PERC 95PCT

Positions marker 1 to a probability of 95 %.

CALCulate:MARKer:FUNCtion Subsystem

The CALCulate:MARKer<m>:FUNCtion subsystem checks the marker functions in the instrument.

CALCulate <n>:MARKer<m>:FUNCtion:BPOWer:MODE</m></n>	536
CALCulate <n>:MARKer<m>:FUNCtion:BPOWer:RESult?</m></n>	536
CALCulate <n>:MARKer<m>:FUNCtion:BPOWer:SPAN</m></n>	537
CALCulate <n>:MARKer<m>:FUNCtion:BPOWer[:STATe]</m></n>	537
CALCulate <n>:MARKer<m>:FUNCtion:CENTer</m></n>	538
CALCulate <n>:MARKer<m>:FUNCtion:CSTep</m></n>	538

Remote Control – Commands

CALCulate <n>:MARKer<m>:FUNCtion:DEModulation:CONTinuous</m></n>	538
CALCulate <n>:MARKer<m>:FUNCtion:DEModulation:HOLDoff</m></n>	539
CALCulate <n>:MARKer<m>:FUNCtion:DEModulation:SELect</m></n>	539
CALCulate <n>:MARKer<m>:FUNCtion:DEModulation[:STATe]</m></n>	539
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks[:IMMediate]</m></n>	540
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:ANN:LAB:STAT</m></n>	541
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:COUNt?</m></n>	541
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:LIST:SIZE</m></n>	542
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:SEAR:AUTO</m></n>	542
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:SORT</m></n>	542
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:STAT</m></n>	543
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:X</m></n>	543
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:Y?</m></n>	543
CALCulate <n>:MARKer<m>:FUNCtion:MDEPth:RESult?</m></n>	544
CALCulate <n>:MARKer<m>:FUNCtion:MDEPth:SEARchsignal ONCE</m></n>	545
CALCulate <n>:MARKer<m>:FUNCtion:MDEPth[:STATe]</m></n>	545
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown</m></n>	546
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:FREQuency?</m></n>	546
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:QFACtor</m></n>	547
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:RESult?</m></n>	547
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:STATe</m></n>	548
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:TIME?</m></n>	548
CALCulate <n>:MARKer<m>:FUNCtion:NOISe[:STATe]</m></n>	549
CALCulate <n>:MARKer<m>:FUNCtion:NOISe:RESult</m></n>	549
CALCulate <n>:MARKer<m>:FUNCtion:REFerence</m></n>	550
CALCulate <n>:MARKer<m>:FUNCtion:TOI:RESult?</m></n>	550
CALCulate <n>:MARKer<m>:FUNCtion:TOI:SEARchsignal ONCE</m></n>	551
CALCulate <n>:MARKer<m>:FUNCtion:TOI[:STATe]</m></n>	551
CALCulate <n>:MARKer<m>:FUNCtion:ZOOM</m></n>	551

CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:MODE < Mode>

This command selects the way the results for a band power marker are displayed.

Suffix:

<n> irrelevant <m> irrelevant

Parameters:

<Mode> POWer

Result is displayed as a power in dBm.

DENSity

Result is displayed as a density in dBm/Hz.

*RST: POW

Example: CALC:MARK:FUNC:BPOW:MODE DENS

CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:RESult?

This command queries the results of the band power measurement.

Remote Control – Commands

Suffix:

<n> irrelevant <m> irrelevant

Return values:

<Power> Signal power over the marker bandwidth.

Example: Activate the band power marker:

CALC:MARK:FUNC:BPOW:STAT ON

Select the density mode for the result:

CALC:MARK:FUNC:BPOW:MODE DENS

Query the result:

CALC:MARK:FUNC:BPOW:RES?

Response: 20dBm/Hz

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:SPAN

This command defines the bandwidth around the marker position.

Suffix:

<n> irrelevant <m> irrelevant

Parameters:

 Numeric value that defines the span in Hz.

The maximum span depends on the marker position and R&S FSV

model.

*RST: 5% of current span

Example: CALC:MARK:FUNC:BPOW:SPAN 20

CALCulate<n>:MARKer<m>:FUNCtion:BPOWer[:STATe] <State>

This command turns markers for band power measurements on and off.

If necessary, the command also turns on a marker. If a marker is already on, the currently active marker is used as the band power marker (all other marker functions for this marker are deactivated).

For details see chapter 3.3.3.8, "Performing Band Power Measurements", on page 171.

Suffix:

<n> irrelevant <m> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Remote Control - Commands

Example: CALC:MARK:FUNC:BPOW:STAT ON

CALCulate<n>:MARKer<m>:FUNCtion:CENTer

This command matches the center frequency to the frequency of a marker.

If you use the command in combination with a delta marker, that delta marker is turned into a normal marker.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:MARK2:FUNC:CENT

Sets the center frequency to the frequency of marker 2.

CALCulate<n>:MARKer<m>:FUNCtion:CSTep

This command matches the center frequency step size to the current marker frequency.

The command turns delta markers into normal markers.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:MARK3:FUNC:CST

Sets the center frequency to the same value as the frequency of

marker 3.

Usage: Event

CALCulate<n>:MARKer<m>:FUNCtion:DEModulation:CONTinuous <State>

This command turns continuous demodulation of the signal at the marker position in the frequency domain on and off.

Thus acoustic monitoring of the signals can be performed.

In the time domain continuous demodulation is always on.

This command is only available if the R&S FSV option B3 (Audio Demodulator) is installed.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Remote Control - Commands

Example: CALC2:MARK3:FUNC:DEM:CONT ON

Switches on the continuous 'demodulation.

CALCulate<n>:MARKer<m>:FUNCtion:DEModulation:HOLDoff < Duration>

This command defines for how long the the signal at the marker position is demodulated.

This command is only available if the R&S FSV option B3 (Audio Demodulator) is installed.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<Duration> Range: 10 ms to 1000 s

*RST: Marker demodulation = OFF

Example: CALC:MARK:FUNC:DEM:HOLD 3s

CALCulate<n>:MARKer<m>:FUNCtion:DEModulation:SELect < DemodMode>

This command selects the demodulation mode for the audio demodulator.

This command is only available if the R&S FSV option B3 (Audio Demodulator) is installed.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

<DemodMode> AM | FM

*RST: AM

Example: CALC:MARK:FUNC:DEM:SEL FM

CALCulate<n>:MARKer<m>:FUNCtion:DEModulation[:STATe] <State>

This command turns the audio demodulator on and off when the measurement reaches a marker position.

In the frequency domain, the hold time can be defined at the corresponding marker position with CALCulate<n>:MARKer<m>:FUNCtion:DEModulation:HOLDoff.

In the time domain continuous demodulation is always on.

This command is only available if the R&S FSV option B3 (Audio Demodulator) is installed.

Suffix:

<n> Selects the measurement window.

Remote Control – Commands

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK3:FUNC:DEM ON

Switches on the demodulation for marker 3.

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks[:IMMediate] <NoMaxima>

This command initiates a peak search.

The results can be queried with:

- Position of a peak on the x-axis: CALCulate<n>:MARKer<m>:FUNCtion: FPEaks:X
- Position of a peak on the y-axis: CALCulate<n>:MARKer<m>:FUNCtion: FPEaks:Y?
- Number of peaks in the list: CALCulate<n>:MARKer<m>:FUNCtion:FPEaks: COUNt?

The order the results are returned in is selected with CALCulate<n>:MARKer<m>: FUNCtion:FPEaks:SORT.

The trace the peaks search is performed on is selected with CALCulate<n>: MARKer<m>: TRACe.

Number of found maxima

The number of maxima found depends on the waveform and value set for the Peak Excursion parameter (see CALCulate<n>:MARKer<m>:PEXCursion), however, a maximum number of 200 maxima are determined. Only the signals which exceed their surrounding values at least by the value indicated by the peak excursion parameter are recognized as maxima. Therefore, the number of maxima found is not automatically the same as the number of maxima desired.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<NoMaxima> Range: 1 to 200

Remote Control - Commands

Example: INIT: CONT OFF

Switches to single sweep mode

INIT; *WAI

Starts measurement and synchronizes to end

CALC:MARK:TRAC 1
Sets marker 1 to trace 1

CALC:MARK:FUNC:FPE:SORT X

Sets the sort mode to increasing X values

CALC:MARK:FUNC:FPE 3; *WAI

Searches the 3 highest maxima for trace 1 and synchronizes to

end

CALC: MARK: FUNC: FPE: COUN?

Queries the number of maxima found

CALC:MARK:FUNC:FPE:Y?
Queries the level of maxima found
CALC:MARK:FUNC:FPE:X?

Queries the frequencies (span <> 0) or time (span = 0) of maxima

found.

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:ANN:LAB:STAT <State>

This command turns labels for peaks found during a peak search on and off.

The labels correspond to the marker number in the marker peak list.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: ON

Example: CALC:MARK:FUNC:FPE:ANN:LAB:STAT OFF

Removes the peak labels from the diagram

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:COUNt?

This command queries the number of peaks that have been found during a peak search.

Suffix:

<n> irrelevant

<m> Selects the marker.

Return values: <NumberOfPeaks>

Example: CALC:MARK:FUNC:FPE 3

Searches the 3 highest maxima for trace 1

CALC: MARK: FUNC: FPE: COUN?

Queries the number of maxima found

Remote Control - Commands

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:LIST:SIZE <MaxNoPeaks>

This command defines the maximum number of peaks the marker peak list may contain.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<MaxNoPeaks> Maximum number of peaks to be determined.

*RST: 50

Example: CALC:MARK:FUNC:FPE:LIST:SIZE 10

The marker peak list will contain a maximum of 10 peaks.

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:SEAR:AUTO <State>

This command turns the marker peak search on and off.

This command is retained for compatibility with R&S FSP only. Use CALCulate<n>: MARKer<m>: FUNCtion: FPEaks: STAT instead.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:FPE:SEAR:AUTO ON

Activates marker peak search

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:SORT <SortMode>

This command selects the order in which the results of a peak search are returned.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<SortMode> X

Sorts the peaks according to increasing position on the x-axis.

Υ

Sorts the peaks according to decreasing position on the y-axis.

Example: CALC:MARK:FUNC:FPE:SORT Y

Sets the sort mode to decreasing y values

Remote Control – Commands

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:STAT <State>

This command turns a peak search on and off.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:FPE:STAT ON

Activates marker peak search

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:X

This command queries the position of the peaks on the x-axis.

The order depends on the sort order that has been set with CALCulate < n > :

MARKer<m>: FUNCtion: FPEaks: SORT on page 542.

The number of peaks on the number that has been set with CALCulate<n>:

MARKer<m>:FUNCtion:FPEaks:COUNt?.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Return values:

<PeakPosition> Position of the peaks on the x-axis. The unit depends on the mea-

surement.

Example: CALC:MARK:FUNC:FPE:SORT Y

Sets the sort mode to decreasing y values

CALC:MARK:FUNC:FPE 3

Searches the 3 highest maxima for trace 1

CALC: MARK: FUNC: FPE: COUN?

Queries the number of maxima found

CALC:MARK:FUNC:FPE:X?

Queries the frequencies (span <> 0) or. time (span = 0) of the

maxima found

107.5E6,153.8E6,187.9E6 frequencies in increasing order 2.05E-3,2.37E-3, 3.71e-3

times in increasing order

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:Y?

This command queries the position of the peaks on the y-axis.

Remote Control - Commands

The order depends on the sort order that has been set with CALCulate<n>: MARKer<m>: FUNCtion: FPEaks: SORT on page 542.

The number of peaks on the number that has been set with CALCulate<n>: MARKer<m>: FUNCtion: FPEaks: COUNt?.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Return values:

<PeakPosition> Position of the peaks on the y-axis. The unit depends on the mea-

surement.

Example: CALC:MARK:FUNC:FPE:SORT Y

Sets the sort mode to decreasing y values

CALC:MARK:FUNC:FPE 3

Searches the 3 highest maxima for trace 1

CALC: MARK: FUNC: FPE: COUN?

Queries the number of maxima found

CALC:MARK:FUNC:FPE:Y?

Queries the levels of the maxima found

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:MDEPth:RESult?

This command queries the results of the AM modulation depth measurement...

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Example: INIT: CONT OFF

Switches to single sweep mode.

CALC:MARK:X 10MHZ

Sets the reference marker (marker 1) to the carrier signal at 10

MHz.

CALC:MARK:FUNC:MDEP ON

Switches on the modulation depth measurement.

INIT; *WAI

Starts a sweep and waits for the end. CALC: MARK: FUNC: MDEP: RES?

Outputs the measured value.

Usage: Query only

Remote Control - Commands

CALCulate<n>:MARKer<m>:FUNCtion:MDEPth:SEARchsignal ONCE

This command initiates a search for the signals required for the AM depth measurement.

Note that the command does not perform a new measurement, but looks for the signals on the current trace.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Example: CALC:MARK:FUNC:MDEP:SEAR ONCE

Executes the search of an AM modulated signal at the currently

available trace.

Usage: Event

SCPI confirmed

CALCulate<n>:MARKer<m>:FUNCtion:MDEPth[:STATe] <State>

This command turns the AM Modulation Depth measurement on and off.

To work correctly, the measurement requires an AM modulated signal.

If necessary, the command positions marker 1 on the signal with the highest level.

The level value of marker 1 is regarded as the carrier level. On activating the function, marker 2 and marker 3 are automatically set as delta markers symmetrically to the carrier to the adjacent maxima of the trace.

If the position of delta marker 2 is changed, delta marker 3 is moved symmetrically with respect to the reference marker (marker 1). If the position of delta marker 3 is changed, fine adjustment can be performed independently of delta marker 2.

The power at the marker positions is calculated from the measured levels.

The AM modulation depth is calculated from the ratio of power values at the reference marker and the delta markers. If the two AM sidebands differ in power, the average value of the two power values is used for calculating the AM modulation depth.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Remote Control - Commands

Example: CALC:MARK:X 10MHZ

Sets the reference marker (marker 1) to the carrier signal at 10

MHz.

CALC:MARK:FUNC:MDEP ON

Switches on the modulation depth measurement.

CALC:DELT2:X 10KHZ

Sets delta markers 2 and 3 to the signals at 10 kHz from the carrier

signal.

CALC:DELT3:X 9.999KHZ

Corrects the position of delta marker 3 relative to delta marker 2.

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown < Distance>

This command defines the distance of the n dB down markers to the reference marker.

The temporary markers T1 and T2 are positioned n dB below the active reference marker. The frequency and time position of these markers can be queried with

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:FREQuency? and CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:TIME?. The bandwidth between the markers can be queried with CALCulate<n>:MARKer<m>:FUNCtion:NDBDown: RESult?.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

<Distance> Distance of the temporary markers to the reference marker in dB.

*RST: 6dB

Example: CALC:MARK:FUNC:NDBD 3dB

Sets the level spacing to 3 dB.

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:FREQuency?

This command queries the position of the n dB down markers on the x-axis when measuring in the frequency domain.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Remote Control – Commands

Return values:

<Frequency> <frequency 1>

absolute frequency of the n dB marker to the left of the reference

marker in Hz <frequency 2>

absolute frequency of the n dB marker to the right of the reference

marker in Hz

Example: INIT:CONT OFF

Switches to single sweep mode.

CALC: MARK: FUNC: NDBD ON

Switches on the n dB down function.

INIT; *WAI

Starts a sweep and waits for the end. CALC:MARK:FUNC:NDBD:FREQ?

Outputs the frequencies of the temporary markers.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:QFACtor

INIT: CONT OFF

This command queries the Q factor (quality) of n dB down measurements.

Suffix:

Example:

<n> Selects the measurement window.

<m> Selects the marker.

Switches to single sweep mode.

CALC: MARK: FUNC: NDBD ON

Switches on the n dB down function.

INIT; *WAI

Starts a sweep and waits for the end. CALC: MARK: FUNC: NDBD: QFAC?

Queries the Q factor of the measured bandwidth.

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:RESult?

This command queries the distance of the n dB down markers from each other.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Remote Control – Commands

Parameters:

<Distance> The result depends on the span.

In case of frequency domain measurements, the command returns the bandwidth between the two n dB down markers in Hz. In case of time domain measurements, the command returns the pulse width between the two n dB down markers in seconds.

Example: INIT:CONT OFF

Switches to single sweep mode.

CALC: MARK: FUNC: NDBD ON

Switches on the n dB down function.

INIT; *WAI

Starts a sweep and waits for the end. CALC: MARK: FUNC: NDBD: RES?

Outputs the measured value.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:STATe <State>

This command turns the n dB Down marker function on and off.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:NDBD:STAT ON

Switches on the "N dB Down" function.

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:TIME?

This command queries the position of the n dB down markers on the x-axis when measuring in the time domain.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Remote Control - Commands

Return values:

<Time> <time 1>

absolute position in time of the n dB marker to the left of the ref-

erence marker in seconds

<time 2>

absolute position in time of the n dB marker to the right of the

reference marker in seconds

Example: INIT:CONT OFF

Switches to single sweep mode CALC: MARK: FUNC: NDBD ON Switches on the n dB down function.

INIT; *WAI

Starts a sweep and waits for the end. CALC:MARK:FUNC:NDBD:TIME?

Outputs the time values of the temporary markers.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:NOISe[:STATe] <State>

This command turns the noise measurement for all markers on or off.

If on, the R&S FSV measures the noise power density at the marker position.

The result can be queried with CALCulate<n>:MARKer<m>:FUNCtion:NOISe: RESult.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:NOIS ON

Switches on the noise measurement.

CALCulate<n>:MARKer<m>:FUNCtion:NOISe:RESult

This command queries the result of the noise measurement.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Remote Control - Commands

Example: INIT:CONT OFF

Switches to single sweep mode.

CALC: MARK2 ON Switches on marker 2.

CALC:MARK:FUNC:NOIS ON Switches on noise measurement.

INIT; *WAI

Starts a sweep and waits for the end.

CALC:MARK2:NOIS:RES?

Outputs the noise result of marker 2.

CALCulate<n>:MARKer<m>:FUNCtion:REFerence

This command sets the reference level to the power measured by a marker.

If you use the command in combination with a delta marker, that delta marker is turned into a normal marker.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:MARK2:FUNC:REF

Sets the reference level to the level of marker 2.

CALCulate<n>:MARKer<m>:FUNCtion:TOI:RESult?

This command queries the results for the third order intercept point measurement.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Return values:

<TOI> Third order intercept point.

Example: INIT:CONT OFF

Switches to single sweep mode. CALC: MARK: FUNC: TOI ON

Switches the intercept measurement.

INIT; *WAI

Starts a sweep and waits for the end. CALC: MARK: FUNC: TOI: RES?

Outputs the measured value.

Usage: Query only

Remote Control - Commands

CALCulate<n>:MARKer<m>:FUNCtion:TOI:SEARchsignal ONCE

This command initiates a search for signals in the current trace to determine the third intercept point.

No new measurement is performed. Only the currently available trace selected for the TOI measurement is used.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:MARK:FUNC:TOI:SEAR ONCE

Executes the search for 2 signals and their intermodulation prod-

uct at the currently available trace.

Usage: Event

SCPI confirmed

CALCulate<n>:MARKer<m>:FUNCtion:TOI[:STATe] <State>

This command initiates a measurement to determine the third intercept point.

A two-tone signal with equal carrier levels is expected at the RF input of the instrument. Marker 1 and marker 2 (both normal markers) are set to the maximum of the two signals. Delta marker 3 and delta marker 4 are positioned to the intermodulation products. The delta markers can be modified separately afterwards with CALCulate<n>:

DELTamarker<m>:X.

The third-order intercept is calculated from the level spacing between the normal markers and the delta markers.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:TOI ON

Switches on the measurement of the third-order intercept.

CALCulate<n>:MARKer<m>:FUNCtion:ZOOM <Range>

This command defines the range to be zoomed around marker 1. Marker 1 is activated first, if necessary.

The subsequent frequency sweep is stopped at the marker position and the frequency of the signal is counted. This frequency becomes the new center frequency, and the zoomed span is set.

Remote Control - Commands

Note that you should perform a complete measurement with synchronization to the end of the measurement. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

Switches to single sweep mode

CALC: MARK: FUNC: ZOOM 1kHz; *WAI Activates zooming and waits for its end.

CALCulate:MARKer:FUNCtion:HARMonics Subsystem

The CALCulate: MARKer<m>: FUNCtion: HARMonics subsystem contains the commands to define the settings for harmonics measurement.

CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:BANDwidth:AUTO</m></n>	552
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:DISTortion?</m></n>	552
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:LIST?</m></n>	553
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:NHARmonics</m></n>	554
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:PRESet</m></n>	554
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics[:STATe]</m></n>	555

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:BANDwidth:AUTO <State>

This command selects the resolution bandwidth of the harmonic in respect to the bandwidth of the first harmonic.

For details refer to "Harmonic RBW Auto" on page 285.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

<State> OFF | ON

OFF identical ON a multiple

*RST: ON

Example: CALC:MARK:FUNC:HARM:BAND:AUTO OFF

Deactivates the automatic bandwidth enlargement.

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:DISTortion?

This command queries the total harmonic distortion of the signal.

Remote Control - Commands

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

TOTal

Return values:

<Result> <Distortion_%>,<Distortion_dB>

Pair of values, one showing the THD in %, one in dB.

Example: INIT:CONT OFF

Switches to single sweep mode. CALC:MARK:FUNC:HARM:NHARM 3

Sets the number of harmonics to be measured to 3.

CALC:MARK:FUNC:HARM ON

Activates the harmonic distortion measurement.

INIT; *WAI

Starts a sweep and waits for the end of the sweep.

CALC:MARK:FUNC:HARM:DIST? TOT Returns the total distortion in % and dB.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:LIST?

This command queries the position of the harmonics.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<Harmonics> Returns one value for every harmonic.

The first value is the absolute power of the first harmonic. The unit is variable. The other values are power levels relative to the first

harmonic. The unit for these is dB.

Remote Control - Commands

Example: INIT: CONT OFF

Switches to single sweep mode. CALC:MARK:FUNC:HARM:NHARM 3

Sets the number of harmonics to be measured to 3.

CALC:MARK:FUNC:HARM ON

Activates the harmonic distortion measurement.

INIT; *WAI

Starts a sweep and waits for the end of the sweep.

CALC: MARK: FUNC: HARM: LIST?

Returns the values for the 3 measured harmonics.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:NHARmonics < NoHarmonics>

This command sets the number of harmonics to be measured.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

<NoHarmonics> Range: 1 to 26

*RST: 10

Example: CALC:MARK:FUNC:HARM:NHARM 3

Sets the number of harmonics to be measured to 3.

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:PRESet

This command initiates a measurement to determine the ideal configuration for the harmonic distortion measurement.

The method depends on the span.

Frequency domain (span > 0)

Frequency and level of the first harmonic are determined and used for the measurement list.

Time domain (span = 0)

The level of the first harmonic is determined. The frequency remains unchanged.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Example: CALC:MARK:FUNC:HARM:PRES

Optimizes the device settings for the harmonic measurement.

Usage: Event

Remote Control - Commands

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics[:STATe] <State>

This command turns the harmonic distortion measurement on and off.

Note the following:

- If you perform the measurement in the frequency domain, the search range for the frequency of the first harmonic, whose power is determined, is defined by the last span.
- If you perform the measurement in the time domain, the current center frequency is used as the frequency of the first harmonic. Thus, the frequency search is bypassed.
 The first harmonic frequency is set by a specific center frequency in zero span before the harmonic measurement is started.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:HARM ON

Activates the harmonic distortion measurement.

CALCulate:MARKer:FUNCtion:POWer Subsystem

The CALCulate:MARKer<m>:FUNCtion:POWER subsystem contains the commands for control of power measurement.

Further information

"Predefined CP/ACLR Standards" on page 568

CALCulate <n>:MARKer<m>:FUNCtion:POWer:MODE</m></n>	.555
CALCulate <n>:MARKer<m>:FUNCtion:POWer:PRESet</m></n>	.556
CALCulate <n>:MARKer<m>:FUNCtion:POWer:RESult?</m></n>	.557
CALCulate <n>:MARKer<m>:FUNCtion:POWer:RESult:PHZ</m></n>	.559
CALCulate <n>:MARKer<m>:FUNCtion:POWer:SELect</m></n>	.560
CALCulate <n>:MARKer<m>:FUNCtion:POWer[:STATe]</m></n>	.561
CALCulate <n>:MARKer<m>:FUNCtion:POWer:STANdard:CATalog?</m></n>	.561
CALCulate <n>:MARKer<m>:FUNCtion:POWer:STANdard:DELete</m></n>	.562
CALCulate <n>:MARKer<m>:FUNCtion:POWer:STANdard:SAVE</m></n>	.562

CALCulate<n>:MARKer<m>:FUNCtion:POWer:MODE < Mode>

This commands defines the method by which the channel power values are calculated from the current trace in the window specified by the suffix <n>.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Remote Control – Commands

Parameters:

<Mode> WRITe | MAXHold

WRITe

The channel power and the adjacent channel powers are calcu-

lated directly from the current trace

MAXHold

The power values are calculated from the current trace and compared with the previous power value using a maximum algorithm.

Example: CALC:MARK:FUNC:POW:MODE MAXH

Sets the Maxhold channel power mode.

CALCulate<n>:MARKer<m>:FUNCtion:POWer:PRESet <Standard> |

<UserStandard>

This command selects the power measurement setting for a standard and switches on the corresponding measurement, if required.

The configuration for a standard comprises of the parameters weighting filter, channel bandwidth and spacing, resolution and video bandwidth, as well as detector and sweep time.

The settings for standards IS95A and C differ as far as the calculation method of channel spacings is concerned. For IS95A and J-STD008 the spacing is calculated from the center of the main channel to the center of the corresponding adjacent channel, for IS95C from the center of the main channel to the nearest border of the adjacent channel.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Setting parameters:

<Standard> Note that predefined standards go without quotes, while user

standards have to be in quotes ('user standard').

<Pre><Pre>defined standard>

Predefind standard according to table in "Predefined CP/ACLR

Standards" on page 568.

'<string>'

User-defined standard with <string> being the name of the user

standard.

Remote Control – Commands

Return values:

<Pre><Pre>defined standard>

Predefind standard according to table in "Predefined CP/ACLR

Standards" on page 568.

USER

User-defined standard is set

NONE

not yet defined

with <string> being the name of a user standard. Note that predefined standards go without quotes, while user standards have

to be in quotes ('user standard').

For further details refer to "Predefined CP/ACLR Standards"

on page 568.

Example: CALC:MARK:FUNC:POW:PRES TETRA

Selects the standard setting for TETRA

Example: CALC:MARK:FUNC:POW:PRES 'my aclr standard'

Selects the user standard my_aclr_standard

CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult? <ResultType>

This command queries the result of the performed power measurement in the window specified by the suffix <n>. If necessary, the measurement is switched on prior to the query.

The channel spacings and channel bandwidths are configured in the SENSe: POWer subsystem.

To obtain a correct result, a complete sweep with synchronization to the end of the sweep must be performed before a query is output. Synchronization is possible only in the single sweep mode.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Remote Control – Commands

Parameters:

<ResultType>

ACPower | AOBW | CN | CN0 | CPOWer | PPOWer | MCACpower | OBANdwidth | OBWidth | BANDwidth

ACPower

Adjacent-channel power measurement

Results are output in the following sequence, separated by commas:

Power of transmission channel

Power of lower adjacent channel

Power of upper adjacent channel

Power of lower alternate channel 1

Power of upper alternate channel 1

Power of lower alternate channel 2

Power of upper alternate channel 2

The number of measured values returned depends on the number of adjacent/alternate channels selected with <code>[SENSe:]POWer:</code>

ACHannel: ACPairs.

With logarithmic scaling (RANGE "LOG"), the power is output in the currently selected level unit; with linear scaling (RANGE "LIN dB" or "LIN %"), the power is output in W. If [SENSe:]POWer: ACHannel:MODE is set to "REL", the adjacent/alternate-channel power is output in dB.

AOBW (AllOccupiedBandWidth)

Returns the occupied bandwidth, as well as the position and level of the temporary markers T1 and T2 used to calculate the occupied bandwidth.

The syntax of the result is:

<Occupied bandwidth>,<T1 x-value>,<T1 y-value>,<T2 x-value>,<T2 y-value>

CN

Measurement of carrier-to-noise ratio

The carrier-to-noise ratio in dB is returned.

CNO

Measurement of carrier-to-noise ratio referenced to 1 Hz bandwidth.

The carrier-to-noise ratio in dB/Hz is returned.

CPOWer

Channel power measurement

In a Spectrum Emission Mask measurement, the query returns the power result for the reference range, if this power reference type is selected.

With logarithmic scaling (RANGE LOG), the channel power is output in the currently selected level unit; with linear scaling (RANGE LIN dB or LIN %), the channel power is output in W.

PPOWer

Power of the highest peak

Remote Control - Commands

In a Spectrum Emission Mask measurement, the query returns the power result for the reference range, if this power reference type is selected.

MCACpower

Channel/adjacent-channel power measurement with several carrier signals

Results are output in the following sequence, separated by commas:

Power of carrier signal 1 to 18s in ascending order

Total power of all carrier signals

Power of lower adjacent channel

Power of upper adjacent channel

Power of lower alternate channel 1

Power of upper alternate channel 1

Power of lower alternate channel 2

Power of upper alternate channel 2

The number of measured values returned depends on the number of carrier signals and adjacent/alternate channels selected with

[SENSe:]POWer:ACHannel:TXCHannel:COUNt and [SENSe:]POWer:ACHannel:ACPairs.

If only one carrier signal is measured, the total value of all carrier signals is not output.

With logarithmic scaling (RANGE LOG), the power is output in dBm; with linear scaling (RANGE LIN dB or LIN %), the power is output in W. If [SENSe:]POWer:ACHannel:MODE is set to "REL", the adjacent/alternate-channel power is output in dB.

OBANdwidth | OBWidth

Measurement of occupied bandwidth

The occupied bandwidth in Hz is returned.

Example:

For an example of channel/adjacent-channel power measurement see chapter 4.3.4, "Measuring the Channel and Adjacent Channel Power", on page 859.

Example of occupied bandwidth measurement

POW:BAND 90PCT

Defines 90 % as the percentage of the power to be contained in the bandwidth range to be measured.

INIT: CONT OFF

Switches over to single sweep mode.

INIT; *WAI

Starts a sweep and waits for the end of the sweep.

CALC:MARK:FUNC:POW:RES? OBW

Queries the occupied bandwidth measured.

CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult:PHZ <State>

This command switches the query response of the power measurement results between output of absolute values and output referred to the measurement bandwith.

Remote Control - Commands

The measurement results are output with the CALCulate<n>:MARKer<m>: FUNCtion:POWer:RESult? command.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

ON

Results output: channel power density in dBm/Hz

OFF

Results output: channel power is displayed in dBm

*RST: OFF

Example: CALC:MARK:FUNC:POW:RES:PHZ ON

Output of results referred to the channel bandwidth.

For details on a complete measurement example refer to

CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult?

on page 557.

CALCulate<n>:MARKer<m>:FUNCtion:POWer:SELect < MeasType>

This command selects – and switches on – the specified power measurement type in the window specified by the suffix <n>.

The channel spacings and channel bandwidths are configured in the SENSe: POWer subsystem.

Note: If CPOWer is selected, the number of adjacent channels ([SENSe:]POWer: ACHannel:ACPairs) is set to 0. If ACPower is selected, the number of adjacent channels is set to 1, unless adjacent-channel power measurement is switched on already.

The channel/adjacent-channel power measurement is performed for the trace selected with [SENSe:]POWer:TRACe.

The occupied bandwidth measurement is performed for the trace on which marker 1 is positioned. To select another trace for the measurement, marker 1 is to be positioned on the desired trace by means of CALCulate<n>:MARKer<m>:TRACE.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Remote Control – Commands

Parameters:

<MeasType> ACPower|CPOWer|MCACpower|OBANdwidth|OBWidth|CN|

CNO

ACPower

Adjacent-channel power measurement with a single carrier signal

CPOWer

Channel power measurement with a single carrier signal (equivalent to adjacent-channel power measurement with "NO. OF ADJ

CHAN" = 0)

MCACpower

Channel/adjacent-channel power measurement with several car-

rier signals

OBANdwidth | OBWidth

Measurement of occupied bandwidth

CN

Measurement of carrier-to-noise ratio

CNO

Measurement of carrier-to-noise ratio referenced to 1 Hz band-

width

Example: CALC:MARK:FUNC:POW:SEL ACP

Switches on adjacent-channel power measurement.

CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe] <State>

This command switches off the power measurement in the window specified by the suffix <n>.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> OFF

Example: CALC:MARK:FUNC:POW OFF

Switches off the power measurement.

Usage: Event

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:CATalog?

This command queries all available standards, including user standards.

The numeric suffix at MARKer is irrelevant.

Example: CALC:MARK:FUNC:POW:STAN:CAT?

Queries the available standards.

Usage: Query only

Remote Control – Commands

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:DELete <Standard>

This command deletes an ACLR standard.

The numeric suffix at MARKer is irrelevant.

Parameters:

<Standard> Name of the standard you want to delete.

Example: CALC:MARK:FUNC:POW:STAN:DEL 'CDMA2000'

Deletes the CDMA2000 standard.

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:SAVE <Standard>

This command saves a cutomized ACLR standard.

The numeric suffix at MARKer is irrelevant.

Parameters:

<Standard> Specifies the name of the user standard.

Example: CALC:MARK:FUNC:POW:STAN:SAVE 'CDMA2000'

Saves the user standard with the name CDMA2000.

CALCulate:MARKer:SGRam subsystem

The following commands control the markers when you are using the spectrogram.

The spectrogram is available if option R&S FSV-K14 is installed.

| CALCulate <n>:MARKer<m>:SGRam:FRAMe</m></n> | 562 |
|---|-----|
| CALCulate <n>:MARKer<m>:SGRam:SARea</m></n> | 563 |
| CALCulate <n>:MARKer<m>:SGRam:XY:MAXimum[:PEAK]</m></n> | 563 |
| CALCulate <n>:MARKer<m>:SGRam:XY:MINimum[:PEAK]</m></n> | 564 |
| CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum:ABOVe</m></n> | 564 |
| CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum:BELow</m></n> | 565 |
| CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum:NEXT</m></n> | 565 |
| CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum[:PEAK]</m></n> | 565 |
| CALCulate <n>:MARKer<m>:SGRam:Y:MINimum:ABOVe</m></n> | 566 |
| CALCulate <n>:MARKer<m>:SGRam:Y:MINimum:BELow</m></n> | 566 |
| CALCulate <n>:MARKer<m>:SGRam:Y:MINimum:NEXT</m></n> | 567 |
| CALCulate <n>:MARKer<m>:SGRam:Y:MINimum[:PEAK]</m></n> | 567 |
| | |

CALCulate<n>:MARKer<m>:SGRam:FRAMe <Frame> | <Time>

This command positions the marker on a particular frame.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Remote Control - Commands

Parameters:

Defines the frame to place the marker on. The range is {0...number

of recorded frames-1}

<time> (if time stamp is on)

Defines the distance of the marker in seconds to the last measured

frame (frame 0).

Example: CALC:MARK:SGR:FRAM -20

Sets the marker on the 20th frame before the present.

CALC:MARK2:SGR:FRAM 2 s

Sets second marker on the frame 2 seconds ago.

CALCulate<n>:MARKer<m>:SGRam:SARea <SearchArea>

This command defines the marker search area.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Parameters:

<SearchArea> VISible

Performs a search in the visible frames.

Note that VISible is ignored if Spectrogram is not visible for any reason (e.g. if the Spectrum Analyzer is in full screen mode or

display update is inactive).

MEMory

Performs a search over all frames in the memory.

*RST: VISible

Example: CALC:DELT:SGR:SAR MEM

Performs a search over all frames in the memory.

CALCulate<n>:MARKer<m>:SGRam:XY:MAXimum[:PEAK]

This command positions the specified marker on the current peak level of the spectrogram. The possible position depends on the marker search area.

The command is available for the spectrogram.

For more information, see CALCulate<n>:MARKer<m>:SGRam:SARea on page 563.

Suffix:

<n> 1...4

Selects the measurement window.

Remote Control - Commands

<m> 1...16

Selects the marker.

Example: CALC:MARK2:SGR:SAR VIS

CALC:MARK2:SGR:XY:MAX

Activates and positions marker 2 on the peak level in the visible

Spectrogram.

Usage: Event

CALCulate<n>:MARKer<m>:SGRam:XY:MINimum[:PEAK]

This command positions the specified marker on the current minimum level of the spectrogram. The possible position depends on the marker search area.

The command is available for the spectrogram.

For more information, seeCALCulate<n>:MARKer<m>:SGRam:SARea on page 563.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:MARK3:SGR:SAR VIS

CALC:MARK3:SGR:XY:MIN

Activates and positions marker 3 on the minimum level in the visi-

ble Spectrogram.

Usage: Event

CALCulate<n>:MARKer<m>:SGRam:Y:MAXimum:ABOVe

This command positions the specified marker on the next peak level of the vertical axis. The search includes only frames above the current marker position. It does not change the horizontal position of the marker.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:MARK2:SGR:Y:MAX

Activates and positions marker 2 on the peak level of the y-axis.

CALC:MARK2:SGR:Y:MAX:ABV

Positions marker 2 on the next higher level found in the diagram

area above the current marker position.

Usage: Event

Remote Control - Commands

CALCulate<n>:MARKer<m>:SGRam:Y:MAXimum:BELow

This command positions the specified marker on the next peak level of the vertical axis. The search includes only frames below the current marker position. It does not change the horizontal position of the marker.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:MARK2:SGR:Y:MAX

Activates and positions marker 2 on the peak level of the y-axis.

CALC:MARK2:SGR:Y:MAX:BEL

Positions marker 2 on the next higher level found in the diagram

area below the current marker position.

Usage: Event

CALCulate<n>:MARKer<m>:SGRam:Y:MAXimum:NEXT

This command positions the specified marker on the next peak level of the vertical axis. The search includes frames above and below the current marker position. It does not change the horizontal position of the marker.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:MARK2:SGR:Y:MAX

Activates and positions marker 2 on the peak level of the y-axis.

CALC:MARK2:SGR:Y:MAX:NEXT

Positions marker 2 on the next higher level.

Usage: Event

CALCulate<n>:MARKer<m>:SGRam:Y:MAXimum[:PEAK]

This command positions the specified marker on the current peak level of the vertical axis. The search is performed over all frames. It does not change the horizontal position of the marker.

The command is available for the spectrogram.

Remote Control - Commands

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:MARK2:SGR:Y:MAX

Activates and positions marker 2 on the peak level of the y-axis.

Usage: Event

CALCulate<n>:MARKer<m>:SGRam:Y:MINimum:ABOVe

This command positions the specified marker on the next minimum level of the vertical axis. The search includes only frames above the current marker position. It does not change the horizontal position of the marker.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:MARK2:SGR:Y:MIN

Activates and positions marker 2 on the minimum level of the y-

axis.

CALC:MARK2:SGR:Y:MIN:ABOV

Positions marker 2 on the next minimum level found in the diagram

area above the current marker position.

Usage: Event

CALCulate<n>:MARKer<m>:SGRam:Y:MINimum:BELow

This command positions the specified marker on the next minimum level of the vertical axis. The search includes only frames below the current marker position. It does not change the horizontal position of the marker.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Remote Control - Commands

Example: CALC:MARK2:SGR:Y:MIN

Activates and positions marker 2 on the minimum level of the y-

axis.

CALC:MARK2:SGR:Y:MAX:BEL

Positions marker 2 on the next minimum level found in the diagram

area below the current marker position.

Usage: Event

CALCulate<n>:MARKer<m>:SGRam:Y:MINimum:NEXT

This command positions the specified marker on the next minimum level of the vertical axis. The search includes frames above and below the current marker position. It does not change the horizontal position of the marker.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:MARK2:SGR:Y:MIN

Activates and positions marker 2 on the minimum level of the y-

axis.

CALC:MARK2:SGR:Y:MIN:NEXT

Positions marker 2 on the next minimum level.

Usage: Event

CALCulate<n>:MARKer<m>:SGRam:Y:MINimum[:PEAK]

This command positions the specified marker on the current minimum level of the vertical axis. The search is performed over all captured frames. It does not change the horizontal position of the delta marker.

The command is available for the spectrogram.

Suffix:

<n> 1...4

Selects the measurement window.

<m> 1...16

Selects the marker.

Example: CALC:MARK2:SGR:Y:MIN

Activates and positions marker 2 on the minimum level of the y-

axis.

Usage: Event

Remote Control - Commands

Predefined CP/ACLR Standards

| Parameter | Standard |
|------------------------|----------------------------|
| W-CDMA 3GPP FWD | W-CDMA 3.84 MHz forward |
| W-CDMA 3GPP REV | W-CDMA 3.84 MHz reverse |
| CDMA IS95A FWD | CDMA IS95A forward |
| CDMA IS95A REV | CDMA IS95A reverse |
| CDMA IS95C Class 0 FWD | CDMA IS95C Class 0 forward |
| CDMA IS95C Class 0 REV | CDMA IS95C Class 0 reverse |
| CDMA J-STD008 FWD | CDMA J-STD008 forward |
| CDMA J-STD008 REV | CDMA J-STD008 reverse |
| CDMA IS95C Class 1 FWD | CDMA IS95C Class 1 forward |
| CDMA IS95C Class 1 REV | CDMA IS95C Class 1 reverse |
| CDMA 2000 | CDMA 2000 |
| TD SCDMA FWD | TD-SCDMA forward |
| TD SCDMA REV | TD-SCDMA reverse |
| WLAN 802.11A | WLAN 802.11A |
| WLAN 802.11B | WLAN 802.11B |
| WiMAX | WiMAX |
| WIBRO | WIBRO |
| RFID 14443 | RFID 14443 |
| EUTRa | EUTRA/LTE Square |
| REUTra | EUTRA/LTE Square/RRC |
| TETRA | TETRA |
| PDC | PDC |
| PHS | PHS |
| CDPD | CDPD |
| GSM | GSM |

CALCulate:MARKer:FUNCtion:STRack Subsystem

The CALCulate:MARKer<m>:FUNCtion:STRack subsystem defines the settings of the signal track.

| CALCulate <n>:MARKer<m>:FUNCtion:STRack:BANDwidth BWIDth</m></n> | 569 |
|--|-----|
| CALCulate <n>:MARKer<m>:FUNCtion:STRack:THReshold</m></n> | |
| CALCulate <n>:MARKer<m>:FUNCtion:STRack:TRACe</m></n> | 569 |
| CAL Culate <n>:MARKer<m>:FUNCtion:STRack[:STATe]</m></n> | 570 |

Remote Control - Commands

CALCulate<n>:MARKer<m>:FUNCtion:STRack:BANDwidth|BWIDth <Bandwidth>

This command defines the bandwidth around the center frequency that is included in the signal tracking process.

Note that you have to turn on signal tracking before you can use the command (CALCulate<n>:MARKer<m>:FUNCtion:STRack[:STATe]).

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<Bandwidth> 10 Hz to MAX (span)

*RST: (= span/10 on activating the function)

Example: CALC:MARK:FUNC:STR:BAND 1 MHZ

Sets the search bandwidth to 1 MHz.

CALC: MARK: FUNC: STR: BWID 1 MHZ

Alternative command for the same function.

CALCulate<n>:MARKer<m>:FUNCtion:STRack:THReshold <Level>

This command defines a threshold above which the signal is tracked.

Note that you have to turn on signal tracking before you can use the command (CALCulate<n>:MARKer<m>:FUNCtion:STRack[:STATe]).

The unit depends on CALCulate<n>:UNIT:POWer.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<Level> Range: -130 dBm to 30 dBm

*RST: -120 dBm Default unit: dBm

Example: CALC:MARK:FUNC:STR:THR -50DBM

Sets the threshold for signal tracking to -50 dBm.

CALCulate<n>:MARKer<m>:FUNCtion:STRack:TRACe <TraceNumber>

This command defines the trace on which the signal is tracked.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Remote Control – Commands

Parameters:

<TraceNumber> Range: 1 to 6

*RST: 1

Example: CALC:MARK:FUNC:STR:TRAC 3

Defines trace 3 as the trace for signal tracking.

CALCulate<n>:MARKer<m>:FUNCtion:STRack[:STATe] <State>

This command turns signal tracking on and off.

When signal tracking is on, the R&S FSV determines the maximum signal after each frequency sweep. The center frequency is then set to the frequency of this signal. Thus, the center frequency follows the frequency when you measure drifting signals.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:STR ON

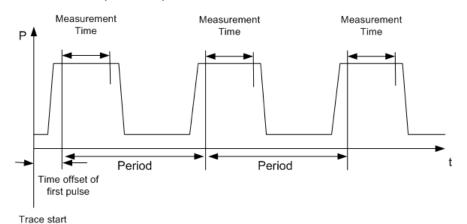
Switches on the signal track function.

CALCulate:MARKer:FUNCtion:SUMMary Subsystem

This subsystem contains the control commands for the power functions in zero span.

| CALCulate <n>:MARKer<m>:FUNCtion:M</m></n> |
|---|
| CALCulate <n>:MARKer<m>:FUNCtion:SI</m></n> |
| UMM |

Remote Control – Commands


| CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:SDEViation:RESult?</m></n> | 581 |
|---|-----|
| CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:SDEViation[:STATe]</m></n> | |
| CALCulate <n>:MARKer<m>:FUNCtion:SUMMary[:STATe]</m></n> | |

CALCulate<n>:MARKer<m>:FUNCtion:MSUMmary?

The commands of this subsystem are used to determine the power of a sequence of signal pulses that have the same interval in the window specified by the suffix <n>, as for example the slots of a GSM signal typically do. The number of pulses to be measured as well as the measurement time and the period can be set. To define the position of the first pulse in the trace, a suitable offset can be entered.

The evaluation is performed on the measurement data of a previously recorded trace. The data recorded during the set measurement time is combined to a measured value for each pulse according to the detector specified and the indicated number of results is output as a list.

Trace 1 is always used by the function.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<time offset of first pulse>, <measurement time>, <period>, < # of pulses to measure>

Remote Control - Commands

Example: DISP:WIND:TRAC:Y:RLEV -10dBm

Sets the reference level to 10 dB

INP:ATT 30 dB

Sets the input attenuation to 30 dB FREQ:CENT 935.2MHz; SPAN 0 Hz

Sets the receive frequency to 935.2 MHz and the span to 0 Hz

BAND: RES 1 MHz; VID 3 MHz

Sets the resolution bandwidth to 1 MHz and the video bandwidth

to 3 MHz

Sets the RMS detector

TRIG:SOUR VID; LEV: VID 50 PCT

Selects the trigger source VIDeo and sets the level of the video

trigger source to 50 PCT

SWE:TIME 50 ms

Sets the sweep time to 50 ms

INIT; *WAI

Starts the measurement with synchronization

CALC:MARK:FUNC:MSUM? 50US, 450US, 576.9US, 8

Queries 8 bursts with an offset of 50 µs, a test time of 450 µs and

a period of 576.9 µs

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:AOFF

This command turns all time domain power measurements off.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Example: CALC:MARK:FUNC:SUMM:AOFF

Switches off the functions for power measurement in zero span.

Usage: Event

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:AVERage <State>

This command turns averaging for the active power measurement in zero span on and off.

Averaging is reset by switching it off and on again.

The number of results required for the calculation of average is defined with [SENSe:] AVERage<n>: COUNt.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Remote Control - Commands

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: INIT:CONT OFF

Switches to single sweep mode.

CALC: MARK: FUNC: SUMM: AVER ON

Switches on the calculation of average.

AVER: COUN 200

Sets the measurement counter to 200.

INIT; *WAI

Starts a sweep and waits for the end.

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:MEAN:AVERage:RESult?

This command queries the average mean time domain power. The query is only possible if averaging has been activated previously using CALCulate<n>:MARKer<m>:

FUNCtion: SUMMary: AVERage.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Return values:

<MeanPower> Mean power of the signal during the measurement time.

Example: INIT:CONT OFF

Switches to single sweep mode. CALC:MARK:FUNC:SUMM:MEAN ON

Switches on the function.

CALC:MARK:FUNC:SUMM:AVER ON
Switches on the average value calculation.

INIT; *WAI

Starts a sweep and waits for the end.

CALC:MARK:FUNC:SUMM:MEAN:AVER:RES?

Outputs the result.

Usage: Query only

Remote Control - Commands

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:MEAN:PHOLd:RESult?

This command queries the maximum mean time domain power. The query is only possible if the peak hold function has been activated previously using CALCulate < n > :

MARKer<m>: FUNCtion: SUMMary: PHOLd.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Return values:

<MeanPower> Mean power of the signal during the measurement time.

Example: INIT:CONT OFF

Switches to single sweep mode. CALC:MARK:FUNC:SUMM:MEAN ON

Switches on the function.

CALC:MARK:FUNC:SUMM:PHOL ON
Switches on the peak value measurement.

INIT; *WAI

Starts a sweep and waits for the end.

CALC:MARK:FUNC:SUMM:MEAN:PHOL:RES?

Outputs the result.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:MEAN:RESult?

This command queries the mean time domain power.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Return values:

<MeanPower> Mean power of the signal during the measurement time.

Example: INIT:CONT OFF

Switches to single sweep mode. CALC: MARK: FUNC: SUMM: MEAN ON

Switches on the function.

INIT; *WAI

Starts a sweep and waits for the end. CALC:MARK:FUNC:SUMM:MEAN:RES?

Outputs the result.

Remote Control - Commands

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:MEAN[:STATe] <State>

This command turns the measurement of the mean time domain power on and off.

Note: The measurement is performed on the trace marker 1 is positioned. In order to evaluate another trace, marker 1 must be positioned on another trace with

CALCulate<n>:MARKer<m>:TRACe.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:SUMM:MEAN ON

Switches on the function.

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:MODE < Mode>

This command selects absolute or relative power measurement in zero span.

The reference power for relative measurement is defined with CALCulate<n>: MARKer<m>: FUNCtion: SUMMary: REFerence: AUTO ONCE. If the reference power is not defined, the value 0 dBm is used.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Parameters:

<Mode> ABSolute | RELative

*RST: ABSolute

Example: CALC:MARK:FUNC:SUMM:MODE REL

Switches the power measurement in zero span to relative.

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PHOLd <State>

This command turns the peak hold function for the active power measurement in zero span on and off.

If on, the measurement results show only the maximum power that has been measured for each sweep point.

The peak hold function is reset by switching it off and on again.

Suffix:

<n> Selects the measurement window.

Remote Control - Commands

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:SUMM:PHOL ON

Switches on the function.

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PPEak:AVERage:RESult?

This command queries the average positive peak time domain power. The query is only possible if averaging has been activated previously using CALCulate<n>:

MARKer<m>: FUNCtion: SUMMary: AVERage.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Return values:

<PeakPower> Peak power of the signal during the measurement time.

Example: INIT:CONT OFF

Switches to single sweep mode. CALC:MARK:FUNC:SUMM:PPE ON

Switches on the function.

CALC: MARK: FUNC: SUMM: AVER ON Switches on the calculation of average.

INIT; *WAI

Starts a sweep and waits for the end.

CALC:MARK:FUNC:SUMM:PPE:AVER:RES?

Outputs the result.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PPEak:PHOLd:RESult?

This command queries the maximum positive peak time domain power. The query is only possible if the peak hold function has been activated previously using

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PHOLd.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Remote Control - Commands

Return values:

<PeakPower> Peak power of the signal during the measurement time.

Example: INIT:CONT OFF

Switches to single sweep mode.
CALC:MARK:FUNC:SUMM:PPE ON

Switches on the function.

CALC:MARK:FUNC:SUMM:PHOL ON

Switches on the measurement of the peak value.

INIT; *WAI

Starts a sweep and waits for the end.
CALC: MARK: FUNC: SUMM: PPE: PHOL: RES?

Outputs the result.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PPEak:RESult?

This command queries the positive peak time domain power.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Return values:

<PeakPower> Peak power of the signal during the measurement time.

Example: INIT:CONT OFF

Switches to single sweep mode. CALC:MARK:FUNC:SUMM:PPE ON

Switches on the function.

INIT; *WAI

Starts a sweep and waits for the end. CALC:MARK:FUNC:SUMM:PPE:RES?

Outputs the result.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PPEak[:STATe] <State>

This command turns the measurement of the positive peak time domain power on and off.

Note: The measurement is performed on the trace marker 1 is positioned. In order to evaluate another trace, marker 1 must be positioned on another trace with

CALCulate<n>:MARKer<m>:TRACe.

Suffix:

<n> Selects the measurement window.

Remote Control - Commands

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:SUMM:PPE ON

Switches on the function.

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:REFerence:AUTO ONCE

This command sets the currently measured average value (CALCulate<n>: MARKer<m>: FUNCtion: SUMMary: MEAN[:STATe]) and RMS value (CALCulate<n>: MARKer<m>: FUNCtion: SUMMary: RMS[:STATe]) as reference values for relative measurements in zero span.

If the measurement of RMS value and average is not activated, the reference value 0 dBm is used.

If the function CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:AVERage or CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PHOLd is switched on, the current value is the accumulated measurement value at the time considered.

Suffix:

<n> Selects the measurement window.

<m> irrelevant

Example: CALC:MARK:FUNC:SUMM:REF:AUTO ONCE

Takes the currently measured power as reference value for the

relative power measurement in zero span.

Usage: Event

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:RMS:AVERage:RESult?

This command queries the average RMS time domain power. The query is only possible if averaging has been activated previously using CALCulate<n>:MARKer<m>:
FUNCtion:SUMMary:AVERage.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Return values:

<RMSPower> RMS power of the signal during the measurement time.

Remote Control - Commands

Example: INIT: CONT OFF

Switches to single sweep mode. CALC:MARK:FUNC:SUMM:RMS ON

Switches on the function.

CALC:MARK:FUNC:SUMM:AVER ON
Switches on the average value calculation.

INIT; *WAI

Starts a sweep and waits for the end.

CALC:MARK:FUNC:SUMM:RMS:AVER:RES?

Outputs the result.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:RMS:PHOLd:RESult?

This command queries the maximum RMS time domain power. The query is only possible if the peak hold function has been activated previously using CALCulate<n>:

MARKer<m>: FUNCtion: SUMMary: PHOLd.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Return values:

<RMSPower> RMS power of the signal during the measurement time.

Example: INIT:CONT OFF

Switches to single sweep mode. CALC: MARK: FUNC: SUMM: RMS ON

Switches on the function.

CALC:MARK:FUNC:SUMM:PHOL ON
Switches on the peak value measurement.

INIT; *WAI

Starts a sweep and waits for the end.

CALC:MARK:FUNC:SUMM:RMS:PHOL:RES?

Outputs the result.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:RMS:RESult?

This command queries the RMS time domain power.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Remote Control - Commands

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Return values:

<RMSPower> RMS power of the signal during the measurement time.

Example: INIT:CONT OFF

Switches to single sweep mode.
CALC: MARK: FUNC: SUMM: RMS ON

Switches on the function.

INIT; *WAI

Starts a sweep and waits for the end. CALC: MARK: FUNC: SUMM: RMS: RES?

Outputs the result.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:RMS[:STATe] <State>

This command turns the measurement of the RMS time domain power on and off.

Note: The measurement is performed on the trace marker 1 is positioned. In order to evaluate another trace, marker 1 must be positioned on another trace with

CALCulate<n>:MARKer<m>:TRACe.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:SUM:RMS ON

Switches on the function.

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:SDEViation:AVERage:RESult?

This command queries the average standard deviation of the time domain power. The query is only possible if averaging has been activated previously using

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:AVERage.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Remote Control - Commands

Return values:

<StandardDeviation> Standard deviation of the signal during the measurement time.

Example: INIT:CONT OFF

Switches to single sweep mode.
CALC:MARK:FUNC:SUMM:SDEV ON

Switches on the function.

CALC: MARK: FUNC: SUMM: AVER ON Switches on the calculation of average.

INIT; *WAI

Starts a sweep and waits for the end.

CALC:MARK:FUNC:SUMM:MEAN:SDEV:RES?

Outputs the result.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:SDEViation:PHOLd:RESult?

This command queries the maximum standard deviation of the time domain power. The query is only possible if the peak hold function has been activated previously using CALCulate<n>: MARKer<m>: FUNCtion: SUMMary: PHOLd.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Return values:

<StandardDeviation> Standard deviation of the signal during the measurement time.

Example: INIT:CONT OFF

Switches to single sweep mode. CALC: MARK: FUNC: SUMM: SDEV ON

Switches on the function.

CALC:MARK:FUNC:SUMM:PHOL ON
Switches on the peak value measurement.

INIT; *WAI

Starts a sweep and waits for the end.

CALC:MARK:FUNC:SUMM:SDEV:PHOL:RES?

Outputs the result.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:SDEViation:RESult?

This command queries the standard deviation of the time domain power.

Remote Control - Commands

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweeps.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Return values:

<StandardDeviation> Standard deviation of the signal during the measurement time.

Example: INIT:CONT OFF

Switches to single sweep mode. CALC: MARK: FUNC: SUMM: SDEV ON

Switches on the function.

INIT; *WAI

Starts a sweep and waits for the end. CALC:MARK:FUNC:SUMM:SDEV:RES?

Outputs the result.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:SDEViation[:STATe] <State>

This command turns the measurement of the standard deviation of the time domain power on and off.

Note: The measurement is performed on the trace marker 1 is positioned. In order to evaluate another trace, marker 1 must be positioned on another trace with

CALCulate<n>:MARKer<m>:TRACe.

Suffix:

<n> Selects the measurement window.

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:SUMM:SDEV ON

Switches on the measurement of the standard deviation.

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary[:STATe] <State>

This command turns time domain power measurements on and off. This measurement in only available in zero span.

Thus one or several measurements can be first selected and then switched on and off together using this command.

Suffix:

<n> Selects the measurement window.

Remote Control – Commands

<m> Selects the marker.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:SUMM:STAT ON

CALCulate: MATH Subsystem

The CALCulate:MATH subsystem allows data from the SENSe-subsystem to be processed in numeric expressions.

| CALCulate <n>:MATH[:EXPression][:DEFine]</n> | 583 |
|--|-----|
| CALCulate <n>:MATH:POSition</n> | |
| CALCulate <n>:MATH:STATe</n> | 584 |
| CALCulate <n>:MATH:MODE</n> | 584 |

CALCulate<n>:MATH[:EXPression][:DEFine] <Expression>

This command defines the mathematical expression for relating traces to trace1.

Suffix:

<n> irrelevant

Parameters:

<Expression> (TRACe1-TRACe2) | (TRACe1-TRACe3) | (TRACe1-TRACe4) |

(TRACe1-TRACe5) | (TRACe1-TRACe6)

(TRACe1-TRACe2)

Subtracts trace 2 from trace 1.

(TRACe1-TRACe3)

Subtracts trace 3 from trace 1.

(TRACe1-TRACe4)

Subtracts trace 4 from trace 1.

(TRACe1-TRACe5)

Subtracts trace 5 from trace 1.

(TRACe1-TRACe6)

Subtracts trace 6 from trace 1.

Example: CALC1:MATH (TRACe1 - TRACe2)

Selects the subtraction of trace 2 from trace 1.

CALCulate<n>:MATH:POSition < Position>

This command defines the position of the result of the trace mathematics. The indication is in % of the screen height, with 100 % corresponding to the upper diagram border.

Suffix:

<n> Selects the measurement window.

Remote Control – Commands

Parameters:

<Position> -100PCT to 200PCT

*RST: 50PCT

Example: CALC:MATH:POS 50PCT

Sets the position to the horizontal diagram center.

CALCulate<n>:MATH:STATe <State>

This command switches the mathematical relation of traces on or off.

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MATH:STAT ON

Switches on the trace mathematics.

CALCulate<n>:MATH:MODE <Method>

This command selects the method for the trace math calculations.

For details see "Trace Math Mode" on page 131.

Suffix:

<n> irrelevant

Parameters:

<Method> LINear | LOGarithmic | POWer

*RST: LOG

Example: CALC:MATH:MODE LIN

Selects linear averaging for trace math calculations.

CALCulate: PMETer Subsystem (Power Sensor, R&S FSV-K9)

This subsystem controls the instrument settings for power sensor measurements. It is only available if the R&S FSV-K9 Power Sensor option is installed.

For details see chapter 3.9, "Instrument Functions - Power Sensor (R&S FSV-K9)", on page 400.

| CALCulate <n>:PMETer:RELative[:MAGNitude]</n> | 584 |
|---|-----|
| CALCulate <n>:PMETer:RELative[:MAGNitude]:AUTO ONCE</n> | 585 |
| CALCulate <n>:PMETer:RELative:STATe</n> | |

CALCulate<n>:PMETer:RELative[:MAGNitude] <Value>

This command sets the reference value for relative measurements for the selected power sensor.

Remote Control - Commands

Suffix:

<n> irrelevant

1...4

Power sensor index

Parameters:

<Value> -200 to 200

*RST: 0

Example: CALC:PMET2:REL -30

Sets the reference value for relative measurements to -30 dBm for

power sensor 2.

Mode: PSM

CALCulate<n>:PMETer:RELative[:MAGNitude]:AUTO ONCE

This command takes the current measurement value as reference value for relative measurements for the selected power sensor.

Suffix:

<n> irrelevant

1...4

Power sensor index

Example: CALC:PMET2:REL:AUTO ONCE

Takes the current measurement value as reference value for rel-

ative measurements for power sensor 2.

Mode: PSM

CALCulate<n>:PMETer:RELative:STATe <State>

This command switches between relative and absolute display of the measured power for the selected power sensor.

Suffix:

<n> irrelevant

1...4

Power sensor index

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:PMET2:REL:STAT ON

Activates the relative display of the measured value for power

sensor 2.

Mode: PSM

Remote Control – Commands

CALCulate:PSEarch|PEAKsearch Subsystem

The CALCulate:PSEarch|PEAKsearch subsystem contains the remote commands for Spurious Emissions measurements. Both groups of commands (PSEarch and PEAKsearch) perform the same functions.

| CALCulate <n>:PEAKsearch PSEarch[:IMMediate]</n> | 586 |
|--|-----|
| CALCulate <n>:PEAKsearch PSEarch:AUTO</n> | |
| CALCulate <n>:PEAKsearch PSEarch:MARGin</n> | |
| CALCulate <n>:PEAKsearch PSEarch:PSHow</n> | 587 |
| CALCulate <n>:PEAKsearch PSEarch:SUBRanges</n> | 587 |

CALCulate<n>:PEAKsearch|PSEarch[:IMMediate]

This command switches the spurious limit check off.

If you want to read out the values peak values including the delta to a limit, you have to switch on the limit again.

This command is only for FSP compatibility, and not necessary to use on the R&S FSV.

Suffix:

<n> irrelevant
Example: CALC:PSE

Starts to determine the list.

CALCulate<n>:PEAKsearch|PSEarch:AUTO <State>

This command activates or deactivates the list evaluation.

Suffix:

<n> Selects the measurement window.

Parameters:

<State> ON | OFF

*RST: ON

Example: CALC:ESP:PSE:AUTO OFF

Deactivates the list evaluation.

CALCulate<n>:PEAKsearch|PSEarch:MARGin <Margin>

This command sets the margin used for the limit check/peak search.

Suffix:

<n> Selects the measurement window.

Parameters:

<Margin> -200 to 200 dB

*RST: 200 dB

Example: CALC:ESP:PSE:MARG 100

Sets the margin to 100 dB.

Remote Control – Commands

CALCulate<n>:PEAKsearch|PSEarch:PSHow

This command marks all peaks with blue squares in the diagram.

Suffix:

<n> Selects the measurement window.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:ESP:PSE:PSH ON

Marks all peaks with blue squares.

CALCulate<n>:PEAKsearch|PSEarch:SUBRanges < NumberPeaks>

This command sets the number of peaks per range that are stored in the list. Once the selected number of peaks has been reached, the peak search is stopped in the current range and continued in the next range.

Suffix:

<n> irrelevant

Parameters:

<NumberPeaks> 1 to 50

*RST: 25

Example: CALC:PSE:SUBR 10

Sets 10 peaks per range to be stored in the list.

CALCulate:SGRam Subsystem

These commands are only available if the "Spectrogram" measurements option R&S FSV-K14 is installed.

| CALCulate <n>:SGRam:CLEar[:IMMediate]5</n> | 87 |
|--|----|
| CALCulate <n>:SGRam:COLor</n> | 88 |
| CALCulate <n>:SGRam:CONT</n> | 88 |
| CALCulate <n>:SGRam:FRAMe:COUNt</n> | 89 |
| CALCulate <n>:SGRam:FRAMe:SELect</n> | 89 |
| CALCulate <n>:SGRam:HDEPth5</n> | 89 |
| CALCulate <n>:SGRam[:STATe]5</n> | 90 |
| CALCulate <n>:SGRam:TSTamp[:STATe]5</n> | 90 |
| CALCulate <n>:SGRam:TSTamp:DATA?5</n> | 90 |

CALCulate<n>:SGRam:CLEar[:IMMediate]

This command resets the Spectrogram result display and clears the history buffer.

Suffix:

<n> 1...4

Selects the measurement window.

Remote Control – Commands

Example: CALC:SGR:CLE

Resets the result display and clears the memory.

Usage: Event

CALCulate<n>:SGRam:COLor <Color>

This command selects the color scheme of the spectrogram result display.

This command is available for R&S FSV-K14 only. To define the color scheme in the spectrogram of the realtime analyzer, use <code>DISPlay:WINDow:SGRam:COLor[:STYLe]</code> on page 608.

Suffix:

<n> 1...4

Selects the measurement window.

Parameters:

<Color> COLor

RGB colors
RADar

black - green - white

GRAYscale black and white *RST: COLor

Example: CALC:SGR:COL GRAY

Selects black and white color scheme.

CALCulate<n>:SGRam:CONT <State>

This command determines whether the results of the last measurement are deleted before starting a new measurement in single sweep mode.

Suffix:

<n> 1...4

Selects the measurement window.

Parameters:

<State> ON | OFF

*RST: OFF

Example: INIT:CONT OFF

Selects single sweep mode.

INIT; *WAI

Starts the sweep and waits for the end of the sweep.

CALC:SGR:CONT ON

Repeats the single sweep measurement without deleting the

results of the last measurement.

Remote Control – Commands

CALCulate<n>:SGRam:FRAMe:COUNt <Frames>

This command sets the number of frames to be recorded in a single sweep.

Suffix:

<n> 1...4

Selects the measurement window.

Parameters:

<Frames> The maximum number of frames depends on the .

CALCulate<n>:SGRam:HDEPth on page 589

Range: 1 to depends on history depth

Increment: 1 *RST: 1

Example: INIT:CONT OFF

Selects single sweep mode.
CALC: SGR: FRAM: COUN 200
Sets the number of frames to 200.

CALCulate<n>:SGRam:FRAMe:SELect <Frame>

This command selects a specific frame for further analysis. The command is available only if no measurement is running or after a single sweep has ended.

Suffix:

<n> 1...4

Selects the measurement window.

Parameters:

<Frame> <frame_number> (if time stamp is off)

Selects the frame. The range is {0...number of recorded frames-1}

<time> (if time stamp is on)

Time distance in seconds. It selects the frame that is x seconds

away from frame 0.

Example: INIT: CONT OFF

Stop the continuous sweep. CALC: SGR: FRAM: SEL -25 Selects frame number -25.

CALCulate<n>:SGRam:HDEPth <HistoryDepth>

This command sets the number of frames to be stored in the R&S FSV's memory.

Suffix:

<n> 1...4

Selects the measurement window.

Remote Control - Commands

Parameters:

<HistoryDepth> The maximum number of frames depends on the number of sweep

points.

Range: 781 to 20000

Increment: 1 *RST: 3000

Example: CALC:SGR:HDEP 1500

Sets the history depth to 1500.

CALCulate<n>:SGRam[:STATe] <State>

This command turns the spectrogram result display on and off.

Suffix:

<n> 1...4

Selects the measurement window.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:SGR ON

Activates the Spectrogram result display.

CALCulate<n>:SGRam:TSTamp[:STATe] <State>

This command activates and deactivates the time stamp.

If the time stamp is active, some commands do not address frames as numbers, but as (relative) time values:

- CALCulate<n>:DELTamarker<m>:SGRam:FRAMe on page 488
- CALCulate<n>:MARKer<m>:SGRam:FRAMe on page 562
- CALCulate<n>:SGRam:FRAMe:SELect on page 589

Suffix:

<n> 1...4

Selects the measurement window.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:SGR:TST ON

Activates the time stamp.

CALCulate<n>:SGRam:TSTamp:DATA? <Mode>

This command queries the time stamp of the frames.

All available frame results are returned via the TRACe<n>[:DATA]? command.

Remote Control - Commands

Suffix:

<n> 1...4

Selects the measurement window.

Query parameters:

<Mode> CURRent

Returns the time stamp of the current frame.

ALL

Returns the time stamps of all frames. The result are sorted in

descending order, beginning with the current frame.

Return values:

<TimeStamp> The return values consist of four values for each frame.

The first value is the date of the measurement in seconds that have passed since 01.01.1970 in seconds. For a better resolution the second value shows the additional milliseconds. This value is also

displayed on screen.

These numbers are appropriate for relative uses, but you can also calculate the absolute date and time as displayed on the screen.

The third and fourth value are reserved for future uses. If the Spectrogram is empty, the command returns '0,0,0,0,0'

Example: CALC:SGR:TST ON

Activates the time stamp.
CALC:SGR:TST:DATA? ALL

Returns the time stamp of all frames sorted in a descending order.

Usage: Query only

CALCulate:STATistics Subsystem

The CALCulate: STATistics subsystem controls the statistical measurement functions in the instrument.

| CALCulate <n>:STATistics:APD[:STATe]</n> | 591 |
|--|-----|
| CALCulate <n>:STATistics:CCDF[:STATe]</n> | 592 |
| CALCulate <n>:STATistics:CCDF:X<trace></trace></n> | 592 |
| CALCulate <n>:STATistics:NSAMples</n> | 592 |
| CALCulate <n>:STATistics:PRESet</n> | 593 |
| CALCulate <n>:STATistics:RESult<trace></trace></n> | 593 |
| CALCulate <n>:STATistics:SCALe:AUTO ONCE</n> | 594 |
| CALCulate <n>:STATistics:SCALe:X:RANGe</n> | 594 |
| CALCulate <n>:STATistics:SCALe:X:RLEVel</n> | 595 |
| CALCulate <n>:STATistics:SCALe:Y:LOWer</n> | 595 |
| CALCulate <n>:STATistics:SCALe:Y:UNIT</n> | 595 |
| CALCulate <n>:STATistics:SCALe:Y:UPPer</n> | 596 |
| | |

CALCulate<n>:STATistics:APD[:STATe] <State>

This command switches on or off the measurement of amplitude distribution (APD). On activating this function, the CCDF measurement is switched off.

Remote Control - Commands

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:STAT:APD ON

Switches on the APD measurement.

CALCulate<n>:STATistics:CCDF[:STATe] <State>

This command switches on or off the measurement of the complementary cumulative distribution function (CCDF). On activating this function, the APD measurement is switched off.

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:STAT:CCDF ON

Switches on the CCDF measurement.

CALCulate<n>:STATistics:CCDF:X<Trace> < Probability>

This command queries the results of the complementary cumulative distribution function (CCDF) for the specified probability (corresponding to the "Percent Marker" in the display, see "Percent Marker" on page 266). The suffix of X defines the trace number.

Suffix:

<n> irrelevant

<Trace> 1...6

trace

Parameters:

<Probability> P0_01: Level value for 0.01 % probability

P0_1: Level value for 0.1 % probability P1: Level value for 1 % probability P10: Level value for 10 % probability

Example: CALC:STAT:CCDF:X1? P10

Returns the level values that are over 10 % above the mean value.

CALCulate<n>:STATistics:NSAMples <NoMeasPoints>

This command sets the number of measurement points to be acquired for the statistical measurement functions.

Remote Control – Commands

Suffix:

<n> irrelevant

Parameters:

<NoMeasPoints> 100 to 1E9

*RST: 100000

Example: CALC:STAT:NSAM 500

Sets the number of measurement points to be acquired to 500.

CALCulate<n>:STATistics:PRESet

This command resets the scaling of the X and Y axes in a statistical measurement. The following values are set:

| x-axis ref level: | -20 dBm |
|---------------------|---------|
| x-axis range APD: | 100 dB |
| x-axis range CCDF: | 20 dB |
| y-axis upper limit: | 1.0 |
| y-axis lower limit: | 1E-6 |

Suffix:

<n> irrelevant

Example: CALC:STAT:PRES

Resets the scaling for statistical functions

CALCulate<n>:STATistics:RESult<Trace> <ResultType>

This command reads out the results of statistical measurements of a recorded trace.

Suffix:

<n> irrelevant

<Trace> 1...6

trace

Remote Control – Commands

Parameters:

<ResultType> MEAN | PEAK | CFACtor | ALL

MEAN

Average (=RMS) power in dBm measured during the measure-

ment time.

PEAK

Peak power in dBm measured during the measurement time.

CFACtor

Determined CREST factor (= ratio of peak power to average

power) in dB.

ALL

Results of all three measurements mentioned before, separated

by commas: <mean power>,<peak power>,<crest factor>
The required result is selected via the following parameters:

Example: CALC:STAT:RES2? ALL

Reads out the three measurement results of trace 2. Example of

answer string: 5.56,19.25,13.69 i.e. mean power: 5.56 dBm, peak

power 19.25 dBm, CREST factor 13.69 dB

CALCulate<n>:STATistics:SCALe:AUTO ONCE

This command optimizes the level setting of the instrument depending on the measured peak power, in order to obtain maximum instrument sensitivity.

To obtain maximum resolution, the level range is set as a function of the measured spacing between peak power and the minimum power for the APD measurement and of the spacing between peak power and mean power for the CCDF measurement. In addition, the probability scale for the number of test points is adapted.

Subsequent commands have to be synchronized with *WAI, *OPC or *OPC? to the end of the auto range process which would otherwise be aborted.

Suffix:

<n> irrelevant

Example: CALC:STAT:SCAL:AUTO ONCE; *WAI

Adapts the level setting for statistical measurements.

CALCulate<n>:STATistics:SCALe:X:RANGe <Value>

This command defines the level range for the x-axis of the measurement diagram. The setting is identical to the level range setting defined with the DISPlay[:

WINDow<n>]:TRACe<t>:Y[:SCALe] command.

Suffix:

<n> irrelevant

Parameters:

<Value> 10dB to 200dB

*RST: 100dB

Remote Control - Commands

Example: CALC:STAT:SCAL:X:RANG 20dB

CALCulate<n>:STATistics:SCALe:X:RLEVel <Value>

This command defines the reference level for the x-axis of the measurement diagram. The setting is identical to the reference level setting using the DISPlay[:

WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel command.

With the reference level offset <> 0 the indicated value range of the reference level is modified by the offset.

The unit depends on the setting performed with CALCulate<n>:UNIT:POWer.

Suffix:

<n> irrelevant

Parameters:

<Value> -120dBm to 20dBm

*RST: -20dBm

Example: CALC:STAT:SCAL:X:RLEV -60dBm

CALCulate<n>:STATistics:SCALe:Y:LOWer <Value>

This command defines the lower limit for the y-axis of the diagram in statistical measurements. Since probabilities are specified on the y-axis, the entered numeric values are dimensionless.

Suffix:

<n> selects the screen

Parameters:

<Value> 1E-9 to 0.1

*RST: 1E-6

Example: CALC:STAT:SCAL:Y:LOW 0.001

CALCulate<n>:STATistics:SCALe:Y:UNIT <Unit>

This command defines the scaling type of the y-axis.

Suffix:

<n> selects the screen

Parameters:

<Unit> PCT | ABS

*RST: ABS

Example: CALC:STAT:SCAL:Y:UNIT PCT

Sets the percentage scale.

Remote Control – Commands

CALCulate<n>:STATistics:SCALe:Y:UPPer <Value>

This command defines the upper limit for the y-axis of the diagram in statistical measurements. Since probabilities are specified on the y-axis, the entered numeric values are dimensionless.

Suffix:

<n> irrelevant

Parameters:

<Value> 1E-8 to 1.0

*RST: 1.0

Example: CALC:STAT:SCAL:Y:UPP 0.01

CALCulate:THReshold Subsystem

The CALCulate:THReshold subsystem controls the threshold value for the maximum/ minimum search of markers.

| CALCulate <n>:THReshold</n> | 16 |
|-----------------------------------|----|
| CALCulate <n>:THReshold:STATe</n> | 96 |

CALCulate<n>:THReshold <Threshold>

This command defines a threshold value for the marker peak search.

A threshold line is automatically turned on.

Suffix:

<n> irrelevant

Parameters:

<Threshold> The unit depends on CALCulate<n>:UNIT:POWer.

*RST: (STATe to OFF)

Example: CALC:THR -82DBM

Sets the threshold value to -82 dBm.

CALCulate<n>:THReshold:STATe <State>

This command turns the threshold line for the marker peak search on and off.

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:THR:STAT ON

Switches on the threshold line.

Remote Control - Commands

CALCulate:TLINe Subsystem

The CALCulate:TLINe subsystem defines the position of the time lines.

CALCulate<n>:TLINe<Line> <Time>

This command defines the position of a time line.

Suffix:

<Line>

<n> irrelevant

1 | 2

Selects the time line.

Parameters:

<Time> Range: 0 to 1000

*RST: (STATe to OFF)

Default unit: s

Example: CALC:TLIN 10ms

CALCulate<n>:TLINe<Line>:STATe <State>

This command turns a time line on and off.

Suffix:

<n> irrelevant

<Line> 1 | 2

Selects the time line.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:TLIN2:STAT ON

CALCulate:UNIT Subsystem

The CALCulate: UNIT subsystem defines the units for the parameters that can be set and the measurement results.

CALCulate<n>:UNIT:POWer <Unit>

This command selects the unit of the y-axis.

The unit applies to all measurement windows.

Suffix:

<n> irrelevant

Remote Control - Commands

Parameters:

<Unit> DBM | V | A | W | DBPW | WATT | DBUV | DBMV | VOLT | DBUA |

AMPere

*RST: dBm

Example: CALC:UNIT:POW DBM

Sets the power unit to dBm.

Other commands in the Calculate subsystem

CALCulate<n>:FORMat <Format>

This command defines the display type of the IQ data.

Suffix:

<n> irrelevant

Parameters:

<Format> RIMag

IQ data

MAGNitude

Magnitude

FREQuency Spectrum VECTor IQ-Vector

4.2.3.3 CALibration: PMETer Subsystem (Power Sensor, R&S FSV-K9)

The CALibration:PMETer Subsystem determines the error correction data for measurements in the power meter mode. It is only available if the R&S FSV-K9 Power Sensor option is installed.

For details see chapter 3.9, "Instrument Functions - Power Sensor (R&S FSV-K9)", on page 400.

CALibration:PMETer:ZERO:AUTO ONCE

This command starts zeroing of the selected power sensor.

Note: Before starting the zeroing process disconnect all signals from the input of the power sensor.

Suffix:

1...4

Power sensor index

Example: CAL:PMET2:ZERO:AUTO ONCE; *WAI

Starts zeroing the power sensor 2 and delays the execution of

further commands until zeroing is concluded.

Remote Control – Commands

Mode: PSM

4.2.3.4 DISPlay Subsystem

The DISPLay subsystem controls the selection and presentation of textual and graphic information as well as of measurement data on the display.

Some applications offer up to four measurement windows. For those, the suffix <1....4> for WINDow selects the measurement window. For all other applications, the suffix is irrelevant.

| DISPlay:MTABle | 599 |
|---|-----|
| DISPlay[:WINDow <n>][:SUBWindow<m>]:SIZE</m></n> | |
| DISPlay[:WINDow <n>]:SSELect</n> | |
| DISPlay[:WINDow <n>]:TRACe<t>[:STATe]</t></n> | |
| DISPlay[:WINDow <n>]:TRACe<t>:MODE</t></n> | |
| DISPlay[:WINDow <n>]:TRACe<t>:MODE:HCONtinuous</t></n> | |
| DISPlay[:WINDow <n>]:TRACe<t>:X:SPACing</t></n> | |
| DISPlay[:WINDow <n>]:TRACe<t>:Y:SPACing</t></n> | |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]</t></n> | |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:MODE</t></n> | |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RLEVel</t></n> | |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet</t></n> | |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RPOSition</t></n> | |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RVALue</t></n> | |
| DISPlay[:WINDow <n>]:ZOOM:AREA</n> | |
| DISPlay[:WINDow <n>]:ZOOM:STATe</n> | |
| | |

DISPlay:MTABle < DisplayMode>

This command turns the marker table on and off.

Parameters:

<DisplayMode> ON

Marker table is displayed.

OFF

Marker table is not displayed.

AUTO

Marker table is only displayed if 2 or more markers are active.

*RST: AUTO

Example: To activate the table display:

DISP:MTAB ON

To query the current state of the marker table display:

DISP:MTAB?

Remote Control - Commands

DISPlay[:WINDow<n>][:SUBWindow<m>]:SIZE <Size>

This command configures the measurement display.

Suffix:

<n> 1 | 2

window;

Channel and adjacent-channel power measurements: Only "1" is

allowed as a suffix for the window.

Spectrum Emission Mask and Spurious Emissions measure-

ments:

selects the window that is displayed in full size (if no suffix is

defined, "1" is used): 1: diagram/result list 2: marker table

<m> 1 | 2

selects the item in the window to be displayed in full size:

1: diagram 2: result list

Parameters:

Example:

<Size> LARGe | SMALI

LARGe

Channel and adjacent-channel power measurements: diagram in

full screen.

Spectrum Emission Mask and Spurious Emissions measurements: diagram or list in full screen, depending on the value of the

suffix.

SMALI

split screen (diagram and list and table)

*RST: SMALI
DISP:SIZE LARG

Displays the measurement diagram in full screen size.

DISP:WIND1:SUBW2:SIZE LARG

Displays the result list in full screen size.

DISP:WIND2:SIZE LARG

Displays the marker table in full screen size.

Mode: all

DISPlay[:WINDow<n>]:SSELect

This command selects which window (screen) is active for applications with more than one measurement window.

Suffix:

<n> 1...

window; For applications that do not have more than 1 measure-

ment window, the suffix <n> is irrelevant.

Remote Control - Commands

Parameters:

*RST: 1

Example: DISP:WIND1:SSEL

Sets the window 1 active.

DISPlay[:WINDow<n>]:TRACe<t>[:STATe] <State>

This command switches on or off the display of the corresponding trace. The other measurements are not aborted but continue running in the background.

Suffix:

<n> window; For applications that do not have more than 1 measure-

ment window, the suffix <n> is irrelevant.

<t> trace

Parameters:

<State> ON | OFF

*RST: ON for TRACe1, OFF for TRACe2 to 6

Example: DISP:TRAC3 ON

DISPlay[:WINDow<n>]:TRACe<t>:MODE < Mode>

This command defines the type of display and the evaluation of the traces. WRITE corresponds to the Clr/Write mode of manual operation. The trace is switched off (= BLANK in manual operation) with DISPlay[:WINDow<n>]:TRACe<t>[:STATe].

The number of measurements for AVERage, MAXHold and MINHold is defined with the [SENSe:]AVERage<n>:COUNt or [SENSe:]SWEep:COUNt commands. It should be noted that synchronization to the end of the indicated number of measurements is only possible in single sweep mode.

If calculation of average values is active, selection between logarithmic and linear averaging is possible. For more detail see [SENSe:]AVERage<n>: TYPE on page 633.

Suffix:

<n> window; For applications that do not have more than 1 measure-

ment window, the suffix <n> is irrelevant.

<t> trace

Parameters:

<Mode> WRITe | VIEW | AVERage | MAXHold | MINHold | BLANk

*RST: WRITe for TRACe1, STATe OFF for TRACe2/3/4/5/6 For details on trace modes refer to chapter 3.2.8.4, "Trace Mode

Overview", on page 134.

Remote Control - Commands

Example: INIT: CONT OFF

Switching to single sweep mode.

SWE: COUN 16

Sets the number of measurements to 16.

DISP:TRAC3:MODE MAXH

Switches on the calculation of the maximum peak for trace 3.

INIT; *WAI

Starts the measurement and waits for the end of the 16 sweeps.

DISPlay[:WINDow<n>]:TRACe<t>:MODE:HCONtinuous <State>

This command defines whether traces in Min Hold, Max Hold and Average mode (see DISPlay[:WINDow<n>]:TRACe<t>:MODE on page 601) are reset after a parameter is changed.

Normally, the measurement is started anew after parameter changes, before the measurement results are evaluated (e.g. using a marker). In all cases that require a new measurement after parameter changes, the trace is reset automatically to avoid false results (e.g. with span changes). For applications that require no reset after parameter changes, the automatic reset can be switched off.

Suffix:

<n> window; For applications that do not have more than 1 measure-

ment window, the suffix <n> is irrelevant.

<t> trace

Parameters:

<State> ON

The automatic reset is switched off.

OFF

After certain parameter changes the traces are reset.

*RST: OFF

Example: DISP:WIND:TRAC3:MODE:HCON ON

Switches off the reset function.

DISPlay[:WINDow<n>]:TRACe<t>:X:SPACing <ScalingType>

This command toggles between linear and logarithmic display of the x-axis.

Suffix:

<n> window; For applications that do not have more than 1 measure-

ment window, the suffix <n> is irrelevant.

<t> irrelevant

Remote Control – Commands

Parameters:

<ScalingType> LOGarithmic | LINear

LOGarithmic

Selects logarithmic scaling.

LINear

Selects linear scaling.
*RST: LINear

Example: DISP:TRAC:X:SPAC LOG

Mode: A, ADEMOD

DISPlay[:WINDow<n>]:TRACe<t>:Y:SPACing <ScalingType>

This command selects the scaling of the y-axis.

Suffix:

<n> Selects the measurement window.

<t> irrelevant

Parameters:

<ScalingType> LOGarithmic

Logarithmic scaling.

LINear

Linear scaling in %.

LDB

Linear scaling in dB.

*RST: LOGarithmic

Example: DISP:TRAC:Y:SPAC LIN

Select a linear scale.

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] <Range>

This command defines the display range of the y-axis with logarithmic scaling.

The command works only for a logarithmic scaling. You can select the scaling with DISPlay[:WINDow<n>]:TRACe<t>:Y:SPACing on page 603.

Suffix:

<n> window; For applications that do not have more than 1 measure-

ment window, the suffix <n> is irrelevant.

<t> irrelevant

Parameters:

<Range> Range: 10 to 200

*RST: 100 Default unit: dB

Example: DISP:TRAC:Y 110dB

Remote Control – Commands

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:MODE < Mode>

This command selects the type of scaling of the y-axis.

When SYSTem: DISPlay: UPDate is turned off, this command has no immediate effect on the screen.

Suffix:

<n> window; For applications that do not have more than 1 measure-

ment window, the suffix <n> is irrelevant.

<t> irrelevant

Parameters:

<Mode> ABSolute

absolute scaling of the y-axis

RELative

relative scaling of the y-axis

*RST: ABS

Example: DISP:TRAC:Y:MODE REL

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel <ReferenceLevel>

This command defines the reference level.

With the reference level offset \neq 0, the value range of the reference level is modified by the offset.

The unit depends on the setting defined with CALCulate<n>:UNIT:POWer.

Suffix:

<n> irrelevant.</t>

Parameters:

<ReferenceLevel> The unit is variable.

Range: see datasheet

*RST: -10dBm

Example: DISP:TRAC:Y:RLEV -60dBm

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet < Value>

This command defines a reference level offset.

Suffix:

<n> irrelevant. <t> irrelevant

Remote Control - Commands

Parameters:

<Value> Range: -200 to 200

*RST: 0
Default unit: dB

Example: DISP:TRAC:Y:RLEV:OFFS -10dB

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RPOSition < Position>

This command defines the position of the reference level on the display grid..

When using a tracking generator (only with option R&S FSV-B9 or -B10, requires active normalization), and in Bluetooth mode (option R&S FSV-K8) this command defines the position of the reference value for all windows.

Suffix:

<n> Selects the measurement window.

<t> irrelevant

Parameters:

<Position> 0 PCT corresponds to the lower display border, 100% corresponds

to the upper display border.

Range: 0 to 100

*RST: Spectrum mode: 100 PCT, with tracking generator or

time display: 50 PCT

Default unit: PCT

Example: DISP:TRAC:Y:RPOS 50PCT

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RVALue < Value>

The command defines the power value assigned to the reference position in the grid.

When using a tracking generator, this command requires active normalization.

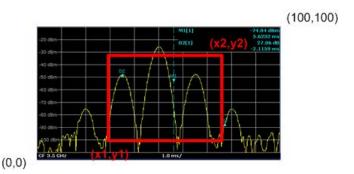
Suffix:

<n> irrelevant <t> irrelevant

Parameters:

<Value> *RST: 0 dB, coupled to reference level

Example: DISP:TRAC:Y:RVAL -20dBm


Defines a reference position of -20 dBm.

DISPlay[:WINDow<n>]:ZOOM:AREA <x1>, <y1>, <x2>, <y2>

This command defines the zoom area.

Before you can define a zoom area, you first have to turn the zoom on.

Remote Control – Commands

Suffix:

<n> window; For applications that do not have more than 1 measure-

ment window, the suffix <n> is irrelevant.

Parameters:

<x1>,<y1>, Diagram coordinates in % of the complete diagram that define the

<x2>,<y2> zoom area.

The lower left corner is the origin of coordinate system. The upper

right corner is the end point of the system.

Range: 0 to 100 Default unit: PCT

Example: DISP:ZOOM ON

Activates the zoom mode.

DISP: ZOOM: AREA 5,30,20,100

Enlarges the display of the measurement results in the area

defined by the coordinates (5,30) and (20,100).

DISPlay[:WINDow<n>]:ZOOM:STATe <State>

This command turns the zoom on and off.

Suffix:

<n> Selects the measurement window.

Parameters:

<State> ON | OFF

*RST: OFF

Example: DISP:ZOOM ON

Activates the zoom mode.

4.2.3.5 DISPlay Commands for Spectrograms

This chapter describes commands required in the optional Spectrogram Mode (R&S FSV-K14).

Remote Control - Commands

| DISPlay:WINDow:SGRam:COLor:DEFault | 607 |
|------------------------------------|-----|
| DISPlay:WINDow:SGRam:COLor:LOWer | |
| DISPlay:WINDow:SGRam:COLor:SHAPe | 607 |
| DISPlay:WINDow:SGRam:COLor:UPPer | 607 |
| DISPlay:WINDow:SGRam:COLor[:STYLe] | 608 |

DISPlay:WINDow:SGRam:COLor:DEFault

This command sets the color settings for the spectrogram result display to its default state.

Usage: Event

DISPlay:WINDow:SGRam:COLor:LOWer < Percentage >

This command sets the lower percentage boundary of the spectrogram.

Parameters:

<Percentage> Statistical frequency percentage.

Range: 0 to 66 *RST: 0 Default unit: %

Example: DISP:WIND:SGR:COL:LOW 10

Sets the start of the color map to 10%.

DISPlay:WINDow:SGRam:COLor:SHAPe <Shape>

This command defines the shape and focus of the color curve for the spectrogram result display.

Parameters:

<Shape> Shape of the color curve.

Range: -1 to 1 *RST: 0

DISPlay:WINDow:SGRam:COLor:UPPer <Percentage>

This command sets the upper percentage boundary of the spectrogram.

Parameters:

<Percentage> Statistical frequency percentage.

Range: 0 to 66 *RST: 0
Default unit: %

Example: DISP:WIND:SGR:COL:UPP 95

Sets the start of the color map to 95%.

Remote Control - Commands

DISPlay:WINDow:SGRam:COLor[:STYLe] <ColorScheme>

This command sets the color scheme for the spectrogram.

Parameters:

<ColorScheme> HOT

Uses a color range from blue to red. Blue colors indicate low levels, red colors indicate high ones.

COLD

Uses a color range from red to blue. Red colors indicate low levels, blue colors indicate high ones.

RADar

Uses a color range from black over green to light turquoise with shades of green in between. Dark colors indicate low levels, light colors indicate high ones.

GRAYscale

Shows the results in shades of gray. Dark gray indicates low levels, light gray indicates high ones.

*RST: HOT

Example: DISP:WIND:SGR:COL GRAY

Changes the color scheme of the spectrogram to black and white.

4.2.3.6 FETCh:PMETer Subsystem (Power Sensor, R&S FSV-K9)

The FETCh:PMETer subsystem contains commands to read measurement results of power sensor measurements without starting the measurement itself. It is only available if the R&S FSV-K9 Power Sensor option is installed.

For details see chapter 3.9, "Instrument Functions - Power Sensor (R&S FSV-K9)", on page 400.

FETCh<n>:PMETer?

This command reads the result of the power sensor measurement for the selected power sensor. These results are also displayed in the marker table.

If no measurement has been performed, this command will lead to a query error.

Suffix:

<n> irrelevant 1...4

Power sensor index

Example: FETC: PMET2?

Reads the result of the power sensor measurement for the power

sensor 2.

Usage: Query only

Remote Control - Commands

Mode: PSM

4.2.3.7 FORMat Subsytem

The FORMat subsystem specifies the data format of the data transmitted from and to the instrument.

FORMat: DEXPort: DSEParator < Separator >

This command defines which decimal separator (decimal point or comma) is to be used for outputting measurement data to the file in ASCII format. Different languages of evaluation programs (e.g. MS-Excel) can thus be supported.

Parameters:

<Separator> POINt | COMMA

*RST: (factory setting is POINt; *RST does not affect set-

ting)

Example: FORM: DEXP: DSEP POIN

Sets the decimal point as separator.

4.2.3.8 INITiate Subsystem

The INITiate subsystem is used to control the init-measurement function.

| INITiate <n>[:IMMediate]</n> | 609 |
|------------------------------|-----|
| INITiate <n>:CONMeas</n> | 610 |
| INITiate <n>:CONTinuous</n> | 610 |
| INITiate <n>:DISPlay</n> | 611 |
| INITiate <n>:ESPectrum</n> | 611 |
| INITiate <n>:SPURious</n> | 611 |

INITiate<n>[:IMMediate]

The command initiates a new measurement sequence.

With sweep count > 0 or average count > 0, this means a restart of the indicated number of measurements. With trace functions MAXHold, MINHold and AVERage, the previous results are reset on restarting the measurement.

In single sweep mode, you can synchronize to the end of the measurement with *OPC, *OPC? or *WAI. In continuous sweep mode, synchronization to the end of the measurement is not possible. Thus, it is not recommended that you use continuous sweep mode in remote control, as results like trace data or markers are only valid after a single sweep end synchronization.

Suffix:

<n> irrelevant

Remote Control - Commands

Example: INIT: CONT OFF

Switches to single sweep mode. DISP:WIND:TRAC:MODE AVER Switches on trace averaging.

SWE: COUN 20

Setting the sweep counter to 20 sweeps.

INIT; *WAI

Starts the measurement and waits for the end of the 20 sweeps.

Mode: all

INITiate<n>:CONMeas

This command restarts a measurement that has been stopped in single sweep mode.

The measurement is restarted at the first sweep point.

As opposed to INITiate<n>[:IMMediate], this command does not reset traces in maxhold, minhold or average mode. Therefore it can be used to continue measurements using max hold or averaging functions.

In single sweep mode, you can synchronize to the end of the measurement with *OPC, *OPC? or *WAI. In continuous sweep mode, synchronization to the end of the measurement is not possible. Thus, it is not recommended that you use continuous sweep mode in remote control, as results like trace data or markers are only valid after a single sweep end synchronization.

Suffix:

<n> irrelevant

Example: INIT:CONT OFF

Switches to single sweep mode.

DISP:WIND:TRAC:MODE AVER

Switches on trace averaging.

SWE:COUN 20

Setting the sweep counter to 20 sweeps.

INIT; *WAI

Starts the measurement and waits for the end of the 20 sweeps.

INIT:CONM; *WAI

Continues the measurement (next 20 sequences) and waits for

the end.

INITiate<n>:CONTinuous <State>

This command determines whether the trigger system is continuously initiated (continuous) or performs single measurements (single).

The sweep is started immediately.

In the "Spectrum" mode, this setting refers to the sweep sequence (switching between continuous/single sweep).

Remote Control - Commands

In single sweep mode, you can synchronize to the end of the measurement with *OPC, *OPC? or *WAI. In continuous sweep mode, synchronization to the end of the measurement is not possible. Thus, it is not recommended that you use continuous sweep mode in remote control, as results like trace data or markers are only valid after a single sweep end synchronization.

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: ON

Example: INIT:CONT OFF

Switches the sequence to single sweep.

INIT: CONT ON

Switches the sequence to continuous sweep.

Mode: all

INITiate<n>:DISPlay <State>

This command turns the display during a single sweep measurement on or off.

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: ON

Example: INIT:CONT OFF

Switches to single sweep mode

INIT:DISP OFF

Sets the display behavior to OFF

INIT; *WAI

Starts the measurement with display switched off.

INITiate<n>:ESPectrum

This command starts a Spectrum Emission Mask measurement.

Suffix:

<n> irrelevant
Example: INIT:ESP

Starts a Spectrum Emission Mask measurement.

INITiate<n>:SPURious

This command initiates a Spurious Emissions measurement.

Remote Control – Commands

Suffix:

<n> irrelevant
Example: INIT:SPUR

Starts a Spurious Emissions measurement.

Usage: Event

4.2.3.9 INPut Subsystem

The INPut subsystem controls the input characteristics of the RF inputs of the instrument.

| 612 |
|-----|
| 613 |
| 613 |
| 613 |
| 614 |
| 615 |
| 615 |
| 615 |
| 616 |
| 616 |
| 616 |
| 617 |
| 617 |
| 617 |
| 618 |
| 618 |
| |

INPut:ATTenuation < Value>

This command programs the input attenuator. To protect the input mixer against damage from overloads, the setting 0 dB can be obtained by entering numerals, not by using the DOWN command.

The attenuation can be set in 5 dB steps (with option R&S FSV-B25: 1 dB steps). If the defined reference level cannot be set for the set RF attenuation, the reference level is adjusted accordingly.

In the default state with "Spectrum" mode, the attenuation set on the step attenuator is coupled to the reference level of the instrument. If the attenuation is programmed directly, the coupling to the reference level is switched off.

This function is not available if the R&S Digital I/Q Interface (R&S FSV-B17) is active.

Parameters:

<Value> *RST: 10 dB (AUTO is set to ON)

Example: INP:ATT 30dB

Sets the attenuation on the attenuator to 30 dB and switches off

the coupling to the reference level.

Mode: all

Remote Control - Commands

INPut:ATTenuation:AUTO <State>

This command automatically couples the input attenuation to the reference level (state ON) or switches the input attenuation to manual entry (state OFF).

This function is not available if the R&S Digital I/Q Interface (R&S FSV-B17) is active.

Parameters:

<State> ON | OFF

*RST: ON

Example: INP:ATT:AUTO ON

Couples the attenuation set on the attenuator to the reference

level.

INPut:COUPling < Coupling Type>

Toggles the RF input of the R&S FSV between AC and DC coupling.

This function is not available if the R&S Digital I/Q Interface (R&S FSV-B17) is active.

Parameters:

<CouplingType> AC | DC

*RST: AC

Example: INP:COUP:DC

INPut:DIQ:CDEVice

This command queries the current configuration and the status of the digital baseband input from the optional R&S Digital I/Q Interface (option R&S FSV-B17).

For details see the section "Interface Status Information" for the R&S Digital I/Q Interface (R&S FSV-B17) in the description of the base unit.

Return values:

<ConnState> Defines whether a device is connected or not.

0

No device is connected.

1

A device is connected.

<DeviceName> Device ID of the connected device

<SerialNumber> Serial number of the connected device

<PortName> Port name used by the connected device

<SampleRate> Maximum or currently used sampling rate of the connected device

in Hz (depends on the used connection protocol version; indicated

by <SampleRateType> parameter)

<MaxTransferRate> Maximum data transfer rate of the connected device in Hz

Remote Control – Commands

<ConnProtState> State of the connection protocol which is used to identify the con-

nected device.

Not Started

Has to be Started

Started Passed Failed Done

<PRBSTestState> State of the PRBS test.

Not Started

Has to be Started

Started
Passed
Failed
Done

<SampleRateType> 0

Maximum sampling rate is displayed

1

Current sampling rate is displayed

<Placeholder> for future use; currently "0"

Example: INP:DIQ:CDEV?

Result:

1,SMU200A,103634,Out

A,70000000,100000000, Passed, Not Started, 0,0

Mode: IQ, VSA, EVDO, CDMA, WCDMA, GSM, ADEMOD, TDS

INPut:DIQ:RANGe:COUPling <State>

If enabled, the reference level for digital input is adjusted to the full scale level automatically if the fullscale level changes.

(See the Auto Level softkey).

This command is only available if the optional R&S Digital I/Q Interface (option R&S FSV-B17) is installed.

For details see the R&S Digital I/Q Interface (R&S FSV-B17) description of the base unit.

Parameters:

<State> ON | OFF

*RST: OFF

Example: INP:DIQ:RANG:COUP OFF

Mode: IQ, VSA, EVDO, CDMA, WCDMA, GSM, ADEMOD, TDS

Remote Control - Commands

INPut:DIQ:RANGe[:UPPer] <Level>

Defines or queries the "Full Scale Level", i.e. the level that should correspond to an I/Q sample with the magnitude "1".

It can be defined either in dBm or Volt (see "Full Scale Level" on page 300).

This command is only available if the optional R&S Digital I/Q Interface (option R&S FSV-B17) is installed.

For details see chapter 3.7.5, "Interface Status Information", on page 375.

Parameters:

<Level> <numeric value>

Range: 70.711 nV to 7.071 V

*RST: 1 V

Example: INP:DIQ:RANG 1V

Mode: A, IQ, NF, TDS, VSA, CDMA, EVDO, WCDMA, ADEMOD, GSM,

OFDM, OFDMA/WiBro, WLAN

INPut:DIQ:RANGe[:UPPer]:UNIT <Unit>

Defines the unit of the full scale level (see "Level Unit" on page 300). The availability of units depends on the measurement application you are using.

This command is only available if the optional R&S Digital I/Q Interface (option R&S FSV-B17) is installed.

For details see the R&S Digital I/Q Interface (R&S FSV-B17) description of the base unit.

Parameters:

<Level> V | dBm | dBpW | W | dBmV | dBuV | dBuA | A

*RST: Volt

Example: INP:DIQ:RANG:UNIT A

Mode: IQ, VSA, EVDO, CDMA, WCDMA, GSM, ADEMOD, TDS

INPut:DIQ:SRATe <SampleRate>

This command specifies or queries the sample rate of the input signal from the R&S Digital I/Q Interface (see "Input Sample Rate" on page 299).

Note: the final user sample rate of the R&S FSV may differ and is defined using TRAC: IQ: SRAT (see TRACe<n>: IQ: SRATe on page 747).

This command is only available if the optional R&S Digital I/Q Interface (option R&S FSV-B17) is installed.

For details see the R&S Digital I/Q Interface (R&S FSV-B17) description of the base unit.

Remote Control - Commands

Parameters:

<SampleRate> Range: 1 Hz to 10 GHz

*RST: 32 MHz

Example: INP:DIQ:SRAT 200 MHz

Mode: A, IQ, NF, TDS, VSA, CDMA, EVDO, WCDMA, ADEMOD, GSM,

OFDM, OFDMA/WiBro, WLAN

INPut:EATT < Attenuation>

This command defines the electronic attenuation.

If necessary, the command also turns the electronic attenuator on.

This command is only available with option R&S FSV-B25, but not if R&S FSV-B17 is active.

The attenuation can be varied in 1 dB steps from 0 to 25 dB. Other entries are rounded to the next lower integer value.

If the defined reference level cannot be set for the given RF attenuation, the reference level is adjusted accordingly and the warning "Limit reached" is output.

Parameters:

<Attenuation> 0...25

*RST: 0 dB (OFF)

Example: INP1:EATT 10 dB

Mode: all

INPut:EATT:AUTO <State>

This command switches the automatic behaviour of the electronic attenuator on or off. If activated, electronic attenuation is used to reduce the operation of the mechanical attenuation whenever possible.

This command is only available with option R&S FSV-B25, but not if R&S FSV-B17 is active.

Parameters:

<State> ON | OFF

*RST: ON

Example: INP1:EATT:AUTO OFF

Mode: all

INPut:EATT:STATe <State>

This command turns the electronic attenuator on or off.

This command is only available with option R&S FSV-B25, but not if R&S FSV-B17 is active.

Remote Control - Commands

Parameters:

<State> ON | OFF

*RST: OFF

Example: INP:EATT:STAT ON

Switches the electronic attenuator into the signal path.

INPut:GAIN:STATe <State>

This command turns the 20 dB preamplifier on and off.

With option R&S FSV-B22, the preamplifier only has an effect below 7 GHz.

With option R&S FSV-B24, the amplifier applies to the entire frequency range.

This command is not available when using R&S Digital I/Q Interface (R&S FSV-B17).

Parameters:

<State> ON | OFF

*RST: OFF

Example: INP:GAIN:STAT ON

Turns the preamplifier on.

INPut:IMPedance < Impedance >

This command selects the nominal input impedance.

75 Ω should be selected if the 50 Ω input impedance is transformed to a higher impedance using a 75 Ω adapter of the RAZ type (= 25 Ω in series to the input impedance of the instrument). The correction value in this case is 1.76 dB = 10 log (75 Ω /50 Ω).

This function is not available if the R&S Digital I/Q Interface (R&S FSV-B17) is active.

Parameters:

<Impedance> 50 | 75

*RST: 50 Ω

Example: INP:IMP 75

INPut:SELect <Source>

This command selects the signal source for measurements.

Parameters:

<Source> RF | DIQ

RF

Radio Frequency ("RF INPUT" connector)

DIQ

Digital IQ (only available with R&S Digital I/Q Interface, option

R&S FSV-B17)

*RST: RF

Remote Control – Commands

Example: INP:SEL RF

Mode: A, IQ, NF, TDS, VSA, CDMA, EVDO, WCDMA, ADEMOD, GSM,

OFDM, OFDMA/WiBro, WLAN

INPut:UPORt?

This command queries the control lines of the user ports.

Example: INP:UPOR?
Usage: Query only

INPut:UPORt:STATe <State>

This command selects if the user port control lines are used as a input or as a output.

Parameters:

<State> ON

User port is used as a input.

OFF

User port is used as a output.

*RST: ON

Example: INP:UPOR:STAT ON

4.2.3.10 INSTrument Subsystem

The INSTrument subsystem selects the operating mode of the unit either via text parameters or fixed numbers.

INSTrument[:SELect] <Mode> | <ChannelName>

This command selects the measurement mode by means of text parameters.

In case you are working with more than one spectrum display, the command also selects the spectrum display (or channel) you need.

Also see

- INSTrument:CREate[:NEW] on page 620
- Remote program example: chapter 4.3.16, "Usage of Four Spectrum Instances", on page 886

Remote Control – Commands

Parameters:

<Mode>

SANalyzer

Spectrum mode

Spectrum 2 | Spectrum 3 | Spectrum 4

Selects one of the additional spectrum displays. The first spectrum display is always active. You can select it with SANalyzer. A spectrum display must exist in order to be able to select it.

ADEMod

Analog demodulation mode

(Analog Demodulation option, R&S FSV-K7)

SFM

FM Stereo (R&S FSV-K7S option)

BTOoth

Bluetooth mode (R&S FSV-K8 option)

GSM | MGSM

GSM mode (R&S FSV-K10 option)

Query returns MGSM.

NOISe

Noise Figure Measurements option, R&S FSV-K30

PNOise

Phase Noise mode (R&S FSV-K40 option)

DDEM

VSA mode (R&S FSV-K70 option)

BWCD

3G FDD BTS Mode (R&S FSV-K72 option)

MWCD

3G FDD UE Mode (R&S FSV-K73 option)

BTDS

TD-SCDMA BTS mode (R&S FSV-K76 option)

MTDS

TD-SCDMA UE mode (R&S FSV-K77 option)

BC2K

CDMA2000 BS Analysis mode (R&S FSV-K82 option)

BDO

1xEV-DO BS Analysis option, R&S FSV-K84

WLAN

WLAN TX mode (R&S FSV-K91/91n option)

WiMAX

WiMax mode (WiMAX 802.16 OFDM Measurements option and WiMAX IEEE 802.16 OFDM, OFDMA Measurements option, R&S FSV-K93)

LTE

LTE measurement application (uplink and downlink)

*RST: SANalyzer

Remote Control - Commands

Example: INST SAN

Switches the instrument to "Spectrum" mode.

Usage: SCPI confirmed

Mode: all

INSTrument:CREate[:NEW] < ChannelType>, < ChannelName>

This command adds an additional spectrum display. You can add up to three additional spectrum displays.

Also see

• INSTrument[:SELect] on page 618

- INSTrument: DELete on page 620
- Remote program example: chapter 4.3.16, "Usage of Four Spectrum Instances", on page 886

Parameters:

<ChannelType> SANalyzer

The channel type is always SANalyzer to indicate that you add

a new spectrum display.

<ChannelName> Sets the name of the additional spectrum display.

Spectrum 2 | Spectrum 3 | Spectrum 4

The names of the spectrum displays you add have to be

Spectrum 2 for the second spectrum display, Spectrum 3 for

the third and Spectrum 4 for the fourth.

Example: INST:CRE SAN, Spectrum 2

Adds a second spectrum display.

INSTrument:DELete < ChannelName >

This command deletes a spectrum display.

Also see

- INSTrument:CREate[:NEW] on page 620
- Remote program example: chapter 4.3.16, "Usage of Four Spectrum Instances", on page 886

Parameters:

<ChannelName> Selects the spectrum display you want to delete.

Spectrum 2 | Spectrum 3 | Spectrum 4

A spectrum display must exist in order to be able delete it.

Example: INST:DEL Spectrum 4

Deletes the fourth spectrum display.

Remote Control – Commands

INSTrument: NSELect < Mode>

This command selects the operating mode by means of numbers.

Parameters:

<Mode>

Selects the operating with numbers.

1

Spectrum mode

2

VSA mode (R&S FSV-K70 option)

3

Analog demodulation mode

5

GSM mode (R&S FSV-K10 option)

6

Selects WiMax mode (WiMAX IEEE 802.16 OFDM, OFDMA Measurements option, R&S FSV-K93)

7

FM Stereo (R&S FSV-K7S option)

8

3G FDD BTS Mode (R&S FSV-K72 option)

9

3G FDD UE Mode (R&S FSV-K73 option)

10

CDMA2000 BS Analysis mode (R&S FSV-K82 option)

12

Bluetooth mode (R&S FSV-K8 option)

14

1xEV-DO BS Analysis mode (R&S FSV-K84 option)

16

Selects WLAN TX mode (R&S FSV-K91/91n option)

17

TD-SCDMA BTS mode (R&S FSV-K76 option)

18

TD-SCDMA UE mode (R&S FSV-K77 option)

19

Noise Figure mode (R&S FSV-K30 option)

20

Phase Noise mode ((R&S FSV-K40 option)

23

Selects WiMax mode (WiMAX 802.16 OFDM Measurements option, R&S FSV-K93

100

LTE measurement application (uplink and downlink)

*RST:

Remote Control - Commands

Example: INST:NSEL 1

Switches the instrument to "Spectrum" mode.

Usage: SCPI confirmed

Mode: all

4.2.3.11 MMEMory Subsystem

The MMEMory (mass memory) subsystem provides commands which allow for access to the storage media of the instrument and for storing and loading various instrument settings.

In this section all MMEMory commands for "Spectrum" mode are described in detail. For details on commands that are independent of a particular measurement mode and information on the MMemory subsystem in general, see chapter 4.2.4.7, "MMEMory Subsystem", on page 777.

| MMEMory:LOAD:IQ:STATe | 622 |
|--------------------------------|-----|
| MMEMory:STORe:IQ:STATe | |
| MMEMory:STORe:IQ:COMM | |
| MMEMory:STORe <n>:LIST</n> | 623 |
| MMEMory:STORe <n>:PEAK</n> | 623 |
| MMEMory:STORe:SGRam | 623 |
| MMEMory:STORe <n>:SPURious</n> | 624 |
| MMEMory:STORe <n>:TRACe</n> | 624 |
| | |

MMEMory:LOAD:IQ:STATe 1, <FileName>

This command loads the I/Q data from the specified .iq.tar file.

Note: switch to single sweep mode (INIT: CONT OFF) before importing I/Q data as otherwise the instrument will continue to measure data and display the current results rather than the imported data.

Parameters:

<FileName> Complete file name including the path

Example: MMEM:LOAD:IQ:STAT 1, 'C:

\R_S\Instr\user\data.iq.tar' Loads I/Q data from the specified file.

Usage: Setting only

MMEMory:STORe:IQ:STATe 1, <FileName>

This command stores the complex I/Q data to the specified .iq.tar file in 32-bit floating point format.

Parameters:

<FileName> Complete file name including the path

Remote Control - Commands

Example: MMEM:STOR:IQ:STAT 1, 'C:

\R_S\Instr\user\data.iq.tar'
Stores I/Q data to the specified file.

MMEMory:STORe:IQ:COMM < Description >

Defines a description of the export file which is stored with the data and also displayed in the file selection dialog box for I/Q data import and export.

Parameters:

<Description>

Example: MMEM:STOR:IQ:COMM 'Device test 1b'

Creates a description for the export file.

MMEM:STOR:IQ:STAT 1, 'C:

\R S\Instr\user\data.iq.tar'

Stores I/Q data and the comment to the specified file.

MMEMory:STORe<n>:LIST <FileName>

This command stores the current list evaluation results in a <file name>.dat file. The file consists of a data section containing the list evaluation results.

Suffix:

<n> irrelevant

Parameters:

<FileName> <file name>

Example: MMEM:STOR:LIST 'test'

Stores the current list evaluation results in the test.dat file.

MMEMory:STORe<n>:PEAK <FileName

This command exports the marker peak list to a *.dat file.

Suffix:

<n> Selects the measurement window.

Parameters:

<FileName> String containing the path and name of the target file.

Example: MMEM:STOR:PEAK 'test'

Saves the current marker peak list in the file test.dat.

Usage: Event

MMEMory:STORe:SGRam <File>

This command exports the spectrogram data to a ASCII file.

Remote Control - Commands

The file contains the data for every frame in the history buffer. The data corresponding to a particular frame begins with information about the frame number and the time that frame was recorded.

Note that, depending on the size of the history buffer, the process of exporting the data can take a while.

Parameters:

<File> string containing the file name of the destination file

Example: MMEM:STOR:SGR

Copies the spectrogram data to a file.

MMEMory:STORe<n>:SPURious <FileName>

This command exports the marker peak list available for spurious emission measurements to a file.

Suffix:

<n> irrelevant

Parameters:

<FileName> String containing the path and name of the target file.

Example: MMEM:STOR:SPUR 'test'

Saves the current marker peak list in the file test.dat.

Usage: Event

MMEMory:STORe<n>:TRACe <Trace>, <FileName>

This command stores the selected trace in the specified window in a file with ASCII format. The file format is described in chapter 3.2.8.7, "ASCII File Export Format", on page 138

The decimal separator (decimal point or comma) for floating-point numerals contained in the file is defined with the FORMat: DEXPort: DSEParator command (see FORMat: DEXPort: DSEParator on page 609).

Suffix:

<n> window; For applications that do not have more than 1 measure-

ment window, the suffix <n> is irrelevant.

Parameters:

<Trace> 1 to 6

selected measurement trace

<FileName> DOS file name

The file name includes indication of the path and the drive name.

Indication of the path complies with DOS conventions.

Example: MMEM:STOR:TRAC 3,'TEST.ASC'

Stores trace 3 in the file TEST.ASC.

Remote Control - Commands

4.2.3.12 OUTPut Subsystem

The OUTPut subsystem controls the output-related features of the instrument.

| OUTPut:DIQ | 625 |
|--------------------|-----|
| OUTPut:DIQ:CDEVice | 625 |
| OUTPut[:STATe] | 626 |
| OUTPut:UPORt. | |
| OUTPut:UPORt:STATe | |

OUTPut:DIQ <State>

If enabled, the captured IQ data is output to the R&S Digital I/Q Interface in a continuous stream. This function requires the LVDS interface option (R&S FSV-B17).

Digital input and digital output cannot be used simultaneously.

Parameters:

<State> ON | OFF

*RST: OFF

Example: OUTP:DIQ ON

Mode: ADEMOD, IQ, VSA

OUTPut:DIQ:CDEVice

This command queries the current configuration and the status of the digital baseband output to the optional R&S Digital I/Q Interface (option R&S FSV-B17).

For details see the R&S Digital I/Q Interface description for the base unit.

Return values:

ConnState> Defines whether a device is connected or not.

0

No device is connected.

1

A device is connected.

<DeviceName> Device ID of the connected device

<SerialNumber> Serial number of the connected device

<PortName> Port name used by the connected device

<NotUsed> to be ignored

<MaxTransferRate> Maximum data transfer rate of the connected device in Hz

Remote Control – Commands

<ConnProtState> State of the connection protocol which is used to identify the con-

nected device.

Not Started

Has to be Started

Started
Passed
Failed
Done

<PRBSTestState> State of the PRBS test.

Not Started

Has to be Started

Started
Passed
Failed
Done

<NotUsed> to be ignored

<Placeholder> for future use; currently "0"

Example: OUTP:DIQ:CDEV?

Result:

1,SMU200A,103634,Out

A,70000000,100000000, Passed, Not Started, 0,0

Mode: IQ, VSA

OUTPut[:STATe] <State>

This command switches the selected tracking generator on or off.

The command is available with an (external) tracking generator (options R&S FSV-B9 or -B10).

Parameters:

<State> ON | OFF

*RST: OFF

Example: OUTP1 ON

Switches on the external tracking generator 1.

Usage: SCPI confirmed

OUTPut:UPORt <Value>

This command defines the control lines of the user ports.

The assignment of the pin numbers to the bits is as follows:

Remote Control - Commands

| Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----|-----|-----|---|---|---|---|---|---|
| Pin | N/A | N/A | 5 | 3 | 4 | 7 | 6 | 2 |

Bits 7 and 6 are not assigned to pins and must always be 0.

The user port is written to with the given binary pattern. If the user port is programmed to input instead of output (see INPut:UPORt:STATe on page 618), the output value is temporarily stored.

Parameters:

OUTPut:UPORt:STATe <State>

This command selects if the user port control lines are used as a input or as a output.

This command switches the control line of the user ports between INPut and OUTPut. The user port is switched to OUTPut with parameter ON, to INPut with OFF.

Parameters:

<State> ON

User port is used as a input.

ON

User port is used as a output.

*RST: ON

Example: OUTP:UPOR:STAT ON

4.2.3.13 PROBe subsystem

With firmware R&S FSV 1.61SP2 or newer, active probes are supported (via an adapter). The following commands activate and configure a connected probe which is to provide an input signal. They are only available if a probe is connected to the instrument's RF INPUT and USB connectors.

For details see chapter 3.3.8.2, "Using Active Probes for Input", on page 302.

PROBe:ID:PARTnumber?

This command returns the material part number of the connected probe.

Example: PROB:ID:PART?

Usage: Query only

PROBe:ID:SRNumber?

This command returns the serial number of the connected probe.

Remote Control – Commands

Example: PROB:ID:SRN?

Usage: Query only

PROBe:SETup:MODE < Mode>

This command defines which action is taken when the probe's micro button is pressed.

Parameters:

<Mode> RSINgle

A single sweep is performed.

NOACtion

No action is taken. *RST: OFF

Example: PROB:SET:STAT ON

PROBe:SETup:NAME?

This command returns the name of the connected probe.

Example: PROB:SET:NAME?

Usage: Query only

PROBe:SETup:STATe?

This command queries whether a probe is connected to the instrument's RF INPUT and USB connectors and was recognized by the R&S FSV.

Example: PROB:SET:STAT ON

Usage: Query only

PROBe[:STATe] <State>

This command activates a connected probe. Use this command to switch off the probe and measure the digital input without considering the transducer factor of the probe.

Parameters:

<State> ON | OFF

*RST: OFF

Example: PROB:STAT ON

4.2.3.14 READ:PMETer Subsystem

This subsystem contains commands to start power sensor measurements and to read the results after the measurement is concluded. It is only available if the R&S FSV-K9 Power Sensor option is installed.

Remote Control - Commands

For details see chapter 3.9, "Instrument Functions - Power Sensor (R&S FSV-K9)", on page 400.

READ<n>:PMETer?

This command starts a power sensor measurement and reads the result for the selected power sensor after the measurement is concluded. These results are also displayed in the marker table.

Suffix:

<n> irrelevant

1...4

Power sensor index

Example: READ: PMET3?

Starts a measurement and reads the result.

Usage: Query only

Mode: PSM

CENCO: AD Just Cubovetom

4.2.3.15 SENSe Subsystem

The SENSe subsystem is organized in several subsystems. The commands of these subsystems directly control device-specific settings, they do not refer to the signal characteristics of the measurement signal.

The SENSe subsystem controls the essential parameters of the analyzer. In accordance with the SCPI standard, the keyword "SENSe" is optional for this reason, which means that it is not necessary to include the SENSe node in command sequences.

| SENSE.ADJUSt Subsystem | 030 |
|---|-----|
| SENSe:AVERage Subsystem | 632 |
| SENSe:BANDwidth Subsystem | 634 |
| SENSe:CORRection Subsystem | 637 |
| SENSe:DEMod Subsystem | 644 |
| SENSe:ESPectrum Subsystem | 644 |
| SENSe:FREQuency Subsystem | 655 |
| SENSe:LIST Subsystem | 658 |
| SENSe:LIST:RANGe Subsystem | 664 |
| SENSe:MIXer Subsystem | 671 |
| SENSe:MPOWer Subsystem | 678 |
| SENSe:PMETer Subsystem (Power Sensor, R&S FSV-K9) | 682 |

600

Remote Control - Commands

| SENSe:POWer Subsystem | 689 |
|---|-----------|
| SENSe:SWEep Subsystem | 699 |
| SENSe:[WINDow:]DETector Subsystem | 706 |
| SENSe:ADJust Subsystem | |
| The ADJust subsystem controls automatic definition of frequency and level | settings. |
| [SENSe:]ADJust:ALL | 630 |
| [SENSe:]ADJust:FREQuency | |
| [SENSe:]ADJust:LEVel | |
| [SENSe:]ADJust:CONFigure:LEVel:DURation | 630 |
| [SENSe:]ADJust:CONFigure:LEVel:DURation:MODE | |
| [SENSe:]ADJust:CONFiguration:HYSTeresis:LOWer | 631 |
| [SENSe:]ADJust:CONFiguration:HYSTeresis:UPPer | |
| [SENSe:]ADJust:CONFigure:TRIG | |

[SENSe:]ADJust:ALL

This command determines the ideal frequency and level configuration for the current measurement.

Example: ADJ:ALL

[SENSe:]ADJust:FREQuency

This command defines the center frequency automatically by determining the highest level in the frequency span.

Example: ADJ: FREQ

[SENSe:]ADJust:LEVel

This command automatically sets the optimal reference level for the current measurement.

You can define a threshold that the signal must exceed before the reference level is adjusted, see [SENSe:]ADJust:CONFiguration:HYSTeresis:UPPer and [SENSe:]ADJust:CONFiguration:HYSTeresis:LOWer.

Example: ADJ: LEV

[SENSe:]ADJust:CONFigure:LEVel:DURation < Duration>

This command defines the duration of the level measurement used to determine the optimal reference level automatically (for SENS: ADJ: LEV ON).

Remote Control - Commands

Parameters:

Range: 0.001 to 16000.0

*RST: 0.001 Default unit: s

Example: ADJ:CONF:LEV:DUR:5

[SENSe:]ADJust:CONFigure:LEVel:DURation:MODE < Mode>

This command selects the way the R&S FSV determines the length of the measurement that is performed while determining the ideal reference level.

Parameters:

<Mode> AUTO

Automatically determines the measurement length.

MANual

Manual definition of the measurement length.

*RST: AUTO

Example: ADJ:CONF:LEV:DUR:MODE MAN

Specifies manual definition of the measurement duration.

ADJ:CONF:LEV:DUR:5

Specifies the duration manually.

[SENSe:]ADJust:CONFiguration:HYSTeresis:LOWer <Threshold>

This command defines a lower threshold the signal must drop below before the reference level is automatically adjusted when the "Auto Level" function is performed.

For more information see [SENSe:]ADJust:LEVel).

Parameters:

<Threshold> Range: 0 to 200

*RST: +1 dB Default unit: dB

Example: SENS:ADJ:CONF:HYST:LOW 2

Example: For an input signal level of currently 20 dBm, the reference level

will only be adjusted when the signal level falls below 18 dBm.

[SENSe:]ADJust:CONFiguration:HYSTeresis:UPPer <Threshold>

This command defines an upper threshold the signal must exceed before the reference level is automatically adjusted when the "Auto Level" function is performed.

For more information see [SENSe:]ADJust:LEVel).

Remote Control - Commands

Parameters:

<Threshold> Range: 0 to 200

*RST: +1 dB
Default unit: dB

Example: SENS:ADJ:CONF:HYST:UPP 2

For an input signal level of currently 20 dBm, the reference level will only be adjusted when the signal level rises above 22 dBm.

[SENSe:]ADJust:CONFigure:TRIG <State>

This command defines the behaviour of the measurement when adjusting a setting automatically (using SENS:ADJ:LEV ON, for example).

For more information see "Adjusting settings automatically during triggered measurements" on page 105.

Parameters:

<State> ON

The measurement for automatic adjustment waits for the trigger.

OFF

The measurement for automatic adjustment is performed immediately, without waiting for a trigger.

*RST: ON

Example: ADJ:CONF:TRIG OFF

SENSe: AVERage Subsystem

The SENSe:AVERage subsystem calculates the average of the acquired data. A new test result is obtained from several successive measurements.

There are two types of average calculation: logarithmic and linear. In case of logarithmic average calculation (denoted with VIDeo), the average value of the measured logarithmic power is calculated and in case of linear average calculation, the linear power is averaged before the logarithm is applied.

| [SENSe:]AVERage <n>[:STATe<trace>]</trace></n> | 632 |
|--|-----|
| [SENSe:]AVERage <n>:COUNt</n> | 633 |
| ISENSe:IAVERage <n>:TYPE</n> | |

[SENSe:]AVERage<n>[:STATe<Trace>] <State>

This command turns averaging for a particular trace in a particular window on and off.

Suffix:

<n> Selects the measurement window.

<Trace> 1...6

Selects the trace.

Remote Control - Commands

Parameters:

<State> ON | OFF

*RST: OFF

Example: AVER OFF

Switches off the average calculation for trace 1.

AVER:STAT3 ON

Switches on the average calculation for trace 3.

[SENSe:]AVERage<n>:COUNt <NoMeasurements>

This command defines the number of measurements which contribute to the average value.

Note that continuous averaging is performed after the indicated number has been reached in continuous sweep mode.

In single sweep mode, the sweep is stopped as soon as the indicated number of measurements (sweeps) is reached. Synchronization to the end of the indicated number of measurements is only possible in single sweep mode.

This command has the same effect as the [SENSe<source>:] SWEep:COUNt command. In both cases, the number of measurements is defined whether the average calculation is active or not.

The number of measurements applies to all traces in the window.

Suffix:

<n> Selects the measurement window.

Parameters:

<NoMeasurements> 0 to 32767

*RST: 0

Example: SWE:CONT OFF

Switching to single sweep mode.

AVER: COUN 16

Sets the number of measurements to 16.

AVER:STAT ON

Switches on the calculation of average.

INIT; *WAI

Starts the measurement and waits for the end of the 16 sweeps.

[SENSe:]AVERage<n>:TYPE <FunctionType>

This command selects the type of average function.

Suffix:

<n> Selects the measurement window.

Remote Control - Commands

Parameters:

<FunctionType> VIDeo | LINear | POWer

VIDeo

The logarithmic power values are averaged.

LINear

The power values are averaged before they are converted to logarithmic values.

POWer

The power level values are converted into unit Watt prior to averaging. After the averaging, the data is converted back into its original unit.

*RST: VIDeo

Example: AVER: TYPE LIN

Switches to linear average calculation.

SENSe:BANDwidth Subsystem

This subsystem controls the setting of the instruments filter bandwidths. Both groups of commands (BANDwidth and BWIDth) perform the same functions.

| [SENSe:]BANDwidth BWIDth[:RESolution] | 634 |
|---|-----|
| [SENSe:]BANDwidth BWIDth[:RESolution]:AUTO | |
| [SENSe:]BANDwidth BWIDth[:RESolution]:FFT | |
| [SENSe:]BANDwidth BWIDth[:RESolution]:RATio | 635 |
| [SENSe:]BANDwidth BWIDth[:RESolution]:TYPE | 636 |
| [SENSe:]BANDwidth BWIDth:VIDeo | 636 |
| [SENSe:]BANDwidth BWIDth:VIDeo:AUTO | 636 |
| [SENSe:]BANDwidth BWIDth:VIDeo:RATio | 637 |
| [SENSe:]BANDwidth BWIDth:VIDeo:TYPE | 637 |

[SENSe:]BANDwidth|BWIDth[:RESolution] <Bandwidth>

This command defines the resolution bandwidth.

The available resolution bandwidths are specified in the data sheet. For details on the correlation between resolution bandwidth and filter type refer to chapter 3.2.6.3, "Selecting the Appropriate Filter Type", on page 114.

A change of the resolution bandwidth automatically turns the coupling to the span off.

Parameters:

<Bandwidth> refer to data sheet

*RST: (AUTO is set to ON)

Example: BAND 1 MHz

Sets the resolution bandwidth to 1 MHz

[SENSe:]BANDwidth|BWIDth[:RESolution]:AUTO <State>

This command couples and decouples the resolution bandwidth to the span.

Remote Control - Commands

The automatic coupling adapts the resolution bandwidth to the current frequency span according to the relationship between frequency span and resolution bandwidth.

The 6 dB bandwidths 200 Hz, 9 kHz and 120 kHz and the channel filters available are not set by the automatic coupling.

Use [SENSe:]BANDwidth|BWIDth[:RESolution]:RATio to define the ratio RBW/span.

Parameters:

<State> ON | OFF

*RST: ON

Example: BAND: AUTO OFF

Switches off the coupling of the resolution bandwidth to the span.

[SENSe:]BANDwidth|BWIDth[:RESolution]:FFT <FilterMode>

This command defines the filter mode of FFT filters by defining the partial span size. The partial span is the span which is covered by one FFT analysis.

This command is only available for sweep type "FFT".

Parameters:

<FilterMode> AUTO

The firmware determines whether to use wide or narrow filters to

obtain the best measurement results.

NARRow

The FFT filters with the smaller partial span are used. This allows you to perform measurements near a carrier with a reduced ref-

erence level due to a narrower analog prefilter.

*RST: AUTO

Example: BAND: TYPE FFT

Select FFT filter.

Example: BAND: FFT NARR

Select narrow partial span for FFT filter.

[SENSe:]BANDwidth|BWIDth[:RESolution]:RATio <Ratio>

This command defines the ratio between the resolution bandwidth (Hz) and the span (Hz).

Note that the ratio defined with the remote command (RBW/span) is reciprocal to that of the manual operation (span/RBW).

Parameters:

<Ratio> Range: 0.0001 to 1

*RST: 0.01

Example: BAND:RAT 0.01

Remote Control - Commands

[SENSe:]BANDwidth|BWIDth[:RESolution]:TYPE <FilterType>

This command selects the type of resolution filter.

For detailed information on filters see chapter 3.2.6.3, "Selecting the Appropriate Filter Type", on page 114 and chapter 3.2.6.4, "List of Available RRC and Channel Filters", on page 115.

When changing the filter type, the next larger filter bandwidth is selected if the same filter bandwidth is not available for the new filter type.

5 Pole filters are not available when using the sweep type "FFT".

Parameters:

<FilterType> NORMal

Gaussian filters

CFILter

channel filters

RRC

RRC filters

P5

5 Pole filters

*RST: NORMal

Example: BAND: TYPE NORM

[SENSe:]BANDwidth|BWIDth:VIDeo <Bandwidth>

This command defines the video bandwidth. The available video bandwidths are specified in the data sheet.

Parameters:

<Bandwidth> refer to data sheet

*RST: (AUTO is set to ON)

Example: BAND: VID 10 kHz

[SENSe:]BANDwidth|BWIDth:VIDeo:AUTO <State>

This command couples and decouples the VBW to the RBW.

Use [SENSe:]BANDwidth|BWIDth:VIDeo:RATio to define the ratio VBW/RBW.

Parameters:

<State> ON | OFF

*RST: ON

Example: BAND:VID:AUTO OFF

Remote Control - Commands

[SENSe:]BANDwidth|BWIDth:VIDeo:RATio <Ratio>

This command defines the ratio between video bandwidth (Hz) and resolution bandwidth (Hz).

Note that the ratio defined with the remote command (VBW/RBW) is reciprocal to that of the manual operation (RBW/VBW).

Parameters:

<Ratio> Range: 0.01 to 1000

*RST: 3

Example: BAND:VID:RAT 3

Sets the coupling of video bandwidth to video bandwidth = 3*res-

olution bandwidth

[SENSe:]BANDwidth|BWIDth:VIDeo:TYPE < Mode>

This command selects the position of the video filter in the signal path.

Changing the video filter position is possible only if the resolution bandwidth is ≤100 kHz.

Parameters:

<Mode> LINear

The video filter is applied in front of the logarithmic amplifier. In linear mode, measurements with a logarithmic level scale result in flatter falling edges compared to logarithmic mode. The reason is the conversion of linear power values into logarithmic level values: if you halve the linear power, the logarithmic level decreases by 3 dB.

LOGarithmic

The video filter is applied after the logarithmic amplifier.

*RST: LINear

Example: BAND:VID:TYPE LIN

Video filter ahead of the logarithmic amplifier

SENSe:CORRection Subsystem

This subsystem controls calibration and normalization during operation with the tracking generator (only with R&S FSV option B9 or B10). Furthermore, configuration of conversion loss tables for external mixers (option B21) is performed using these commands.

| [SENSe:]CORRection:COLLect[:ACQuire] | 638 |
|--------------------------------------|-----|
| [SENSe:]CORRection:CVL:BAND | 638 |
| [SENSe:]CORRection:CVL:CATalog? | 639 |
| [SENSe:]CORRection:CVL:SELect | 639 |
| [SENSe:]CORRection:CVL:MIXer | 639 |
| [SENSe:]CORRection:CVL:SNUMber | 640 |
| [SENSe:]CORRection:CVL:HARMonic | 640 |
| [SENSe:]CORRection:CVL:PORTs | 640 |
| [SENSe:]CORRection:CVL:BIAS | 641 |

Remote Control - Commands

| [SENSe:]CORRection:CVL:COMMent | 641 |
|--|-----|
| [SENSe:]CORRection:CVL:DATA | 641 |
| [SENSe:]CORRection:CVL:CLEar | 642 |
| [SENSe:]CORRection:EGAin:INPut[:MAGNitude] | 642 |
| [SENSe:]CORRection:METHod | 642 |
| [SENSe:]CORRection:RECall | 643 |
| [SENSe:]CORRection[:STATe] | 643 |
| [SENSe:]CORRection:TRANsducer:GENerator | 643 |
| | |

[SENSe:]CORRection:COLLect[:ACQuire] <MeasType>

This command initiates a reference measurement (calibration). The reference measurement is the basis for the measurement normalization.

To obtain a correct reference measurement, a complete sweep with synchronization to the end of the sweep must have been carried out. This is only possible in the single sweep mode.

The command is available if a tracking generator is installed and has been turned on.

Parameters:

<MeasType> THRough

"TRANsmission" mode: calibration with direct connection between

tracking generator and device input

"REFLection" mode: calibration with short circuit at the input

OPEN

only allowed in "REFLection" mode: calibration with open input

Example: INIT:CONT OFF

Selects single sweep operation

CORR:COLL THR; *WAI

Starts the measurement of reference data using direct connection between generator and device input and waits for the sweep end.

Usage: Setting only

SCPI confirmed

[SENSe:]CORRection:CVL:BAND <Type>

This command defines the waveguide band in the conversion loss table. Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 639).

This command is only available with option B21 (External Mixer) installed.

Remote Control - Commands

Parameters:

 $\langle Band \rangle$ K | A | KA | Q | U | V | E | W | F | D | G | Y | J | USER

Standard waveguide band or user-defined band.

Note: The band formerly referred to as "A" is now named "KA"; the input parameter "A" is still available and refers to the same

band as "KA".

For a definition of the frequency range for the pre-defined bands,

see table 3-21).

*RST: F (90 GHz - 140 GHz)

Example: CORR:CVL:SEL 'LOSS_TAB_4'

Selects the conversion loss table.

CORR:CVL:BAND KA

Sets the band to KA (26.5 GHz - 40 GHz).

Mode: all

[SENSe:]CORRection:CVL:CATalog?

This command queries all available conversion loss tables saved in the $C:\r_s\instr\user\cvl\$ directory on the instrument.

This command is only available with option B21 (External Mixer) installed.

Example: CORR:CVL:CAT?

Usage: Query only

Mode: all

[SENSe:]CORRection:CVL:SELect <FileName>

This command selects the conversion loss table with the specified file name. If <file_name> is not available, a new conversion loss table is created.

This command is only available with option B21 (External Mixer) installed.

Parameters:

<FileName> '<File name>'

Example: CORR:CVL:SEL 'LOSS_TAB_4'

Mode: all

[SENSe:]CORRection:CVL:MIXer <Type>

This command defines the mixer name in the conversion loss table. Before this command can be performed, the conversion loss table must be selected (see [SENSe:

] CORRection: CVL: SELect on page 639).

This command is only available with option B21 (External Mixer) installed.

Parameters:

<Type> Name of mixer with a maximum of 16 characters

Remote Control - Commands

Example: CORR:CVL:SEL 'LOSS TAB 4'

Selects the conversion loss table. CORR:CVL:MIX 'FS Z60'

Mode: all

[SENSe:]CORRection:CVL:SNUMber <SerialNo>

This command defines the serial number of the mixer in the conversion loss table. Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 639).

This command is only available with option B21 (External Mixer) installed.

Parameters:

<SerialNo> Serial number with a maximum of 16 characters

Example: CORR:CVL:SEL 'LOSS_TAB_4'

Selects the conversion loss table. CORR: CVL: MIX '123.4567'

Mode: all

[SENSe:]CORRection:CVL:HARMonic <HarmOrder>

This command defines the harmonic order used in the conversion loss table. Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 639).

This command is only available with option B21 (External Mixer) installed.

Parameters:

<HarmOrder> <numeric value>

Range: 2 to 65

Example: CORR:CVL:SEL 'LOSS TAB 4'

Selects the conversion loss table.

CORR:CVL:HARM 3

Mode: all

[SENSe:]CORRection:CVL:PORTs <PortNo>

This command defines the mixer type in the conversion loss table. Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 639).

This command is only available with option B21 (External Mixer) installed.

Parameters:

<PortType> 2 | 3

*RST: 2

Remote Control - Commands

Example: CORR:CVL:SEL 'LOSS TAB 4'

Selects the conversion loss table.

CORR:CVL:PORT 3

Mode: all

[SENSe:]CORRection:CVL:BIAS <BiasSetting>

This command defines the bias setting in the conversion loss table. Before this command can be performed, the conversion loss table must be selected (see [SENSe]:

] CORRection: CVL: SELect on page 639).

This command is only available with option B21 (External Mixer) installed.

Parameters:

<BiasSetting> *RST: 0.0 A

Default unit: A

Example: CORR:CVL:SEL 'LOSS_TAB_4'

Selects the conversion loss table.

CORR:CVL:BIAS 3A

Mode: all

[SENSe:]CORRection:CVL:COMMent <Text>

This command defines a comment in the conversion loss table. Before this command can be performed, the conversion loss table must be selected (see <code>[SENSe:</code>

] CORRection: CVL: SELect on page 639).

This command is only available with option B21 (External Mixer) installed.

Parameters:

<Text>

Example: CORR:CVL:SEL 'LOSS_TAB_4'

Selects the conversion loss table.

CORR:CVL:COMM 'Conversion loss table for

FS_Z60'

Mode: all

[SENSe:]CORRection:CVL:DATA <Freq>,<Level>

This command defines the reference values of the selected conversion loss tables. The values are entered as a set of frequency/level pairs. A maximum of 50 pairs of frequency/level may be entered. Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 639).

This command is only available with option B21 (External Mixer) installed.

Parameters:

<Freq> The frequencies have to be sent in ascending order.

Remote Control - Commands

<Level>

Example: CORR:CVL:SEL 'LOSS TAB 4'

Selects the conversion loss table.

CORR: CVL: DATA 1MHZ, -30DB, 2MHZ, -40DB

Mode: all

[SENSe:]CORRection:CVL:CLEar

This command deletes the selected conversion loss table. Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection: CVL:SELect on page 639).

This command is only available with option B21 (External Mixer) installed.

Example: CORR:CVL:SEL 'LOSS_TAB_4'

Selects the conversion loss table.

CORR:CVL:CLE

Usage: Event Mode: all

[SENSe:]CORRection:EGAin:INPut[:MAGNitude]

This command makes an external gain known to the analyzer, which will take it into account during the display of measurement results. With this function the gain of an antenna or of an external preamplifier can be taken into account for the measurement values.

The command is available if a tracking generator is installed and has been turned on.

Parameters:

Range: -200 dB to 200 dB

*RST: 0 dB

Example: CORR:EGA:INP 10DB

Takes 10 dB external gain into account.

[SENSe:]CORRection:METHod

This command selects the type of measurement to be performed with the tracking generator.

The command is available if a tracking generator is installed and has been turned on.

Parameters:

REFLection

Selects reflection measurements.

TRANsmission

Selects transmission measurements.

*RST: TRANsmission

Remote Control - Commands

Example: CORR: METH TRAN

Sets the type of measurement to "transmission".

[SENSe:]CORRection:RECall

This command restores the measurement configuration used for calibration.

The command is available if a tracking generator is installed and has been turned on.

Example: CORR: REC

Usage: Event

SCPI confirmed

[SENSe:]CORRection[:STATe] <State>

This command turns correction of measurement results (normalization) on and off.

The command is available after you have defined a reference trace for the selected measurement type with [SENSe:]CORRection:COLLect[:ACQuire] on page 638.

The command is available if a tracking generator is installed and has been turned on.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CORR ON

Activates normalization.

Usage: SCPI confirmed

[SENSe:]CORRection:TRANsducer:GENerator <Name>

This command uses the normalized measurement data to generate a transducer factor with up to 625 points. The trace data is converted to a transducer with unit dB and stored in a file with the specified name and the suffix.trd under c:\r_s\instr\trd. The frequency points are allocated in equidistant steps between start and stop frequency. The generated transducer factor can be further adapted using the commands of the

[SENSe<source>:]CORRection:TRANSducer subsystem (see [SENSe:]CORRection:TRANsducer:DELete on page 792).

This command is only available if the R&S FSV option B10 (External Tracking Generator) is installed and normalization is switched on.

Parameters:

<Name> '<name>

Example: CORR:TRAN:GEN 'SMU01'

Creates the transducer file C:\r s\instr\trd\SMU01.trd.

Usage: SCPI confirmed

Mode: A

Remote Control - Commands

SENSe:DEMod Subsystem

This subsystem controls demodulation of audible AF signals.

| [SENSe:]DEMod:SQUelch:LEVel | 644 |
|-------------------------------|-----|
| [SENSe:]DEMod:SQUelch[:STATe] | 644 |

[SENSe:]DEMod:SQUeIch:LEVeI <Threshold>

This command defines the threshold for selective demodulation. Squelching must be active for this command to work (see [SENSe:]DEMod:SQUelch[:STATe]).

All signals below the threshold are not demodulated.

This command in only available if the R&S FSV option B3 (Audio Demodulation) is installed.

Parameters:

<Threshold> The threshold level as a percentage of the display height.

Range: 0 to 100 *RST: 60

Example: DEM:SQU:LEV 80

Sets the squelch level to 80% of the displayed signal.

Usage: SCPI confirmed

[SENSe:]DEMod:SQUelch[:STATe] <State>

This command turns selective demodulation at the marker position on and off.

A video trigger is automatically activated with the same level as the squelch level, any other trigger or gate settings are deactivated.

This command in only available if the R&S FSV option B3 (Audio Demodulation) is installed.

Parameters:

<State> ON | OFF

*RST: OFF

Example: DEM:SQU ON

Signals below the level threshold are not sent to the audio output.

Usage: SCPI confirmed

SENSe:ESPectrum Subsystem

The SENSe: ESPectrum subsystem contains the remote commands to configure Spectrum Emission Mask (SEM) measurements.

| 645 | [SENSe:]ESPectrum:BWID |
|-----|--|
| 645 | [SENSe:]ESPectrum:FILTer[:RRC][:STATe] |
| 646 | |
| 646 | |

Remote Control – Commands

| [SENSe:]ESPectrum:PRESet[:STANdard] | 647 |
|---|-----|
| [SENSe:]ESPectrum:PRESet:RESTore | 647 |
| [SENSe:]ESPectrum:PRESet:STORe | 647 |
| [SENSe:]ESPectrum:RANGe <range>:BANDwidth[:RESolution]</range> | 647 |
| [SENSe:]ESPectrum:RANGe <range>:BANDwidth:VIDeo</range> | 648 |
| [SENSe:]ESPectrum:RANGe <range>:COUNt</range> | 648 |
| [SENSe:]ESPectrum:RANGe <range>:DELete</range> | 648 |
| [SENSe:]ESPectrum:RANGe <range>:FILTer:TYPE</range> | 649 |
| [SENSe:]ESPectrum:RANGe <range>[:FREQuency]:STARt</range> | 649 |
| [SENSe:]ESPectrum:RANGe <range>[:FREQuency]:STOP</range> | 650 |
| [SENSe:]ESPectrum:RANGe <range>:INPut:ATTenuation</range> | 650 |
| [SENSe:]ESPectrum:RANGe <range>:INPut:ATTenuation:AUTO</range> | 650 |
| [SENSe:]ESPectrum:RANGe <range>:INPut:GAIN:STATe</range> | 651 |
| [SENSe:]ESPectrum:RANGe <range>:INSert</range> | 651 |
| [SENSe:]ESPectrum:RANGe <range>:LIMit<source/>:ABSolute:STARt</range> | 651 |
| [SENSe:]ESPectrum:RANGe <range>:LIMit<source/>:ABSolute:STOP</range> | 652 |
| [SENSe:]ESPectrum:RANGe <range>:LIMit<source/>:RELative:STARt</range> | 652 |
| [SENSe:]ESPectrum:RANGe <range>:LIMit<source/>:RELative:STOP</range> | 652 |
| [SENSe:]ESPectrum:RANGe <range>:LIMit<source/>:STATe</range> | 653 |
| [SENSe:]ESPectrum:RANGe <range>:RLEVel</range> | 653 |
| [SENSe:]ESPectrum:RANGe <range>:SWEep:TIME</range> | 654 |
| [SENSe:]ESPectrum:RANGe <range>:SWEep:TIME:AUTO</range> | 654 |
| [SENSe:]ESPectrum:RANGe <range>:TRANsducer</range> | 654 |
| [SENSe:]ESPectrum:RRANge | 655 |
| [SENSe:]ESPectrum:RTYPe | 655 |

[SENSe:]ESPectrum:BWID <Bandwidth>

This command defines the bandwidth used for measuring the channel power (reference range). This setting takes only effect if channel power is selected as power reference type (see [SENSe:]ESPectrum:RTYPe on page 655).

Parameters:

<Bandwidth> minimum span \leq value \leq span of reference range

*RST: 3.84 MHz

Example: ESP:RTYP CPOW

Sets the power reference type to channel power.

ESP:BWID 1 MHZ

Sets the Tx bandwidth to 1 MHz.

[SENSe:]ESPectrum:FILTer[:RRC][:STATe] <State>

This command activates or deactivates the use of an RRC filter. This setting only takes effect if channel power is selected as power reference type (see [SENSe:

] ESPectrum: RTYPe on page 655).

Parameters:

<State> ON | OFF

*RST: ON

Remote Control – Commands

Example: ESP:RTYP CPOW

Sets the power reference type to channel power.

ESP:FILT OFF

Deactivates the use of an RRC filter.

[SENSe:]ESPectrum:FILTer[:RRC]:ALPHa < Value>

This command sets the alpha value of the RRC filter. This setting takes only effect if channel power is selected as power reference type ([SENSe:]ESPectrum:RTYPe command) and if the RRC filter is activated ([SENSe:]ESPectrum:FILTer[: RRC][:STATe]command).

Parameters:

<Value> 0 to 1

*RST: 0.22

Example: ESP:RTYP CPOW

Sets the power reference type to channel power.

ESP:FILT ON

Activates the use of an RRC filter.

ESP:FILT:ALPH 0.5

Sets the alpha value of the RRC filter to 0.5.

[SENSe:]ESPectrum:HighSPeed <State>

This command activates Fast SEM mode to accelerate spurious emission mask measurements. For details see "Fast Spectrum Emission Mask Measurements" on page 241.

Note that in Fast SEM mode, the following parameters cannot be changed in all ranges:

- Filter type, see [SENSe:]ESPectrum:RANGe<range>:FILTer:TYPE on page 649
- RBW, see [SENSe:]ESPectrum:RANGe<range>:BANDwidth[:RESolution] on page 647
- VBW, see [SENSe:]ESPectrum:RANGe<range>:BANDwidth:VIDeo on page 648
- Sweep Time Mode, see [SENSe:]ESPectrum:RANGe<range>:SWEep:TIME: AUTO on page 654
- Sweep Time, see [SENSe:]ESPectrum:RANGe<range>:SWEep:TIME on page 654
- Reference level, see [SENSe:]ESPectrum:RANGe<range>:RLEVel on page 653
- RF Att Mode, see [SENSe:]ESPectrum:RANGe<range>:INPut: ATTenuation:AUTO on page 650
- Rf Attenuation, see [SENSe:]ESPectrum:RANGe<range>:INPut: ATTenuation on page 650

Remote Control - Commands

• Preamp, see [SENSe:]ESPectrum:RANGe<range>:INPut:GAIN:STATe on page 651

Parameters:

<State> ON | OFF

*RST: OFF

Example: ESP: HSP ON

[SENSe:]ESPectrum:PRESet[:STANdard]

This command selects the specified XML file under $C: \r_s \in \sl nstr \le \sl$

Example: ESP:PRES 'WCDMA\3GPP\DL\PowerClass 31 39.xml'

Selects the PowerClass_31_39.xml XML file in the C: $\R_s\in \mathbb{Z}_{decomp}$

ESP:PRES?

W-CDMA 3GPP DL (31,39) dBm

The query returns information about the selected standard, the link direction and the power class. If no standard has been selected,

the query returns None.

[SENSe:]ESPectrum:PRESet:RESTore

This command copies the XML files from the $C:\R_S\in \mathbb{C}$ backup folder to the $C:\R_S\in \mathbb{C}$ sharp set folder. Files of the same name are overwritten.

Example: ESP:PRES:REST

Restores the originally provided XML files.

[SENSe:]ESPectrum:PRESet:STORe <FileName>

This command stores the current settings as presettings in the specified XML file under C:\r_s\instr\sem_backup.

Parameters:

<FileName>

Example: ESP:PRES:STOR

'WCDMA\3GPP\DL\PowerClass 31 39.xml'

Stores the settins in the PowerClass_31_39.xml file in the C:

\R S\instr\sem std\WCDMA\3GPP\DL directory.

[SENSe:]ESPectrum:RANGe<range>:BANDwidth[:RESolution] <Value>

This command sets the RBW value for the specified range.

Note that this parameter can not be set for all ranges if "Fast SEM" mode is activated (see [SENSe:]ESPectrum:HighSPeed on page 646).

Remote Control – Commands

Suffix:

<range> 1...20

range

Parameters:

<Value> Refer to the data sheet.

*RST: 30.0 kHz

Example: ESP:RANG2:BAND:RES 5000

Sets the RBW for range 2 to 5 kHz.

[SENSe:]ESPectrum:RANGe<range>:BANDwidth:VIDeo <Value>

This command sets the VBW value for the specified range.

Note that this parameter can not be set for all ranges if "Fast SEM" mode is activated (see [SENSe:]ESPectrum:HighSPeed on page 646).

Suffix:

<range> 1...20

range

Parameters:

<Value> Refer to the data sheet.

*RST: 10.0 MHz

Example: ESP:RANG1:BAND:VID 5000000

Sets the VBW for range 1 to 5 MHz.

[SENSe:]ESPectrum:RANGe<range>:COUNt

This command returns the number of defined ranges.

Suffix:

<range> 1...20

range

Example: ESP:RANG:COUNt?

Returns the number of defined ranges.

[SENSe:]ESPectrum:RANGe<range>:DELete

This command deletes the specified range. The range numbers are updated accordingly. The reference range cannot be deleted. A minimum of three ranges is mandatory.

Suffix:

<range> 1...20

range

Example: ESP:RANG4:DEL

Deletes range 4.

Remote Control - Commands

[SENSe:]ESPectrum:RANGe<range>:FILTer:TYPE <Type>

This command sets the filter type for the specified range.

Note that this parameter can not be set for all ranges if "Fast SEM" mode is activated (see [SENSe:]ESPectrum:HighSPeed on page 646).

Suffix:

<range> 1...20

range

Parameters:

<Type> NORMal

Gaussian filters

CFILter channel filters

RRC filters
PULSe

EMI (6dB) filters

P5

5 Pole filters

*RST: NORM

The available bandwidths of the filters are specified in the data

sheet.

Example: ESP:RANG1:FILT:TYPE RRC

Sets the RRC filter type for range 1.

[SENSe:]ESPectrum:RANGe<range>[:FREQuency]:STARt <Frequency>

This command sets the start frequency for the specified range.

In order to change the start/stop frequency of the first/last range, select the appropriate span. If you set a span that is smaller than the overall span of the ranges, the measurement includes only the ranges that lie within the defined span and have a minimum span of 20 Hz. The first and last range are adapted to the given span as long as the minimum span of 20 Hz is not violated.

Note the rules for the <Frequency> parameter specified in "Ranges and Range Settings" on page 229.

Suffix:

<range> 1...20 range

Parameters:

<Frequency> numeric value

*RST: -250.0 MHz (range 1), -2.52 MHz (range 2), 2.52 MHz

(range 3)

Remote Control - Commands

Example: ESP:RANG1:STAR 100000000

Sets the start frequency for range 1 to 100 MHz.

[SENSe:]ESPectrum:RANGe<range>[:FREQuency]:STOP <Frequency>

This command sets the stop frequency for the specified range. For further details refer to the [SENSe:]ESPectrum:RANGe<range>[:FREQuency]:STARt command.

Note the rules for the <Frequency> parameter specified in "Ranges and Range Settings" on page 229.

Suffix:

<range> 1...20

range

Parameters:

<Frequency> numeric value

*RST: -2.52 MHz (range 1), 2.52 MHz (range 2), 250.0 MHz

(range 3)

Example: ESP:RANG3:STOP 10000000

Sets the stop frequency for range 2 to 10 MHz.

[SENSe:]ESPectrum:RANGe<range>:INPut:ATTenuation <Value>

This command sets the attenuation for the specified range.

Note that this parameter can not be set for all ranges if "Fast SEM" mode is activated (see [SENSe:]ESPectrum:HighSPeed on page 646).

Suffix:

<range> 1...20

range

Parameters:

<Value> Refer to the data sheet.

*RST: 0 dB

Example: ESP:RANG3:INP:ATT 10

Sets the attenuation of range 3 to 10 dB.

[SENSe:]ESPectrum:RANGe<range>:INPut:ATTenuation:AUTO <State>

This command activates or deactivates the automatic RF attenuation setting for the specified range.

Note that this parameter can not be set for all ranges if "Fast SEM" mode is activated (see [SENSe:]ESPectrum:HighSPeed on page 646).

Suffix:

<range> 1...20

Remote Control - Commands

Parameters:

<State> ON | OFF

*RST: ON

Example: ESP:RANG2:INP:ATT:AUTO OFF

Deactivates the RF attenuation auto mode for range 2.

[SENSe:]ESPectrum:RANGe<range>:INPut:GAIN:STATe <State>

This command switches the preamplifier on or off for the specified range.

Note that this parameter can not be set for all ranges if "Fast SEM" mode is activated (see [SENSe:]ESPectrum:HighSPeed on page 646).

Suffix:

<range> 1...20

range

Parameters:

<State> ON | OFF

*RST: OFF

Example: ESP:RANG3:INP:GAIN:STATe ON

Switches the preamplifier for range 3 on or off.

[SENSe:]ESPectrum:RANGe<range>:INSert < Mode>

This command inserts a new range before or after the specified range. The range numbers are updated accordingly.

Suffix:

<range> 1...20

range

Parameters:

<Mode> AFTer | BEFore

Example: ESP:RANG3:INS BEF

Inserts a new range before range 3.

ESP:RANG1:INS AFT

Inserts a new range after range 1.

[SENSe:]ESPectrum:RANGe<range>:LIMit<source>:ABSolute:STARt <Level>

This command sets an absolute limit value at the start frequency of the specified range. Different from manual operation, this setting is independently of the defined limit check type.

Suffix:

<range> 1...20

Remote Control - Commands

Parameters:

<Level> -400 to in 400 dBm

*RST: 13 dBm

Example: ESP:RANG1:LIM:ABS:STAR 10

Sets an absolute limit of 10 dBm at the start frequency of the range.

[SENSe:]ESPectrum:RANGe<range>:LIMit<source>:ABSolute:STOP <Level>

This command sets an absolute limit value at the stop frequency of the specified range. Different from manual operation, this setting is independent of the defined limit check type.

Suffix:

<range> 1...20

range

Parameters:

<Level> -400 to in 400 dBm

*RST: 13 dBm

Example: ESP:RANG1:LIM:ABS:STOP 20

Sets an absolute limit of 20 dBm at the stop frequency of the range.

[SENSe:]ESPectrum:RANGe<range>:LIMit<source>:RELative:STARt <Limit>

This command sets a relative limit value at the start frequency of the specified range. Different from manual operation, this setting is independent of the defined limit check type.

Suffix:

<range> 1...20

range

Parameters:

<Limit> -400 to in 400 dBc

*RST: -50 dBc

Example: ESP:RANG3:LIM:REL:STAR -20

Sets a relative limit of -20 dBc at the start frequency of the range.

[SENSe:]ESPectrum:RANGe<range>:LIMit<source>:RELative:STOP <Limit>

This command sets a relative limit value at the stop frequency of the specified range. Different from manual operation, this setting is independently of the defined limit check type.

Suffix:

<range> 1...20

Remote Control - Commands

Parameters:

<Limit> -400 to in 400 dBc

*RST: -50 dBc

Example: ESP:RANG3:LIM:REL:STOP 20

Sets a relative limit of 20 dBc at the stop frequency of the range.

[SENSe:]ESPectrum:RANGe<range>:LIMit<source>:STATe <State>

This command sets the type of limit check for all ranges.

Suffix:

<range> irrelevant

Parameters:

<State> ABSolute | RELative | AND | OR

ABSolute

Checks only the absolute limits defined.

RELative

Checks only the relative limits. Relative limits are defined as rela-

tive to the measured power in the reference range.

AND

Combines the absolute and relative limit. The limit check fails

when both limits are violated.

OR

Combines the absolute and relative limit. The limit check fails

when one of the limits is violated.

*RST: REL

Example: ESP:RANG3:LIM:STAT AND

Sets for all ranges the combined absolute/relative limit check.

[SENSe:]ESPectrum:RANGe<range>:RLEVeI <Value>

This command sets the reference level for the specified range.

Note that this parameter can not be set for all ranges if "Fast SEM" mode is activated (see [SENSe:]ESPectrum:HighSPeed on page 646).

Suffix:

<range> 1...20

range

Parameters:

<Value> Refer to the data sheet.

*RST: -20 dBm

Example: ESP:RANG2:RLEV 0

Sets the reference level of range 2 to 0 dBm.

Remote Control - Commands

[SENSe:]ESPectrum:RANGe<range>:SWEep:TIME <SweepTime>

This command sets the sweep time for the specified range.

Note that this parameter can not be set for all ranges if "Fast SEM" mode is activated (see [SENSe:]ESPectrum:HighSPeed on page 646).

Suffix:

<range> 1...20

range

Parameters:

<SweepTime> Allowed values depend on the ratio of span to RBW and RBW to

VBW. For details refer to the data sheet.

*RST: 0.27 s

Example: ESP:RANG1:SWE:TIME 1

Sets the sweep time for range 1 to 1 s.

[SENSe:]ESPectrum:RANGe<range>:SWEep:TIME:AUTO <State>

This command activates or deactivates the automatic sweep time setting for the specified range.

Note that this parameter can not be set for all ranges if "Fast SEM" mode is activated (see [SENSe:]ESPectrum:HighSPeed on page 646).

Suffix:

<range> 1...20

range

Parameters:

<State> ON | OFF

*RST: ON

Example: ESP:RANG3:SWE:TIME:AUTO OFF

Deactivates the sweep time auto mode for range 3.

[SENSe:]ESPectrum:RANGe<range>:TRANsducer <TransducerName>

This command sets a transducer for the specified range. You can only choose a transducer that fulfills the following conditions:

- The transducer overlaps or equals the span of the range.
- The x-axis is linear.
- The unit is dB.

Suffix:

<range> 1...20
range

Parameters:

<TransducerName> 'string' = name of the transducer

Remote Control - Commands

Example: ESP:RANG1:TRAN 'test'

Sets the transducer called test for range 1.

[SENSe:]ESPectrum:RRANge

This command returns the current position (number) of the reference range.

Example: ESP:RRAN?

Returns the current position (number) of the reference range.

[SENSe:]ESPectrum:RTYPe <Type>

This command sets the power reference type.

Parameters:

<Type> PEAK | CPOWer

PEAK

Measures the highest peak within the reference range.

CPOWer

Measures the channel power within the reference range (integral

bandwidth method).

*RST: CPOWer

Example: ESP:RTYP PEAK

Sets the peak power reference type.

SENSe:FREQuency Subsystem

The SENSe:FREQuency subsystem defines the frequency axis of the active display. The frequency axis can either be defined via the start/stop frequency or via the center frequency and span.

| [SENSe:]FREQuency:CENTer | 655 |
|---|-----|
| [SENSe:]FREQuency:CENTer:STEP | 656 |
| [SENSe:]FREQuency:CENTer:STEP:AUTO | 656 |
| [SENSe:]FREQuency:CENTer:STEP:LINK | 656 |
| [SENSe:]FREQuency:CENTer:STEP:LINK:FACTor | 657 |
| [SENSe:]FREQuency:MODE | 657 |
| [SENSe:]FREQuency:OFFSet | 657 |
| [SENSe:]FREQuency:SPAN | 658 |
| [SENSe:]FREQuency:SPAN:FULL | 658 |
| [SENSe:]FREQuency:STARt | 658 |
| [SENSe:]FREQuency:STOP | |

[SENSe:]FREQuency:CENTer <Frequency>

This command defines the center frequency (frequency domain) or measuring frequency (time domain).

Remote Control – Commands

Parameters:

<Frequency> Range: 0 to fmax

*RST: fmax/2 Default unit: Hz

 f_{max} is specified in the data sheet. min span is 10 Hz

(SEM and Spurious: min span = 20 Hz)

Example: FREQ:CENT 100 MHz

[SENSe:]FREQuency:CENTer:STEP <StepSize>

This command defines the center frequency step size.

Parameters:

<StepSize> Range: 1 to fmax

*RST: 0.1 x

Default unit: Hz

Example: FREQ:CENT:STEP 120 MHz

[SENSe:]FREQuency:CENTer:STEP:AUTO <State>

This command couples the step size of the center frequency to the span (ON) or sets the value of the center frequency entered via [SENSe:]FREQuency:CENTer (OFF).

Parameters:

<State> ON | OFF

*RST: ON

Example: FREQ:CENT:STEP:AUTO ON

Activates the coupling of the step size to the span.

[SENSe:]FREQuency:CENTer:STEP:LINK < Coupling Type>

This command couples and decouples the center frequency step size to the span or the resolution bandwidth.

Parameters:

<CouplingType> SPAN

Couples the step size to the span. Available for measurements in

the frequency domain.

RBW

Couples the step size to the resolution bandwidth. Available for

measurements in the time domain.

OFF

Decouples the step size (manual input).

*RST: SPAN

Example: FREQ:CENT:STEP:LINK SPAN

Remote Control – Commands

[SENSe:]FREQuency:CENTer:STEP:LINK:FACTor <Factor>

This command defines a step size factor if the center frequency step size is coupled to the span or the resolution bandwidth.

Parameters:

<Factor> Range: 1 to 100

*RST: 10
Default unit: PCT

Example: FREQ:CENT:STEP:LINK:FACT 20PCT

[SENSe:]FREQuency:MODE < Mode>

This command selects the frequency mode.

between span > 0 and zero span in the "Spectrum" mode.

Parameters:

<Mode> CW

Selects the time domain (span = 0).

In the time domain, define the measurement frequency with

[SENSe:] FREQuency:CENTer.

FIXed

Selects the time domain (span = 0).

In the time domain, define the measurement frequency with

[SENSe:] FREQuency:CENTer.

SWEep

Selects the frequency domain (span > 0).

In the frequency domain, define the frequency characteristics with the following commands:

• [SENSe:]FREQuency:STARt

• [SENSe:] FREQuency:STOP

• [SENSe:]FREQuency:SPAN

• [SENSe:] FREQuency:CENTer

*RST: SWEep

Example: FREQ:MODE SWE

Selects the frequency domain.

Usage: SCPI confirmed

[SENSe:]FREQuency:OFFSet <Offset>

This command defines the frequency offset.

Parameters:

<Offset> Range: -100 GHz to 100 GHz

*RST: 0 Hz Default unit: Hz

Example: FREQ:OFFS 1GHZ

Remote Control - Commands

[SENSe:]FREQuency:SPAN

This command defines the frequency span.

Parameters:

 min span to fmax

*RST: fmax

 f_{max} is specified in the data sheet. min span is 10 Hz

(SEM and Spurious: min span = 20 Hz)

Example: FREQ:SPAN 10MHz

[SENSe:]FREQuency:SPAN:FULL

This command sets the frequency span to its maximum.

Example: FREQ:SPAN:FULL

[SENSe:]FREQuency:STARt <Frequency>

This command defines the start frequency for measurements in the frequency domain.

Parameters:

<Frequency> 0 to (fmax - min span)

*RST: (

f_{max} is specified in the data sheet. min span is 10 Hz

(SEM and Spurious: min span = 20 Hz)

Example: FREQ:STAR 20MHz

[SENSe:]FREQuency:STOP <Frequency>

This command defines the stop frequency for measurements in the frequency domain.

Parameters:

<Frequency> min span to fmax

*RST: fmax

f_{max} is specified in the data sheet. min span is 10 Hz

(SEM and Spurious: min span = 20 Hz)

Example: FREQ:STOP 2000 MHz

SENSe:LIST Subsystem

The commands of this subsystem are used for measuring the power at a list of frequency points with different device settings. The measurement is always performed in zero span. A new trigger event is required for each test point (exception: trigger "FREE RUN").

The results are output as a list in the order of the entered frequency points. The number of results per test point depends on the number of concurrently active measurements (peak/RMS/average). The number of frequencies is limited to 200 entries.

Remote Control - Commands

Selection of concurrently active measurements and setting of parameters that are constant for the whole measurement is performed via a configuration command ([SENSe:]LIST:POWer:SET). This also includes the setting for trigger and gate parameters.

Settings that are not directly included in commands of this subsystem can be configured by sending the corresponding commands prior to the SENSe:LIST Subsystem commands.

Please note that changes to the trigger level have to be executed in zero span in order to take effect for the SENSe:LIST Subsystem commands.

The following subsystem is included:

"SENSe:LIST:RANGe Subsystem" on page 664

Further information

"SENSe:LIST Subsystem" on page 658

More details on the SENSe:LIST Subsystem

The following setting parameters can be selected independently for each frequency point:

- analyzer frequency
- reference level
- resolution filter
- resolution bandwidth
- video bandwidth
- measurement time
- detector

The commands of this subsystem can be used in two different ways:

- Instrument setup, measurement and querying of the results in a single command line.
 With this method, there is the least delay between the measurement and the result output. However, it requires the control computer to wait for the response from the instrument.
- Instrument setup and querying of the result list at the end of the measurement: With this method, the control computer may be used for other activities while the measurement is being performed. However, more time is needed for synchronization via service request.

| [SENSe:]LIST:POWer:RESult? | 659 |
|-------------------------------|-----|
| [SENSe:]LIST:POWer[:SEQuence] | |
| [SENSe:]LIST:POWer:SET | 663 |
| [SENSe:]LIST:POWer:STATe | |

[SENSe:]LIST:POWer:RESult?

This command queries the results of the list evaluation.

Remote Control - Commands

This command may be used to obtain measurement results in an asynchronous way, using the service request mechanism for synchronization to the end of the measurement.

If there are no results, the command returns an error.

Return values:

<PowerLevel> Power level for each frequency included in the measurement.

The command returns up to 3 power levels for each frequency, depending on the number of evaluation modes you have turned

on with [SENSe:]LIST:POWer:SET on page 663.

The result is a list of floating point values separated by commas. The unit depends on [SENSe:]LIST:POWer[:SEQuence].

Example: *ESE 1

*SRE 32

Configuration of the status reporting system for the generation of an SRQ on operation complete

SENSe:LIST:POWer

935.2 MHz, -20dBm, 10dB, OFF, NORM, 1 MHz, 3 MHz,

434us,0,

935.4 MHz,-20dBm,10dB,10dB,NORM,30 kHz,100 kHz,

434us,0,

935.6 MHz, -20dBm, 10dB, 20dB, NORM, 30 kHz, 100 kHz,

434us,0; *OPC

Configuring and starting the measurement

. . .

Further actions of the control computer during measurement

On SRQ:

SENSe:LIST:POWer:RESult?
Response to service request

Usage: Query only

[SENSe:]LIST:POWer[:SEQuence]

<Frequency>,<RefLevel>,<RfAtt>,<ElAtt>,<FilterType>,<RBW>,<VBW>,<Meas
Time>,<TriggerLevel>

This command configures and initiates the List Evaluation measurement.

The list can contain up to 200 entries (frequencies). You can define a different instrument setup for each frequency that is in the list.

If you synchronize the measurement with *OPC, the R&S FSV produces a service request when all frequencies have been measured and the number of individual measurements has been performed.

To reduce the setting time, all indicated parameters are set up simultaneously at each test point.

The measurement is performed in zero span and therefore the span is set to 0 Hz. If the span > 0 is set, the function is automatically switched off.

Remote Control - Commands

The measurement is not compatible with other measurements, especially as far as marker, adjacent channel power measurement or statistics are concerned. The corresponding commands thus automatically deactivate the function.

The function is only available in REMOTE operation. It is deactivated when switching the instrument back to LOCAL.

Note that using the command as a query initiates the measurement and returns the results if all frequencies have been measured. For more information on querying the results see [SENSe:]LIST:POWer:RESult? on page 659.

The following parameters are the settings for an individual frequency point. They are repeated for each frequency point.

Setting parameters:

<Frequency> Defines the receive frequency. Each frequency corresponds to

one list entry.

Range: 0 Hz to fmax

<RefLevel> Defines the reference level for a list entry.

Range: -130 dBm to 30 dBm

Increment: 0.01 dBm

<RfAtt> Defines the RF attenuation for a list entry.

Range: 0 dB to 70 dB (75 dB with option R&S FSV-B25)

Increment: 5 dB (1 dB with option R&S FSV-B25)

<EIAtt> Defines the electronic attenuation for a list entry.

Requires option R&S FSV-B25;

OFF

Turns electronic attenuation off.

<AttenuationLevel>

Numeric value that defines the attenuation level.

Range: 0 dB to 30 dB

Increment: 1 dB

<FilterType> Selects the filter type for a list entry. For more information see

[SENSe:]BANDwidth|BWIDth[:RESolution]:TYPE

on page 636.

<RBW> Defines the resolution bandwidth for a list entry.

For the range of values refer to "Res BW Manual" on page 109. Refer to chapter 3.2.6.3, "Selecting the Appropriate Filter Type", on page 114 for possible combinations of filter type and filter bandwidth for the <filter type> = CFILter and <filter type> = RRC.

<VBW> Defines the video bandwidth for a list entry.

The value is ignored for <filter type> = "CFILter" or "RRC"

Range: 1 Hz to 10 MHz in 1, 3, 10 steps

<MeasTime> Defines the measurement time for a list entry.

For details refer to "Sweeptime Manual" on page 110.

Range: 1 µs to 16000 s

Remote Control – Commands

<TriggerLevel> The trigger level must be 0.

Return values:

<PowerLevel> Power level for each frequency included in the measurement.

The command returns up to 3 power levels for each frequency, depending on the number of evaluation modes you have turned

on with [SENSe:]LIST:POWer:SET on page 663.

The result is a list of floating point values separated by commas.

The unit depends on CALCulate<n>:UNIT:POWer.

Example: SENSe:LIST:POWer?

935.2 MHz, 0 dBm, 10 dB, OFF, NORM, 1 MHz, 3 MHz,

440us,0,

935.4 MHz, 0dBm, 10dB, 10dB, NORM, 30 kHz, 100 kHz,

440us,0,

935.6 MHz, 0dBm, 10dB, 20dB, NORM, 30 kHz, 100 kHz,

440us,0

Result list:

-28.3, -30.6, -38.1

Example: SENSe:LIST:POWer:SET ON,ON,ON,IMM,POS,0,0

Activates the power measurement of the peak, RMS and average

values.

SENSe:LIST:POWer?

935.2 MHz,0dBm,10dB,OFF,NORM,1 MHz,3 MHz,440us,

935.4 MHz,0dBm,10dB,10dB,NORM,30 kHz,100 kHz,

440us,0, 935.6 MHz,0dBm,10dB,20dB,NORM,30 kHz,100 kHz,

440us,0

Result list (3 results per frequency point):

-28.3, -29.6, 1.5, -30.6, -31.9, 0.9, -38.1, -40.0, 2.3

Example: SENSe:LIST:POWer

935.2 MHz,0dBm,10dB,OFF,NORM,1 MHz,3 MHz,440us,

0,

935.4 MHz, OdBm, 10dB, 10dB, CFIL, 30 kHz, 100 kHz,

440us,0,

935.6 MHz, 0dBm, 10dB, 20dB, CFIL, 30 kHz, 100 kHz,

440us,0

Performs a measurement sequence with the settings described in

table 4-14.

SENSe:LIST:POWer?

935.2 MHz,0dBm,10dB,OFF,NORM,1 MHz,3 MHz,440us,

0,

935.4 MHz, 0dBm, 10dB, 10dB, CFIL, 30 kHz, 100 kHz,

440us,0,

935.6 MHz, 0dBm, 10dB, 20dB, CFIL, 30 kHz, 100 kHz,

440us,0

Performs the same measurement and returns the result list imme-

diately after the last frequency point.

Remote Control - Commands

Table 4-14: Settings for power list example

| Step | Freq.
[MHz] | Ref
Level
[dBm] | RF Att
[dB] | el Att
[dB] | Filter
type | RBW | VBW | Meas
Time
[us] | TRG
Level
(reserve
d) |
|------|----------------|-----------------------|----------------|----------------|----------------|--------|---------|----------------------|--------------------------------|
| 1 | 935.2 | 0 | 10 | OFF | Normal | 1 MHz | 3 MHz | 440 | 0 |
| 2 | 935.4 | 0 | 10 | 10 | Channel | 30 kHz | 100 kHz | 440 | 0 |
| 3 | 935.6 | 0 | 10 | 20 | Channel | 30 kHz | 100 kHz | 440 | 0 |

[SENSe:]LIST:POWer:SET

<PeakPower>,<RMSPower>,<AVGPower>,<TriggerSource>,<TriggerSlope>,<T
riggerOffset>,<GateLength>

This command defines global List Evaluation parameters.

These parameters are valid for every frequency you want to measure.

The state of the first three parameters (<PeakPower>, <RMSPower> and <AVGPower>) define the number of results for each frequency in the list.

Note that you have to set the trigger level after sending this command.

Parameters:

<PeakPower> ON | OFF

Turns peak power evaluation on and off.

*RST: ON

<RMSPower> ON | OFF

Turns RMS power evaluation on and off.

*RST: OFF

<AVGPower> ON | OFF

Turns average power evaluation on and off.

*RST: OFF

<TriggerSource> IMMediate | EXTernal | VIDeo | IFPower | RFPower

Selects a trigger source.

For more information see "Trg/Gate Source" on page 140.

*RST: IMM

<TriggerSlope> NEGative | POSitive

Selects the trigger slope.

*RST: POS

<TriggerOffset> Defines the trigger delay. The trigger delay is the time between the

detection of the trigger signal and the start of the measurement at

the next frequency point.

Range: span = 0 Hz: (-sweep time) to 30 s; span > 10 Hz:

31.25 ns to 30 s

*RST: 0 s

Remote Control – Commands

<GateLength> Defines the gate length for gated measurements.

Setting 0 seconds turns gated measurements off. Other values

activate the gated trigger function.

To perform gated measurements, the trigger source must be dif-

ferent from IMMediate.

Range: 31.25 ns to 30 s

*RST: 0 s

Example: SENSe:LIST:POWer:SET ON,OFF,OFF,EXT,POS,10US,

434US

[SENSe:]LIST:POWer:STATe <State>

This command turns the List Evaluation off.

Parameters:

<State> OFF

Example: SENS:LIST:POW:STAT OFF

SENSe:LIST:RANGe Subsystem

The SENSe: LIST: RANGe Subsystem contains the remote commands to configure Spurious Emissions measurements.

| [SENSe:]LIST:RANGe <range>:BANDwidth[:RESolution]</range> | 664 |
|---|-----|
| [SENSe:]LIST:RANGe <range>:BANDwidth:VIDeo</range> | 665 |
| [SENSe:]LIST:RANGe <range>:BREak</range> | 665 |
| [SENSe:]LIST:RANGe <range>:COUNt</range> | 665 |
| [SENSe:]LIST:RANGe <range>:DELete</range> | |
| [SENSe:]LIST:RANGe <range>:DETector</range> | 666 |
| [SENSe:]LIST:RANGe <range>[:FREQuency]:STARt</range> | 666 |
| [SENSe:]LIST:RANGe <range>[:FREQuency]:STOP</range> | 667 |
| [SENSe:]LIST:RANGe <range>:FILTer:TYPE</range> | 667 |
| [SENSe:]LIST:RANGe <range>:INPut:ATTenuation</range> | |
| [SENSe:]LIST:RANGe <range>:INPut:ATTenuation:AUTO</range> | 668 |
| [SENSe:]LIST:RANGe <range>:INPut:GAIN:STATe</range> | 669 |
| [SENSe:]LIST:RANGe <range>:LIMit:STARt</range> | 669 |
| [SENSe:]LIST:RANGe <range>:LIMit:STATe</range> | 669 |
| [SENSe:]LIST:RANGe <range>:LIMit:STOP</range> | 669 |
| [SENSe:]LIST:RANGe <range>:POINts</range> | 670 |
| [SENSe:]LIST:RANGe <range>:RLEVel</range> | 670 |
| [SENSe:]LIST:RANGe <range>:SWEep:TIME</range> | 670 |
| [SENSe:]LIST:RANGe <range>:SWEep:TIME:AUTO</range> | |
| [SENSe:]LIST:RANGe <range>:TRANsducer</range> | |

[SENSe:]LIST:RANGe<range>:BANDwidth[:RESolution] <Value>

This command sets the RBW value for the specified range.

Remote Control – Commands

Suffix:

<range> 1...20

range

Parameters:

<Value> Refer to the data sheet.

*RST: 30.0 kHz

Example: LIST:RANG2:BAND:RES 5000

Sets the RBW for range 2 to 5 kHz.

[SENSe:]LIST:RANGe<range>:BANDwidth:VIDeo

This command sets the VBW value for the specified range.

Suffix:

<range> 1...20

range

Parameters:

<Value> Refer to the data sheet.

*RST: 10.0 MHz

Example: LIST:RANG1:BAND:VID 5000000

Sets the VBW for range 1 to 5 MHz.

[SENSe:]LIST:RANGe<range>:BREak <State>

This command configures the sweep behavior.

The suffixes are irrelevant.

Suffix:

<range> 1...20

range

Parameters:

<State> ON

The R&S FSV stops after one range is swept and continues only

if you confirm (a message box is displayed).

OFF

The R&S FSV sweeps all ranges in one go.

*RST: OFF

Example: LIST:RANG:BRE ON

Configures a stop after each range.

[SENSe:]LIST:RANGe<range>:COUNt

This command returns the number of defined ranges.

Remote Control – Commands

Suffix:

<range> 1...20

range

Example: LIST:RANG:COUNt?

Returns the number of defined ranges.

[SENSe:]LIST:RANGe<range>:DELete

This command deletes the specified range. The range numbers are updated accordingly. The reference range cannot be deleted. A minimum of three ranges is mandatory.

Suffix:

<range> 1...20

range

Example: LIST:RANG4:DEL

Deletes range 4.

[SENSe:]LIST:RANGe<range>:DETector < Detector>

This command sets the detector for the specified range. For details refer to "Detector" on page 249.

Suffix:

<range> 1...20

range

Parameters:

<Detector> NEGative | POSitive | SAMPle | RMS | AVERage

NEGative

minimum peak detector

POSitive peak detector

SAMPle

sample detector

RMS

RMS detector **AVERage**

average detector *RST: RMS

Example: LIST:RANGe3:DET SAMP

Sets the sample detector for range 3.

[SENSe:]LIST:RANGe<range>[:FREQuency]:STARt <Frequency>

This command sets the start frequency for the specified range.

Remote Control - Commands

In order to change the start/stop frequency of the first/last range, select the appropriate span. If you set a span that is smaller than the overall span of the ranges, the measurement includes only the ranges that lie within the defined span and have a minimum span of 20 Hz. The first and last range are adapted to the given span as long as the minimum span of 20 Hz is not violated.

Suffix:

<range> 1...20

range

Parameters:

<Frequency> see rules in chapter 4, "Ranges and settings"

*RST: -250.0 MHz (range 1), -2.52 MHz (range 2), 2.52 MHz

(range 3)

Example: LIST:RANG1:STAR 100000000

Sets the start frequency for range 1 to 100 MHz.

[SENSe:]LIST:RANGe<range>[:FREQuency]:STOP <Frequency>

This command sets the stop frequency for the specified range. See also [SENSe:]LIST:RANGe<range>[:FREQuency]:STARt on page 666.

Suffix:

<range> 1...20

range

Parameters:

<Frequency> see rules in chapter 4, "Ranges and settings"

*RST: -2.52 MHz (range 1), 2.52 MHz (range 2), 250.0 MHz

(range 3)

Example: LIST:RANG3:STOP 10000000

Sets the stop frequency for range 2 to 10 MHz.

[SENSe:]LIST:RANGe<range>:FILTer:TYPE <Type>

This command sets the filter type for the specified range.

Suffix:

<range> 1...20

Remote Control – Commands

Parameters:

<Type> NORMal

Gaussian filters

CFILter channel filters

RRC filters
PULSe

EMI (6dB) filters

P5

5 Pole filters

*RST: NORM

The available bandwidths of the filters are specified in the data

sheet.

Example: LIST:RANG1:FILT:TYPE RRC

Sets the RRC filter type for range 1.

[SENSe:]LIST:RANGe<range>:INPut:ATTenuation <Value>

This command sets the attenuation for the specified range.

Suffix:

<range> 1...20

range

Parameters:

<Value> Refer to the data sheet.

*RST: 0 dB

Example: LIST:RANG3:INP:ATT 10

Sets the attenuation of range 3 to 10 dB.

[SENSe:]LIST:RANGe<range>:INPut:ATTenuation:AUTO <State>

This command activates or deactivates the automatic RF attenuation setting for the specified range.

Suffix:

<range> 1...20 range

Parameters:

<State> ON | OFF

*RST: ON

Example: LIST:RANG2:INP:ATT:AUTO OFF

Deactivates the RF attenuation auto mode for range 2.

Remote Control - Commands

[SENSe:]LIST:RANGe<range>:INPut:GAIN:STATe <State>

This command switches the preamplifier on or off for the specified range.

Suffix:

<range> 1...20

range

Parameters:

<State> ON | OFF

*RST: OFF

Example: LIST:RANG3:INP:GAIN:STATE ON

Switches the preamplifier for range 3 on or off.

[SENSe:]LIST:RANGe<range>:LIMit:STARt <Limit>

This command sets an absolute limit value at the start frequency of the specified range. Different from manual operation, this setting is independent of the defined limit check type.

Suffix:

<range> 1...20

range

Parameters:

<Limit> -400 to in 400 dBm

*RST: 13 dBm

Example: LIST:RANG1:LIM:ABS:STAR 10

Sets an absolute limit of 10 dBm at the start frequency of the range.

[SENSe:]LIST:RANGe<range>:LIMit:STATe

This command activates or deactivates the limit check for all ranges.

Suffix:

<range> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: LIST:RANG3:LIM:STAT ON

Activates a limit check for all ranges.

[SENSe:]LIST:RANGe<range>:LIMit:STOP <Limit>

This command sets an absolute limit value at the stop frequency of the specified range. Different from manual operation, this setting is independent of the defined limit check type.

Remote Control - Commands

Suffix:

<range> 1...20

range

Parameters:

<Limit> -400 to in 400 dBm

*RST: 13 dBm

Example: LIST:RANG1:LIM:STOP 20

Sets an absolute limit of 20 dBm at the stop frequency of the range.

[SENSe:]LIST:RANGe<range>:POINts <Value>

This command sets the number of sweep points for the specified range.

Suffix:

<range> 1...20

range

Parameters:

<Value> For details on possible values refer to chapter 4, Sweep Points

softkey of the "Sweep" menu.

*RST: 691

Example: LIST:RANG3:POIN 601

Sets 601 sweep points for range 3.

[SENSe:]LIST:RANGe<range>:RLEVeI <Value>

This command sets the reference level for the specified range.

Suffix:

<range> 1...20

range

Parameters:

<Value> Refer to the data sheet.

*RST: -20 dBm

Example: LIST:RANG2:RLEV 0

Sets the reference level of range 2 to 0 dBm.

[SENSe:]LIST:RANGe<range>:SWEep:TIME

This command sets the sweep time for the specified range.

Suffix:

<range> 1...20

Remote Control - Commands

Parameters:

<SweepTime> Allowed values depend on the ratio of span to RBW and RBW to

VBW. For details refer to the data sheet.

*RST: 0.27 s

Example: LIST:RANG1:SWE:TIME 1

Sets the sweep time for range 1 to 1 s.

[SENSe:]LIST:RANGe<range>:SWEep:TIME:AUTO

This command activates or deactivates the automatic sweep time setting for the specified range.

Suffix:

<range> 1...20

range

Parameters:

<State> ON | OFF

*RST: ON

Example: LIST:RANG3:SWE:TIME:AUTO OFF

Deactivates the sweep time auto mode for range 3.

[SENSe:]LIST:RANGe<range>:TRANsducer <TransducerName>

This command sets a transducer for the specified range. You can only choose a transducer that fulfills the following conditions:

- The transducer overlaps or equals the span of the range.
- The x-axis is linear.
- The unit is dB.

Suffix:

<range> 1...20

range

Parameters:

<TransducerName> 'string' = name of the transducer

Example: SENS:LIST:RANG1:TRAN 'test'

Sets the transducer called "test" for range 1.

SENSe:MIXer Subsystem

The MIXer subsystem controls the external mixer settings. These commands are only available if the R&S FSV-B21 (Exeternal Mixer) option is installed.

| [SENSe:]MIXer[:STATe] | 672 |
|-----------------------------------|-----|
| [SENSe:]MIXer:BIAS:HIGH | |
| [SENSe:]MIXer:BIAS:LOW | 673 |
| [SENSe:]MIXer:RFOVerrange[:STATe] | 673 |

Remote Control – Commands

| [SENSe:]MIXer:FREQuency:HANDover | 673 |
|-------------------------------------|-----|
| [SENSe:]MIXer:FREQuency:STARt? | 674 |
| [SENSe:]MIXer:FREQuency:STOP? | 674 |
| [SENSe:]MIXer:HARMonic:BAND | 674 |
| [SENSe:]MIXer:HARMonic:BAND:PRESet | 674 |
| [SENSe:]MIXer:HARMonic:HIGH:STATe | 675 |
| [SENSe:]MIXer:HARMonic:HIGH[:VALue] | 675 |
| [SENSe:]MIXer:HARMonic[:LOW] | 675 |
| [SENSe:]MIXer:HARMonic:TYPE | |
| [SENSe:]MIXer:LOPower | |
| [SENSe:]MIXer:LOSS:HIGH | |
| [SENSe:]MIXer:LOSS:TABLe:HIGH | |
| [SENSe:]MIXer:LOSS:TABLe[:LOW] | |
| [SENSe:]MIXer:LOSS[:LOW] | |
| [SENSe:]MIXer:PORTs | |
| [SENSe:]MIXer:SIGNal | |
| [SENSe:]MIXer:THReshold | |
| | |

[SENSe:]MIXer[:STATe] <State>

This command activates the external mixer.

Parameters:

<State> ON | OFF

*RST: OFF

Example: MIX ON

Mode: all

[SENSe:]MIXer:BIAS:HIGH <BiasSetting>

This command defines the bias current for the high range (see also chapter 3.8.1.2, "Bias Current", on page 381).

This command is only available if the external mixer is active (see [SENSe:]MIXer[: STATe] on page 672).

Parameters:

<BiasSetting> *RST: 0.0 A

Default unit: A

Example: MIX ON

Activates the external mixer.

MIX:BIAS:HIGH 2A

Sets the bias for the high range to 2 A.

Mode: all

Remote Control – Commands

[SENSe:]MIXer:BIAS:LOW <BiasSetting>

This command defines the bias current for the low range (see also chapter 3.8.1.2, "Bias Current", on page 381).

This command is only available if the external mixer is active (see [SENSe:]MIXer[: STATe] on page 672).

Parameters:

<BiasSetting> *RST: 0.0 A

Default unit: A

Example: MIX ON

Activates the external mixer.

MIX:BIAS:LOW 2A

Sets the bias for the low range to 2 A.

Mode: all

[SENSe:]MIXer:RFOVerrange[:STATe] <State>

This command specifies whether the frequencies beyond the defined band limits are to be used.

This command is only available if the external mixer is active (see [SENSe:]MIXer[: STATe] on page 672).

Parameters:

<State> ON | OFF

*RST: OFF

Example: MIX:RFOV ON

Mode: all

[SENSe:]MIXer:FREQuency:HANDover <Frequency>

This command defines the frequency at which the mixer switches from one range to the next (if two different ranges are selected). The handover frequency for each band can be selected freely within the overlapping frequency range.

This command is only available if the external mixer is active (see [SENSe:]MIXer[: STATe] on page 672).

Parameters:

<Frequency>

Example: MIX ON

Activates the external mixer.
MIX:FREQ:HAND 78.0299GHz

Sets the handover frequency to 78.0299 GHz.

Mode: all

Remote Control - Commands

[SENSe:]MIXer:FREQuency:STARt?

This command queries the frequency at which the external mixer band starts.

Example: MIX:FREQ:STAR?

Queries the start frequency of the band.

Usage: Query only

Mode: all

[SENSe:]MIXer:FREQuency:STOP?

This command queries the frequency at which the external mixer band stops.

Example: MIX:FREQ:STOP?

Queries the stop frequency of the band.

Usage: Query only

Mode: all

[SENSe:]MIXer:HARMonic:BAND <Band>

This command selects the external mixer band. The query returns the currently selected band.

This command is only available if the external mixer is active (see [SENSe:]MIXer[: STATe] on page 672).

Parameters:

<Band> $A \mid KA \mid Q \mid U \mid V \mid E \mid W \mid F \mid D \mid G \mid Y \mid J \mid USER$

Standard waveguide band or user-defined band.

Note: The band formerly referred to as "A" is now named "KA"; the input parameter "A" is still available and refers to the same

band as "KA".

For a definition of the frequency range for the pre-defined bands,

see table 3-21).

*RST: F (90 GHz - 140 GHz)

Example: MIX ON

Activates the external mixer.

MIX: HARM: BAND A

Sets the band to A (26.5 GHz - 40 GHz).

Mode: all

[SENSe:]MIXer:HARMonic:BAND:PRESet

This command restores the preset frequency ranges for the standard waveguide bands.

Example: MIX:HARM:BAND:PRES

Presets the waveguide bands.

Remote Control - Commands

Usage: Event

Mode: all

[SENSe:]MIXer:HARMonic:HIGH:STATe <State>

This command specifies whether a second (high) harmonic is to be used to cover the band's frequency range.

Parameters:

<State> ON | OFF

*RST: OFF

Example: MIX:HARM:HIGH:STAT ON

Mode: al

[SENSe:]MIXer:HARMonic:HIGH[:VALue] <HarmOrder>

This command specifies the harmonic order to be used for the high range.

Parameters:

<HarmOrder> <numeric value>

Range: 2 to 100 (USER band); for other bands: see band

definition

Example: MIX:HARM:HIGH 2

Mode: all

[SENSe:]MIXer:HARMonic[:LOW] <HarmOrder>

This command specifies the harmonic order to be used for the LOW range.

Parameters:

<HarmOrder> <numeric value>

Range: 2 to 100 (USER band); for other bands: see band

definition

*RST: 2 (for band F)

Example: MIX: HARM 3

Mode: all

[SENSe:]MIXer:HARMonic:TYPE <OddEven>

This command specifies whether the harmonic order to be used should be odd, even, or both.

Parameters:

<OddEven> ODD | EVEN | EODD

*RST: EVEN

Remote Control – Commands

Example: MIX:HARM:TYPE ODD

Mode: all

[SENSe:]MIXer:LOPower <Level>

This command specifies the LO level of the external mixer's LO port.

Parameters:

<Level> <numeric value>

Range: 13.0 dBm to 17.0 dBm

Increment: 0.1 dB *RST: 15.5 dBm

Example: MIX:LOP 16.0dBm

Mode: all

[SENSe:]MIXer:LOSS:HIGH <Average>

This command defines the average conversion loss to be used for the entire high range.

Parameters:

<a>Average> < numeric value>

Range: 0 to 100 *RST: 40.0 dB Default unit: dB

Example: MIX:LOSS:HIGH 20dB

Mode: all

[SENSe:]MIXer:LOSS:TABLe:HIGH <FileName>

This command defines the file name of the conversion loss table to be used for the high range.

Parameters:

<FileName> <file name>

Example: MIX:LOSS:HIGH 20dB

Mode: all

[SENSe:]MIXer:LOSS:TABLe[:LOW] <FileName>

This command defines the file name of the conversion loss table to be used for the low range.

Parameters:

<FileName> <file name>

Remote Control - Commands

Example: MIX:LOSS:TABL mix 1 4

Specifies the conversion loss table mix_1_4.

Mode: all

[SENSe:]MIXer:LOSS[:LOW] <Average>

This command defines the average conversion loss to be used for the entire low range.

Parameters:

<Average> <numeric value>

Range: 0 to 100 *RST: 40.0 dB
Default unit: dB

Example: MIX:LOSS 20dB

Mode: all

[SENSe:]MIXer:PORTs <PortType>

This command specifies whether the mixer is a 2-port or 3-port type.

Parameters:

<PortType> 2 | 3

*RST: 2

Example: MIX: PORT 3

Mode: all

[SENSe:]MIXer:SIGNal <State>

This command specifies whether automatic signal detection is active or not.

Parameters:

<State> OFF | ON | AUTO | ALL

OFF

No automatic signal detection is active.

ON

Automatic signal detection (Signal ID) is active.

AUTC

Automatic signal detection (Auto ID) is active.

ALL

Both automatic signal detection functions (Signal ID+Auto ID) are

active.

*RST: OFF

Example: MIX:SIGN AUTO

Mode: all

Remote Control - Commands

[SENSe:]MIXer:THReshold <Value>

This command defines the maximum permissible level difference between test sweep and reference sweep to be corrected during automatic comparison (see [SENSe:]MIXer:SIGNal on page 677).

Parameters:

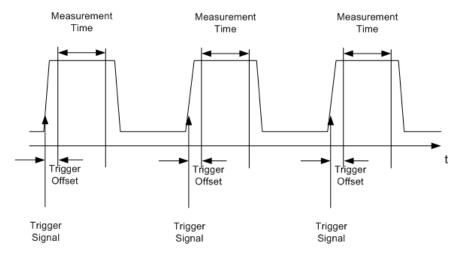
<Value> <numeric value>

Range: 30 dBm to -130 dBm

*RST: 0.0 dBm

Example: MIX:PORT 3

Mode: all


SENSe:MPOWer Subsystem

The commands of this subsystem are used to determine the mean burst power or peak burst power for a given number of signal bursts, and for outputting the results in a list. Since all the settings required for a measurement are combined in a single command, the measurement speed is considerably higher than when using individual commands.

For measuring the signal bursts, the gated sweep function is used in zero span. The gate is controlled either by an external trigger signal or by the video signal. An individual trigger event is required for each burst to be measured. If an external trigger signal is used, the threshold is fixed to TTL level, while with a video signal the threshold can be set as desired.

More Details on the SENSe:MPOWer Subsystem

The following graphics shows the relation between trigger time, trigger offset (for delayed gate opening) and measurement time.

Depending on the settings made, the measurements are performed with the RMS detector for RMS power or the PEAK detector for peak power. For all these measurements, trace 1 of the selected system is used.

The setting parameters for this measurement are:

Remote Control – Commands

- analyzer frequency
- resolution bandwidth
- measurement time used for a single burst
- trigger source
- trigger level
- trigger offset
- type of power measurement (PEAK, MEAN)
- number of bursts to be measured
 The commands of this subsystem can be used in two different ways:
- Setting up the instrument and at the same time querying the result list: This method
 ensures the smallest delay between measurement and the output of the measured
 values, but requires the control computer to wait actively for the response of the
 instrument.
- Setting up the instrument and querying the result list after synchronization to the end
 of measurement: With this method the control computer can be used for other activities while the instrument is performing the measurement at the cost of additional time
 needed for synchronization via service request.

| [SENSe:]MPOWer:FTYPe | 679 |
|-------------------------------|-----|
| [SENSe:]MPOWer:RESult[:LIST]? | 679 |
| [SENSe:]MPOWer:RESult:MIN? | |
| [SENSe:]MPOWer[:SEQuence] | 680 |

[SENSe:]MPOWer:FTYPe <FilterType>

This command selects the filter type for pulse power measurements.

Parameters:

<FilterType> NORMal | CFILter | RRC

Example: SENSe:MPOWer:FTYPe CFILter

[SENSe:]MPOWer:RESult[:LIST]?

This command queries the results of the pulse power measurement.

This command may be used to obtain measurement results in an asynchronous way, using the service request mechanism for synchronization to the end of the measurement.

If there are no results, the command returns an error.

Parameters:

<PulsePower> List of pulse powers.

The number of values depends on the number of pulses you have

been measuring. The unit is dBm.

Remote Control - Commands

Example: *ESE 1

*SRE 32

Configuration of status reporting systems for the generation of an

SRQ on operation complete

SENSe:MPOWer 935.2MHz, 1MHz, 434us, VIDEO, 50PCT,

5us, MEAN, 20; *OPC

Configuring and starting the measurement

...

Further actions of the control computer during measurement

On SRQ:

Response to service request SENSe: MPOWer: RESult?

Usage: Query only

[SENSe:]MPOWer:RESult:MIN?

This command queries the lowest pulse power that has been measured during a pulse power measurement.

If there are no results, the command returns an error.

Return values:

<PulsePower> Lowest power level of the pulse power measurement.

The unit is dBm.

Example: *ESE 1

*SRE 32

Configuration of status reporting systems for the generation of an

SRQ on operation complete

SENSe:MPOWer 935.2MHz, 1MHz, 434us, VIDEO, 50PCT,

5us, MEAN, 20; *OPC

Configuring and starting the measurement

...

Further actions of the control computer during measurement

On SRQ:

Response to service request SENSe:MPOWer:RESult:MIN?

Usage: Query only

[SENSe:]MPOWer[:SEQuence] < Frequency>, < RBW>, < MeasTime>,

<TriggerSource>, <TriggerLevel>, <TriggerOffset>, <Detector>, <#OfPulses>

This command configures and initiates the pulse power measurement.

The R&S FSV caches all measurement parameters that you can set with this command. If you use the command repeatedly, the R&S FSV only changes those settings that you have actually changed before initiating the measurement. Thus, measurement times are kept as low as possible.

Remote Control - Commands

If you synchronize the measurement with *OPC, the R&S FSV produces a service request when all frequencies have been measured and the number of individual measurements has been performed.

Note that using the command as a query initiates the measurement and returns the results if all frequencies have been measured. For more information on querying the results see .

To reduce the setting time, the setup is performed simultaneously for all selected parameters.

The query adapts the instrument settings, performs the defined number of measurements and outputs the measurement results list.

This measurement is not compatible with other measurements, especially as far as marker functions, adjacent-channel measurement or statistics are concerned. The corresponding functions are therefore automatically switched off. In return, incompatible commands automatically deactivate the multi burst power function.

The function is only available in the REMOTE operation. It is deactivated on switching back to LOCAL.

Parameters:

<Frequency> Defines the pulse frequency.

Range: 0 Hz to fmax

<RBW> Defines the resolution bandwidth.

Range: 10 Hz to 10 MHz in steps of 1, 3, 10

<MeasTime> Defines the measurement time.

Range: $1 \mu s$ to 30 s

<TriggerSource> Selects a trigger source.

EXTernal

The trigger signal is fed from the "Ext. Trigger/Gate" input on the

rear of the unit.

VIDeo

The internal video signal is used as trigger signal.

<TriggerLevel> Defines a trigger level.

The trigger level is available for the video trigger. In that case, the

level is a percentage of the diagram height.

In case of an external trigger, the R&S FSV uses a fix TTL level.

Range: 0 PCT to 100 PCT

<TriggerOffset> Defines the trigger delay. The trigger delay is the time between the

detection of the trigger signal and the start of the measurement.

Range: see data sheet

Remote Control – Commands

<Detector> Selects the detector and therefore the way the measurement is

evaluated.

MEAN

Calculates the RMS pulse power.

PEAK

Calculates the peak pulse power.

<#OfPulses> Defines the number of pulses included in the measurement.

Range: 1 to 32001

Return values:

<PowerLevel> Pulse power level.

The result is a list of floating point values separated by commas.

The unit is dBm.

Example: Sample setting:

SENSe:MPOWer 935.2MHz, 1MHz, 434us, VIDEO, 50PCT,

5us, MEAN, 20

Performs a measurement sequence with the following settings:

Frequency = 935.2 MHz, Resolution bandwidth = 1 MHz Measurement time = 434 µs Trigger source = VIDEO Trigger threshold = 50 % Trigger offset = 5 µs

Type of measurement = MEAN power

No. of measurements = 20

Sample query:

SENSe:MPOWer? 935.2MHz, 1MHz, 434us, VIDEO,

50PCT, 5us, MEAN, 20

Performs the same measurement and in addition returns the results list immediately after completion of the last measurement.

Sample result:

18.3,18.6,18.1,18.0,17.9,18.3,18.6,18.1,18.0,17.9,18.3,18.6,18.

1,18.0,17.9,18.3,18.6,18.1,18.0,17.9

SENSe:PMETer Subsystem (Power Sensor, R&S FSV-K9)

This subsystem controls the device settings for power sensor measurements. It is only available if the R&S FSV-K9 Power Sensor option is installed.

For details see chapter 3.9, "Instrument Functions - Power Sensor (R&S FSV-K9)", on page 400.

| [SENSe:]PMETer[:STATe] | 683 |
|--------------------------------------|-----|
| [SENSe:]PMETer:DCYCle:STATe | |
| [SENSe:]PMETer:DCYCle:VALue | |
| [SENSe:]PMETer:FREQuency | |
| [SENSe:]PMETer:FREQuency:LINK | |
| [SENSe:]PMETer:MTIMe | |
| [SENSe:]PMETer:MTIMe:AVERage[:STATe] | |
| [SENSe:1PMETer:MTIMe:AVERage:COUNt | |

Remote Control – Commands

| [SENSe:]PMETer:ROFFset[:STATe] | 686 |
|-----------------------------------|-----|
| [SENSe:]PMETer:TRIGger[:STATe] | |
| [SENSe:]PMETer:TRIGger:DTIMe | |
| [SENSe:]PMETer:TRIGger:HOLDoff | 687 |
| [SENSe:]PMETer:TRIGger:HYSTeresis | 687 |
| [SENSe:]PMETer:TRIGger:LEVel | 688 |
| [SENSe:]PMETer:TRIGger:SLOPe | 688 |
| [SENSe:]PMETer:UPDate[:STATe] | 689 |
| | |

[SENSe:]PMETer[:STATe] <State>

This command switches the power sensor measurement for the selected power sensor on or off.

Suffix:

1...4

Power sensor index

Parameters:

<State> ON | OFF

*RST: OFF

Example: PMET1 ON

Switches the power sensor measurements on.

Mode: PSM

[SENSe:]PMETer:DCYCle:STATe <State>

This command activates the duty cycle correction for the selected power sensor.

Suffix:

1...4

Power sensor index

Parameters:

<State> ON | OFF

*RST: OFF

Example: PMET2:DCYC:STAT ON

Mode: PSM

[SENSe:]PMETer:DCYCle:VALue <Percentage>

This command sets the duty cycle for the selected power sensor to a percent value for the correction of pulse modulated signals. With the correction activated, the sensor calculates the signal pulse power from this value and the mean power.

Suffix:

1...4

Power sensor index

Remote Control - Commands

Parameters:

<Percentage> Range: 0.001 to 99.999

*RST: 99.999
Default unit: %

Example: PMET2:DCYC:STAT ON

Activates the duty cycle correction.

PMET2:DCYC:VAL 0.5

Sets the correction value to 0.5%.

Mode: PSM

[SENSe:]PMETer:FREQuency <Frequency>

This command sets the frequency of the selected power sensor. The limits f_{min} and f_{max} are defined by the power sensor.

Suffix:

1...4

Power sensor index

Parameters:

<Frequency> fmin ... fmax

*RST: 50 MHz

Example: PMET2:FREQ 1GHZ

Sets the frequency of the power sensor to 1 GHz.

Mode: PSM

[SENSe:]PMETer:FREQuency:LINK <Coupling>

This command sets the frequency coupling of the selected power sensor.

Suffix:

1...4

Power sensor index

Parameters:

<Coupling> CENTer

Couples the frequency to the center frequency of the analyzer

MARKer1

couples the frequency to the position of marker 1

OFF

switches the frequency coupling off

*RST: CENT

Example: PMET2:FREQ:LINK CENT

Couples the frequency to the center frequency of the analyzer

Mode: PSM

Remote Control - Commands

[SENSe:]PMETer:MTIMe <Duration>

This command sets the measurement duration of the selected power sensor.

Suffix:

1...4

Power sensor index

Parameters:

<Duration> SHORt | NORMal | LONG

*RST: NORM

Example: PMET2:MTIM SHOR

Sets a short measurement duration for measurements of station-

ary high power signals for the selected power sensor.

Mode: PSM

[SENSe:]PMETer:MTIMe:AVERage[:STATe] <State>

This command activates or deactivates manual averaging for the selected power sensor. The average count is set with the [SENSe:]PMETer:MTIMe:AVERage:COUNt command.

Suffix:

1...4

Power sensor index

Parameters:

<State> ON | OFF

*RST: OFF

Example: PMET2:MTIM:AVER ON

Activates manual averaging.

Mode: PSM

[SENSe:]PMETer:MTIMe:AVERage:COUNt <NumberReadings>

This command defines the number of readings (averagings) to be performed after a single sweep has been started for the selected power sensor. This command is only available if the [SENSe:]PMETer:MTIMe:AVERage[:STATe] command is set to ON.

Results become more stable with extended average, particularly if signals with low power are measured. This setting can be used to minimize the influence of noise in the power meter measurement.

Suffix:

1...4

Power sensor index

Parameters:

<NumberReadings> 0 to 256 in binary steps (1, 2, 4, 8,...)

For average count = 0 or 1, one reading is performed.

Remote Control - Commands

Example: PMET2:MTIM:AVER ON

Activates manual averaging.

PMET2:MTIM:AVER:COUN 8

Sets the number of readings to 8.

Mode: PSM

[SENSe:]PMETer:ROFFset[:STATe] <State>

This command defines whether the reference level offset set for the analyzer is taken into account for the measured power or not for the selected power sensor.

Suffix:

1...4

Power sensor index

Parameters:

<State> ON

Adds the offset defined by the DISPlay[:WINDow<n>]: TRACe<t>:Y[:SCALe]:RLEVel:OFFSet command to the

measured level.

OFF

Takes no offset into account.

*RST: ON

Example: PMET2:ROFF OFF

Takes no offset into account for the measured power.

Mode: PSM

[SENSe:]PMETer:TRIGger[:STATe] <State>

This command switches the external power trigger on or off for the selected power sensor.

For details on configuring an external power trigger, see chapter 3.9.3, "Configuring an External Power Trigger", on page 405.

This command is only available in conjunction with a NRP-Z81 power sensor.

Suffix:

1...4

Power sensor index

Parameters:

<State> ON | OFF

*RST: OFF

Example: PMET2:TRIG ON

Switches the external power trigger on

Mode: PSM

Remote Control - Commands

[SENSe:]PMETer:TRIGger:DTIMe <Value>

Defines the time the input signal must stay below the IF power trigger level in order to allow a trigger to start the measurement.

Suffix:

1...4

Power sensor index

Parameters:

<Value> 0 to 1 s

Increment: 100 ns *RST: 100 µs

Example: PMET2:TRIG:DTIMe 0.001

Mode: PSM

[SENSe:]PMETer:TRIGger:HOLDoff <Value>

Defines the holdoff value in s, which is the time which must pass before triggering, in case another trigger event happens.

For details see figure 3-46.

Suffix:

1...4

Power sensor index

Parameters:

<Value> 0 to 1 s

Increment: 100 ns *RST: 0 s

Example: PMET2:TRIG:HOLD 0.1

Sets the holdoff time of the trigger to 100 ms

Mode: PSM

[SENSe:]PMETer:TRIGger:HYSTeresis <Value>

Defines the value for the trigger hysteresis of an external power trigger. The hysteresis in dB is the value the input signal must stay below the IF power trigger level in order to allow a trigger to start the measurement.

For details see figure 3-46.

Suffix:

1...4

Power sensor index

Remote Control – Commands

Parameters:

<Value> 3 to 50 dB

Increment: 1 dB *RST: 0 dB

Example: PMET2:TRIG:HYST 10

Sets the hysteresis of the trigger to 10 dB.

Mode: PSM

[SENSe:]PMETer:TRIGger:LEVel <Value>

This command sets the power level for the external power trigger for the selected power sensor.

This command is only available in conjunction with a NRP-Z81 power sensor.

For details see figure 3-46.

Suffix:

1...4

Power sensor index

Parameters:

<Value> -20 to +20 dBm

*RST: -10 dBm

Example: PMET2:TRIG:LEV -10 dBm

Sets the level of the trigger

Mode: PSM

[SENSe:]PMETer:TRIGger:SLOPe <Edge>

Defines whether the sweep starts after a positive or negative edge of the trigger signal.

For details see figure 3-46.

Suffix:

1...4

Power sensor index

Parameters:

<Edge> POSitive | NEGative

*RST: POS

Example: PMET2:TRIG:SLOP NEG

Mode: PSM

Remote Control – Commands

[SENSe:]PMETer:UPDate[:STATe] <State>

This command switches the continuous update of the power sensor measurement for the selected power sensor on or off. If activated, even after a single sweep has been completed, the data from the power sensor is updated.

Suffix:

1...4

Power sensor index

Parameters:

<State> ON | OFF

*RST: OFF

Example: PMET1:UPD ON

The data from power sensor 1 is updated continuously.

Mode: PSM

SENSe:POWer Subsystem

This subsystem controls the setting of the instruments channel and adjacent channel power measurements.

| [SENSe:]POWer:ACHannel:ACPairs | 690 |
|---|-----|
| [SENSe:]POWer:ACHannel:BANDwidth BWIDth[:CHANnel <channel>]</channel> | 690 |
| [SENSe:]POWer:ACHannel:BANDwidth BWIDth:ACHannel | 690 |
| [SENSe:]POWer:ACHannel:BANDwidth BWIDth:ALTernate <channel></channel> | 691 |
| [SENSe:]POWer:ACHannel:FILTer:ALPHa:ACHannel | 691 |
| [SENSe:]POWer:ACHannel:FILTer:ALPHa[:ALL] | |
| [SENSe:]POWer:ACHannel:FILTer:ALPHa:ALTernate <channel></channel> | 691 |
| [SENSe:]POWer:ACHannel:FILTer:ALPHa:CHANnel <channel></channel> | 692 |
| [SENSe:]POWer:ACHannel:FILTer[:STATe]:ALL | 692 |
| [SENSe:]POWer:ACHannel:FILTer[:STATe]:ACHannel | 692 |
| [SENSe:]POWer:ACHannel:FILTer[:STATe]:ALTernate <channel></channel> | 692 |
| [SENSe:]POWer:ACHannel:FILTer[:STATe]:CHANnel <channel></channel> | 693 |
| [SENSe:]POWer:ACHannel:MODE | 693 |
| [SENSe:]POWer:ACHannel:NAME:ACHannel | 693 |
| [SENSe:]POWer:ACHannel:NAME:ALTernate <channel></channel> | 694 |
| [SENSe:]POWer:ACHannel:NAME:CHANnel <channel></channel> | 694 |
| [SENSe:]POWer:ACHannel:PRESet | 694 |
| [SENSe:]POWer:ACHannel:PRESet:RLEVel | 695 |
| [SENSe:]POWer:ACHannel:REFerence:AUTO ONCE | 695 |
| [SENSe:]POWer:ACHannel:REFerence:TXCHannel:AUTO | 695 |
| [SENSe:]POWer:ACHannel:REFerence:TXCHannel:MANual | 696 |
| [SENSe:]POWer:ACHannel:SPACing[:ACHannel] | 696 |
| [SENSe:]POWer:ACHannel:SPACing:ALTernate <channel></channel> | 697 |
| [SENSe:]POWer:ACHannel:SPACing:CHANnel <channel></channel> | 697 |
| [SENSe:]POWer:ACHannel:TXCHannel:COUNt | 697 |
| ISENSe:1POWer:BANDwidthIBWIDth | 698 |

Remote Control - Commands

| [SENSe:]POWer:HSPeed | 698 |
|---------------------------|-----|
| [SENSe:]POWer:NCORrection | 698 |
| [SENSe:]POWer:TRACe | |

[SENSe:]POWer:ACHannel:ACPairs < ChannelPairs >

This command sets the number of adjacent channels (upper and lower channel in pairs). The figure 0 stands for pure channel power measurement.

Parameters:

<ChannelPairs> 0 to 12

*RST: 1

Example: POW:ACH:ACP 3

Sets the number of adjacent channels to 3, i.e. the adjacent channel and alternate adjacent channels 1 and 2 are switched on.

[SENSe:]POWer:ACHannel:BANDwidth|BWIDth[:CHANnel<channel>]

<Bandwidth>

This command sets the channel bandwidth of the specified TX channel in the radio communication system. The bandwidths of adjacent channels are not influenced by this modification.

With [SENSe<source>:] POWer: HSPeed set to ON, steep-edged channel filters are available. For further information on filters refer to chapter 3.2.6.4, "List of Available RRC and Channel Filters", on page 115.

Parameters:

<Bandwidth> 100 Hz to 40 GHz

*RST: 14 kHz

Example: POW:ACH:BWID:CHAN2 30 kHz

Sets the bandwidth of the TX channel 2 to 30 kHz.

[SENSe:]POWer:ACHannel:BANDwidth|BWIDth:ACHannel <Bandwidth>

This command defines the channel bandwidth of the adjacent channel of the radio transmission system. If the bandwidth of the adjacent channel is changed, the bandwidths of all alternate adjacent channels are automatically set to the same value.

With [SENSe<source>:] POWer: HSPeed set to ON, steep-edged channel filters are available. For further information on filters refer to chapter 3.2.6.4, "List of Available RRC and Channel Filters", on page 115.

Parameters:

<Bandwidth> 100 Hz to 40 GHz

*RST: 14 kHz

Example: POW:ACH:BWID:ACH 30 kHz

Sets the bandwidth of all adjacent channels to 30 kHz.

Remote Control - Commands

[SENSe:]POWer:ACHannel:BANDwidth|BWIDth:ALTernate<channel>

<Bandwidth>

This command defines the channel bandwidth of the specified alternate adjacent channels of the radio transmission system. If the channel bandwidth of one alternate adjacent channel is changed (e.g. channel 3), the bandwidth of all subsequent alternate adjacent channels (e.g. 4–11) is automatically set to the same value.

With [SENSe<source>:] POWer: HSPeed set to ON, steep-edged channel filters are available. For further information on filters refer to chapter 3.2.6.4, "List of Available RRC and Channel Filters", on page 115.

Suffix:

<channel> 1...11

the alternate adjacent channel

Parameters:

<Bandwidth> 100 Hz to 40 GHz

*RST: 14 kHz

Example: POW:ACH:BWID:ALT2 30 kHz

[SENSe:]POWer:ACHannel:FILTer:ALPHa:ACHannel <Alpha>

This command defines the roll-off factor for the weighting filter of the adjacent channel.

Parameters:

<Alpha> <numeric value>

*RST: 0,22

Example: POW:ACH:FILT:ALPH:ACH 0,35

[SENSe:]POWer:ACHannel:FILTer:ALPHa[:ALL] < Alpha >

This command defines the roll-off factor for the weighting filter of all channels.

Parameters:

<Alpha> <numeric value>

*RST: 0,22

Example: POW:ACH:FILT:ALPH:ALL 0,35

[SENSe:]POWer:ACHannel:FILTer:ALPHa:ALTernate<channel> <Alpha>

This command defines the roll-off factor for the weighting filter of the specified alternate channel.

Suffix:

<channel> 1...11

the alternate channel

Remote Control - Commands

Parameters:

<Alpha> <numeric value>

*RST: 0,22

Example: POW:ACH:FILT:ALPH:ALT3 0,35

Sets the alpha value for the weighting filter for the alternate chan-

nel 3 to 0,35.

[SENSe:]POWer:ACHannel:FILTer:ALPHa:CHANnel<channel> <Alpha>

This command defines the roll-off factor for the weighting filter of the specified TX channel.

Suffix:

<channel> 1...11

the TX channel

Parameters:

<Alpha> <numeric value>

*RST: 0,22

Example: POW:ACH:FILT:ALPH:CHAN3 0,35

Sets the alpha value for the weighting filter for the TX channel 3

to 0,35.

[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALL <State>

This command activates the weighting filter for all channels.

Parameters:

<State> ON | OFF

*RST: OFF

Example: POW:ACH:FILT ON

[SENSe:]POWer:ACHannel:FILTer[:STATe]:ACHannel <State>

This command activates the weighting filter for the adjacent channel.

Parameters:

<State> ON | OFF

*RST: OFF

Example: POW:ACH:FILT:ACH ON

[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALTernate<channel> <State>

This command activates the weighting filter for the specified alternate channel.

Suffix:

<channel> 1...11

the alternate adjacent channel

Remote Control – Commands

Parameters:

<State> ON | OFF

*RST: OFF

Example: POW:ACH:FILT:ALT3 ON

Activates the weighting filter for alternate channel 3.

[SENSe:]POWer:ACHannel:FILTer[:STATe]:CHANnel<channel> <State>

This command activates the weighting filter for the specified TX channel.

Suffix:

<channel> 1...18

the TX channel

Parameters:

<State> ON | OFF

*RST: OFF

Example: POW:ACH:FILT:CHA3 ON

Activates the weighting filter for TX channel 3.

[SENSe:]POWer:ACHannel:MODE < Mode>

This command switches between absolute and relative adjacent channel measurement. The command is only available with span > 0 and if the number of adjacent channels is greater than 0.

For the relative measurement the reference value is set to the currently measured channel power using the command [SENSe:]POWer:ACHannel:REFerence:

AUTO ONCE.

Parameters:

<Mode> ABSolute | RELative

ABSolute

absolute adjacent channel measurement

RELative

relative adjacent channel measurement

*RST: RELative

Example: POW:ACH:MODE REL

Sets the adjacent channel measurement mode to relative.

[SENSe:]POWer:ACHannel:NAME:ACHannel < Name >

This command defines a name for the adjacent channel. The name is displayed in the result diagram and the result table.

Parameters:

<Name> *RST: Adj

Remote Control - Commands

Example: POW:ACH:NAME:ACH 'XYZ'

Defines the name of the adjacent channel as 'XYZ'.

[SENSe:]POWer:ACHannel:NAME:ALTernate<channel> <Name>

This command defines a name for the specified alternate channel. The name is displayed in the result diagram and the result table.

Suffix:

<channel> 1...11

the alternate channel

Parameters:

<Name> *RST: ALT<1...11>

Example: POW:ACH:NAME:ALT3 'XYZ'

Defines the name of the third alternate channel as 'XYZ'.

[SENSe:]POWer:ACHannel:NAME:CHANnel<channel> <Name>

This command defines a name for the specified TX channel. The name is displayed in the result diagram and the result table.

Suffix:

<channel> 1...12

the TX channel

Parameters:

<Name> *RST: TX<1...12>

Example: POW:ACH:NAME:CHAN3 'XYZ'

Defines the name of the third transmission channel as 'XYZ'.

[SENSe:]POWer:ACHannel:PRESet <Setting>

This command adjusts the frequency span, the measurement bandwidths and the detector as required for the number of channels, the channel bandwidths and the channel spacings selected in the active power measurement. If necessary, adjacent-channel power measurement is switched on prior to the adjustment.

To obtain correct results, a complete sweep with synchronization to the end of the sweep must be performed after the adjustment. Synchronization is possible only in the single sweep mode.

The result is queried with the CALCulate<n>:MARKer<m>:FUNCtion:POWer: RESult? command.

Parameters:

<Setting> ACPower | CPOWer | MCACpower | OBANdwidth | OBWidth | CN |

CN₀

Remote Control - Commands

Example: POW:ACH:PRES ACP

Sets the frequency span, the measurement bandwidths and the

detector as required for the ACLR measurement.

INIT: CONT OFF

Switches over to single sweep mode.

INIT; *WAI

Starts a sweep and waits for the end of the sweep.

CALC:MARK:FUNC:POW:RES? ACP

Queries the result of the adjacent-channel power measurement.

[SENSe:]POWer:ACHannel:PRESet:RLEVel

This command adapts the reference level to the measured channel power and – if required – switches on previously the adjacent channel power measurement. This ensures that the signal path of the instrument is not overloaded. Since the measurement bandwidth is significantly smaller than the signal bandwidth in channel power measurements, the signal path can be overloaded although the trace is still significantly below the reference level. If the measured channel power equals the reference level, the signal path is not overloaded.

Subsequent commands have to be synchronized with *WAI, *OPC or *OPC? to the end of the auto range process which would otherwise be aborted.

Example: POW:ACH:PRES:RLEV; *WAI

Adapts the reference level to the measured channel power.

[SENSe:]POWer:ACHannel:REFerence:AUTO ONCE

This command sets the reference value to the currently measured channel power for the relative measurement.

Example: POW:ACH:REF:AUTO ONCE

[SENSe:]POWer:ACHannel:REFerence:TXCHannel:AUTO < Channel>

This command activates the automatic selection of a transmission channel to be used as a reference channel in relative adjacent-channel power measurements.

The transmission channel with the highest power, the transmission channel with the lowest power, or the transmission channel nearest to the adjacent channels can be defined as a reference channel.

The command is available only for multicarrier channel and adjacent-channel power measurements with span > 0 (CALCulate<n>:MARKer<m>:FUNCtion:POWer: SELect on page 560).

Remote Control - Commands

Parameters:

<Channel> MINimum | MAXimum | LHIGhest

MINimum

Transmission channel with the lowest power

MAXimum

Transmission channel with the highest power

LHIGhest

Lowermost transmission channel for the lower adjacent channels, uppermost transmission channel for the upper adjacent channels

Example: POW:ACH:REF:TXCH:AUTO MAX

The transmission channel with the highest power is used as a ref-

erence channel.

[SENSe:]POWer:ACHannel:REFerence:TXCHannel:MANual <ChannelNumber>

This command selects a transmission channel to be used as a reference channel in relative adjacent-channel power measurements.

The command is available only for multicarrier channel and adjacent-channel power measurements with span > 0 (CALCulate<n>:MARKer<m>:FUNCtion:POWer: SELect on page 560).

Parameters:

<ChannelNumber> 1 to 18

*RST: 1

Example: POW:ACH:REF:TXCH:MAN 3

Transmission channel 3 is used as a reference channel.

[SENSe:]POWer:ACHannel:SPACing[:ACHannel] < Spacing>

This command defines the spacing between the carrier signal and the adjacent channel (ADJ). The modification of the adjacent-channel spacing (ADJ) causes a change in all higher adjacent-channel spacings (ALT1, ALT2, ...): they are all multiplied by the same factor (new spacing value/old spacing value).

Parameters:

<Spacing> 100 Hz to 20 GHz

*RST: 14 kHz

Example: POW:ACH:SPAC 33kHz

Sets the spacing between the carrier signal and the adjacent channel to 33 kHz, the alternate adjacent channel 1 to 66 kHz, the

alternate adjacent channel 2 to 99 kHz, and so on.

Remote Control – Commands

[SENSe:]POWer:ACHannel:SPACing:ALTernate<channel> <Spacing>

This command defines the spacing between the alternate adjacent channels and the TX channel (ALT1, ALT2, ...). A modification of a higher adjacent-channel spacing causes a change by the same factor (new spacing value/old spacing value) in all higher adjacent-channel spacings, while the lower adjacent-channel spacings remain unchanged.

Suffix:

<channel> 1...11

the alternate adjacent channel

Parameters:

<Spacing> 100 Hz to 20 GHz

*RST: 40 kHz (ALT1), 60 kHz (ALT2), 80 kHz (ALT3), ...

Example: POW:ACH:SPAC:ALT1 100 kHz

Sets the spacing between TX channel and alternate adjacent channel 1 (ALT1) from 40 kHz to 100 kHz. In consequence, the spacing between the TX channel and all higher alternate adjacent channels is increased by the factor 100/40 = 2.5: ALT2 = 150 kHz,

ALT3 = 200 kHz, ALT4 = 250 kHz.

[SENSe:]POWer:ACHannel:SPACing:CHANnel<channel> <Spacing>

This command defines the channel spacing for the carrier signals.

Suffix:

<channel> 1...11

the TX channel

Parameters:

<Spacing> 14 kHz to 20 GHz

*RST: 20 kHz

Example: POW:ACH:SPAC:CHAN 25kHz

[SENSe:]POWer:ACHannel:TXCHannel:COUNt < Number>

This command selects the number of carrier signals.

The command is available only for multicarrier channel and adjacent-channel power measurements with span > 0 (see CALCulate<n>:MARKer<m>:FUNCtion:POWer: SELect on page 560).

Parameters:

<Number> 1 to 18

*RST: 1

Example: POW:ACH:TXCH:COUN 3

Remote Control – Commands

[SENSe:]POWer:BANDwidth|BWIDth <Percentage>

This command defines the percentage of the power with respect to the total power.

This value is the basis for the occupied bandwidth measurement (see [SENSe:]POWer:ACHannel:PRESet on page 694).

Parameters:

<Percentage> 10 to 99.9PCT

*RST: 99PCT

Example: POW:BWID 95PCT

[SENSe:]POWer:HSPeed <State>

This command switches on or off the high-speed channel/adjacent channel power measurement. The measurement itself is performed in zero span on the center frequencies of the individual channels. The command automatically switches to zero span and back.

Depending on the selected mobile radio standard, weighting filters with characteristic or very steep-sided channel filters are used for band limitation.

Parameters:

<State> ON | OFF

*RST: OFF

Example: POW: HSP ON

[SENSe:]POWer:NCORrection < Mode>

This command turns noise cancellation on and off.

If noise cancellation is on, the R&S FSV performs a reference measurement to determine its inherent noise and subtracts the result from the channel power measurement result (first active trace only).

The inherent noise of the instrument depends on the selected center frequency, resolution bandwidth and level setting. Therefore, the correction function is disabled whenever one of these parameters is changed. A corresponding message is displayed on the screen. Noise correction must be turned on again manually after the change.

Parameters:

<Mode> ON

Performs noise correction.

OFF

Performs no noise correction.

AUTO

Performs noise correction.

After a parameter change, noise correction is restarted automatically and a new correction measurement is performed.

*RST: OFF

Remote Control – Commands

Example: POW:NCOR ON

[SENSe:]POWer:TRACe < TraceNumber>

This command assigns the channel/adjacent channel power measurement to the indicated trace. The corresponding trace must be active, i.e. its state must be different from blank.

Note:The measurement of the occupied bandwidth (OBW) is performed on the trace on which marker 1 is positioned. To evaluate another trace, marker 1 must be positioned to another trace with CALCulate<n>:MARKer<m>: TRACE.

Parameters:

<TraceNumber> 1 to 6

Example: POW:TRAC 2

Assigns the measurement to trace 2.

SENSe:SWEep Subsystem

The SENSe:SWEep subsystem controls the sweep parameters.

| [SENSe:]SWEep:COUNt | 699 |
|--|-----|
| [SENSe:]SWEep:COUNt:CURRent? | |
| [SENSe:]SWEep:EGATe | |
| [SENSe:]SWEep:EGATe:HOLDoff | |
| [SENSe:]SWEep:EGATe:LENGth | |
| [SENSe:]SWEep:EGATe:POLarity | |
| [SENSe:]SWEep:EGATe:SOURce | |
| [SENSe:]SWEep:EGATe:TRACe <k>:COMMent</k> | |
| [SENSe:]SWEep:EGATe:TRACe <k>[:STATe<range>]</range></k> | |
| [SENSe:]SWEep:EGATe:TRACe <k>:STARt<range></range></k> | |
| [SENSe:]SWEep:EGATe:TRACe <k>: STOP<range></range></k> | 703 |
| [SENSe:]SWEep:EGATe:TRACe <k>: PERiod</k> | 703 |
| [SENSe:]SWEep:EGATe:TYPE | 703 |
| [SENSe:]SWEep:MODE | 704 |
| [SENSe:]SWEep:POINts | |
| [SENSe:]SWEep:TIME | |
| [SENSe:]SWEep:TIME:AUTO | |
| [SENSe:]SWEep:TYPE | 705 |
| [SENSe:]SWEep:TYPE:USED? | 706 |
| | |

[SENSe:]SWEep:COUNt < Number Sweeps>

This command defines the number of sweeps started with single sweep, which are used for calculating the average or maximum value. If the values 0 or 1 are set, one sweep is performed.

Parameters:

<NumberSweeps> 0 to 32767

*RST: 0 (GSM: 200, PHN:1)

Remote Control - Commands

Example: SWE:COUN 64

Sets the number of sweeps to 64.

INIT: CONT OFF

Switches to single sweep mode.

INIT; *WAI

Starts a sweep and waits for its end.

[SENSe:]SWEep:COUNt:CURRent?

This query command returns the current number of started sweeps. A sweep count value should be set and the device should be in single sweep mode.

Example: SWE:COUNt 64

Sets sweep count to 64 INIT: CONT OFF

Switches to single sweep mode

INIT

Starts a sweep (without waiting for the sweep end!)

SWE: COUN: CURR?

Queries the number of started sweeps

Usage: Query only

[SENSe:]SWEep:EGATe <State>

This command switches on/off the sweep control by an external gate signal. If the external gate is selected the trigger source is automatically switched to EXTernal as well.

When triggering or gating is activated, the squelch function is automatically disabled (see "SENSe:DEMod Subsystem" on page 644).

In case of measurement with external gate, the measured values are recorded as long as the gate is opened. During a sweep the gate can be opened and closed several times. The synchronization mechanisms with *OPC, *OPC? and *WAI remain completely unaffected.

The sweep end is detected when the required number of measurement points (691 in "Spectrum" mode) has been recorded.

Parameters:

<State> ON | OFF

*RST: OFF

Remote Control - Commands

Example: SWE:EGAT ON

Switches on the external gate mode.

SWE:EGAT:TYPE EDGE

Switches on the edge-triggered mode.

SWE:EGAT:HOLD 100US Sets the gate delay to 100 μ s. SWE:EGAT:LEN 500US

Sets the gate opening time to 500 µs.

INIT; *WAI

Starts a sweep and waits for its end.

[SENSe:]SWEep:EGATe:HOLDoff < DelayTime>

This command defines the delay time between the external gate signal and the continuation of the sweep.

Note: Using gate mode "level" (see [SENSe:]SWEep:EGATe:TYPE on page 703) and an IFP trigger (see TRIGger<n>[:SEQuence]:SOURce on page 753), the holdoff time for the IFP trigger is ignored for frequency sweep, FFT sweep, zero span and IQ mode measurements.

Parameters:

<DelayTime> 0 s to 30 s

*RST: 0s

Example: SWE:EGAT:HOLD 100us

[SENSe:]SWEep:EGATe:LENGth <TimeInterval>

This command defines a gate length.

Parameters:

<TimeInterval> 125 ns to 30 s

*RST: 400µs

Example: SWE:EGAT:LENG 10ms

[SENSe:]SWEep:EGATe:POLarity < Polarity>

This command determines the polarity of the external gate signal. The setting applies both to the edge of an edge-triggered signal and the level of a level-triggered signal.

Parameters:

<Polarity> POSitive | NEGative

*RST: POSitive

Example: SWE:EGAT:POL POS

[SENSe:]SWEep:EGATe:SOURce <Source>

This command selects the signal source for gated measurements.

Remote Control - Commands

If an IF power signal is used, the gate is opened as soon as a signal at > -20 dBm is detected within the IF path bandwidth (10 MHz).

For details see the "Trg/Gate Source" on page 140 softkey.

Parameters:

<Source> EXTernal | IFPower | VIDeo | RFPower | PSEN

*RST: IFPower

Example: SWE:EGAT:SOUR IFP

Switches the gate source to IF power.

[SENSe:]SWEep:EGATe:TRACe<k>:COMMent < Comment>

Defines a comment for one of the traces for gated triggering.

Suffix:

<k> 1...6

trace

Parameters:

<Comment>

Example: SWE:EGAT:TRAC1:COMM "SlotA"

[SENSe:]SWEep:EGATe:TRACe<k>[:STATe<range>] <State>

This command activates or deactivates tracing for a specific range using gated triggering.

Suffix:

<k> 1...6

trace

<range> 1...3

range

Parameters:

<State> ON | OFF

*RST: OFF

Example: SWE:EGAT:TRAC1:STAT1 ON

Activates tracing for range 1 of trace 1.

[SENSe:]SWEep:EGATe:TRACe<k>:STARt<range> < Value>

This command defines the starting point for the range to be traced using gated triggering.

Suffix:

<k> 1...6

trace

<range> 1...3

range

Remote Control - Commands

Parameters:

<Value> <numeric value>

*RST: OFF

Example: SWE:EGAT:TRAC1:STAR1 3ms

Sets the Starting point for range 1 on trace 1 at 3 ms.

[SENSe:]SWEep:EGATe:TRACe<k>: STOP<range> < Value>

This command defines the stopping point for the range to be traced using gated triggering

Suffix:

<k> 1...6

trace

<range> 1...3

range

Parameters:

<Value> <numeric value>

*RST: 1 µs

Example: SWE:EGAT:TRAC1:STOP1 5ms

Sets the stopping point for range 1 on trace 1 at 5 ms.

[SENSe:]SWEep:EGATe:TRACe<k>: PERiod < Value>

This command defines the length of the period to be traced using gated triggering.

Suffix:

<k> 1...6

trace

Parameters:

<Value> <numeric value>

*RST: 0 s

Example: SWE:EGAT:TRAC1:PER 5ms

Defines the period for gated triggering to 5 ms.

[SENSe:]SWEep:EGATe:TYPE <Type>

This command sets the type of triggering by the external gate signal.

A delay between applying the gate signal and the start of recording measured values can be defined, see [SENSe:]SWEep:EGATe:HOLDoff on page 701.

Remote Control - Commands

Parameters:

<Type> LEVel | EDGE

LEVel

The gate is level-triggered:

After detection of the gate signal, the gate remains open until the gate signal disappears. The gate opening time cannot be defined with the command [SENSe:]SWEep:EGATe:HOLDoff.

Note: Using gating with gate mode "level" and an IFP trigger (see TRIGger<n>[:SEQuence]:SOURce on page 753), the holdoff time for the IFP trigger is ignored for frequency sweep, FFT sweep, zero span and IQ mode measurements.

EDGE

The gate is edge-triggered:

After detection of the set gate signal edge, the gate remains open until the gate delay ([SENSe:]SWEep:EGATe:HOLDoff) has

expired.

*RST: EDGE

Example: SWE:EGAT:TYPE EDGE

[SENSe:]SWEep:MODE < Mode>

This command selects the spurious emission and spectrum emission mask measurements.

Parameters:

<Mode> AUTO | ESPectrum | LIST

AUTO

Switches to "Spectrum" measurement mode or stays in the current

mode if it is not ESP/LIST

ESPectrum

"Spectrum Emission Mask" measurement mode

LIST

"Spurious Emissions" measurement mode

*RST: AUTO

Example: SWE:MODE ESP

Sets the Spectrum Emission Mask measurement mode.

[SENSe:]SWEep:POINts < NumberPoints>

This command defines the number of measurement points to be collected during one sweep.

Note: For Spurious Emissions measurements the maximum number of sweep points in all ranges is limited to 100001.

Remote Control - Commands

Parameters:

<NumberPoints> Range: 101 to 32001

*RST: 691

Example: SWE:POIN 251

[SENSe:]SWEep:TIME <Time>

This command defines the sweep time.

The range depends on the frequency span.

If this command is used in "Spectrum" mode, automatic coupling to resolution bandwidth and video bandwidth is switched off.

Parameters:

<Time> refer to data sheet

For R&S FSV spectrum analyzers with an FMR7 CPU board (order no. 1091.3204, with R&S FSV models 1307.9002Kxx only) and 1 GByte RAM the maximum capture time is 600 ms. Otherwise it is

1 s.

*RST: (AUTO is set to ON)

Example: SWE:TIME 10s

[SENSe:]SWEep:TIME:AUTO <State>

In realtime mode, this command automatically sets the sweep time to 32 ms.

In analyzer mode, this command controls the automatic coupling of the sweep time to the frequency span and bandwidth settings. If [SENSe:]SWEep:TIME is used, automatic coupling is switched off.

Parameters:

<State> ON | OFF

*RST: ON

Example: SWE:TIME:AUTO ON

Activates automatic sweep time.

[SENSe:]SWEep:TYPE <Type>

This command selects the sweep type.

Remote Control – Commands

Parameters:

<Type> SWE

Selects analog frequency sweeps.

AUTO

Automatically selects the sweep type (FFT or analog frequency

sweep).

FFT

Selects FFT sweeps.
*RST: AUTO

Example: SWE:TYPE FFT

Selects FFT sweeps.

[SENSe:]SWEep:TYPE:USED?

This command queries the sweep type if you have turned on automatic selection of the sweep type.

Return values:

<Type> SWE | FFT

SWE

Normal sweep

FFT

FFT mode

*RST: SWE

Example: SWE:TYPE:USED?

Usage: Query only

SENSe:[WINDow:]DETector Subsystem

The SENSe:DETector subsystem controls the acquisition of measurement data via the selection of the detector for the corresponding trace.

| [SENSe:][WINDow:]DETector <trace>[:</trace> | :FUNCtion]706 |
|---|--------------------|
| [SENSe:][WINDow:]DETector <trace>[:</trace> | :FUNCtion]:AUTO707 |

[SENSe:][WINDow:]DETector<trace>[:FUNCtion] <Function>

This command selects the detector for the data acquisition in the selected trace.

Suffix:

<trace> 1...6

Selects the trace.

<trace> 1...6

trace

Remote Control – Commands

Parameters:

<Function> APEak | NEGative | POSitive | SAMPle | RMS | AVERage |

QPEak

*RST: APEak

For details on detectors refer to chapter 3.2.8.6, "Detector Over-

view", on page 137.

Example: DET POS

Sets the detector to "positive peak".

[SENSe:][WINDow:]DETector<trace>[:FUNCtion]:AUTO <State>

This command either couples the detector to the current trace setting or turns coupling off.

Suffix:

<trace> 1...6

trace

Parameters:

<State> ON | OFF

*RST: ON

Example: DET:AUTO OFF

4.2.3.16 SOURce Subsystem

The SOURce subsystem controls the output signals of the instrument.

SOURce Subsystem commands

| SOURce <n>:AM:STATe</n> | 708 |
|---|-----|
| SOURce <n>:DM:STATe</n> | 708 |
| SOURce <n>:EXTernal<generator>[:STATe]</generator></n> | 708 |
| SOURce <n>:EXTernal<m>:FREQuency</m></n> | 709 |
| SOURce <n>:EXTernal<m>:FREQuency:COUPling[:STATe]</m></n> | 709 |
| SOURce <n>:EXTernal<generator>:FREQuency[:FACTor]:DENominator</generator></n> | 710 |
| SOURce <n>:EXTernal<generator>:FREQuency[:FACTor]:NUMerator</generator></n> | 710 |
| SOURce <n>:EXTernal<generator>:FREQuency:OFFSet<m></m></generator></n> | 711 |
| SOURce <n>:EXTernal<generator>:FREQuency:SWEep[:STATe]</generator></n> | 712 |
| SOURce <n>:EXTernal<generator>:POWer[:LEVel]</generator></n> | 712 |
| SOURce <n>:EXTernal<generator>:ROSCillator[:SOURce]</generator></n> | 713 |
| SOURce <n>:FM:DEViation</n> | 713 |
| SOURce <n>:FM:STATe</n> | 714 |
| SOURce <n>:FREQuency:OFFSet</n> | 714 |

Remote Control – Commands

SOURce<n>:AM:STATe <State>

This command turns external amplitude modulation of the tracking generator on and off.

External I/Q modulation is switched off, if active. This command is available with a tracking generator (option R&S FSV-B9).

Suffix:

<n> 1...4

Selects the measurement window.

Parameters:

<State> ON | OFF

*RST: OFF

Example: SOUR2:AM:STAT ON

Switches on the external amplitude modulation of the tracking

generator for screen B.

Usage: SCPI confirmed

SOURce<n>:DM:STATe <State>

This command turns external I/Q modulation of the tracking generator on and off.

External AM and external FM are switched off, if active. This command is available with a tracking generator (option R&S FSV-B9).

Suffix:

<n> 1...4

Selects the measurement window.

Parameters:

<State> ON | OFF

*RST: OFF

Example: SOUR2:DM:STAT ON

Switches on the external I/Q modulation of the tracking generator

for screen B.

Usage: SCPI confirmed

SOURce<n>:EXTernal<generator>[:STATe] <State>

This command activates or deactivates the external generator indicated by the suffix <generator>.

This command is only valid for R&S FSV External Tracking Generator option (R&S FSV-B10).

Suffix:

<n> irrelevant

<generator> 1 | 2

external generator

Remote Control - Commands

Parameters:

<State> ON | OFF

*RST: OFF

Example: SYST:COMM:RDEV:GEN1:TYPE 'SMP02'

Selects SMP02 as generator 1.

"SYST:COMM:RDEV:GEN1:LINK TTL"
Selects GPIB + TTL link as interface.
"SYST:COMM:RDEV:GEN1:ADDR 28"
Sets the generator address to 28.
"SOUR:EXT1:FREQ:SWE ON"

Activates the frequency sweep for generator 1.

"SOUR:EXT ON"

Activates the external generator

Mode: A

SOURce<n>:EXTernal<m>:FREQuency <Frequency>

This command defines a fixed source frequency for the external tracking generator (requires option R&S FSV-B10).

Suffix:

<n> 1...4

window

<m> 1 | 2

tracking generator

Parameters:

<Frequency> Source frequency of the external tracking generator.

*RST: RST value

Example: SOUR:EXT2:FREQ 10MHz

Mode: Mode

SOURce<n>:EXTernal<m>:FREQuency:COUPling[:STATe] <State>

This command couples the external tracking generator to (requires option R&S FSV-B10).

Suffix:

<n> 1...4

window

<m> 1 | 2

tracking generator

Remote Control - Commands

Parameters:

<State> ON | OFF

ON OFF

The fixed frequency defined using SOURce<n>:EXTernal<m>:

FREQuency is used as a source frequency.

*RST: OFF

Example: SOUR:EXT2:FREQ:COUP ON

Mode: Mode

SOURce<n>:EXTernal<generator>:FREQuency[:FACTor]:DENominator <Value>

This command defines the denominator of the factor with which the analyzer frequency is multiplied in order to obtain the transmit frequency of the selected generator.

This command is only valid for R&S FSV option External Tracking Generator (R&S FSV-B10).

Select the multiplication factor such that the frequency range of the generator is not exceeded if the following formula is applied to the start and stop frequency of the analyzer:

$$F_{\textit{Generator}} = \left| F_{\textit{Analyzer}} * \frac{\textit{Numerator}}{\textit{Deno} \min \textit{ator}} + F_{\textit{Offset}} \right|$$

Suffix:

<n> irrelevant

<generator> 1 | 2

tracking generator

For Noise Figure measurements (K30): 1 only

Parameters:

<Value> <numeric value>

*RST: 1

Example: SOUR: EXT: FREQ: NUM 4"

"SOUR:EXT:FREQ:DEN 3"

Sets a multiplication factor of 4/3, i.e. the transmit frequency of the

generator is 4/3 times the analyzer frequency.

Mode: A, NF

SOURce<n>:EXTernal<generator>:FREQuency[:FACTor]:NUMerator <Value>

This command defines the numerator of the factor with which the analyzer frequency is multiplied in order to obtain the transmit frequency of the selected generator.

This command is only valid for R&S FSV option External Tracking Generator (R&S FSV-B10).

Remote Control - Commands

Select the multiplication factor such that the frequency range of the generator is not exceeded if the following formula is applied to the start and stop frequency of the analyzer:

$$F_{\textit{Generator}} = \left| F_{\textit{Analyzer}} * \frac{\textit{Numerator}}{\textit{Deno} \min \textit{ator}} + F_{\textit{Offset}} \right|$$

Suffix:

<n> irrelevant

<generator> 1 | 2

tracking generator

For Noise Figure measurements (K30): 1 only

Parameters:

<Value> <numeric value>

*RST: 1

Example: SOUR:EXT:FREQ:NUM 4"

"SOUR: EXT: FREQ: DEN 3"

Sets a multiplication factor of 4/3, i.e. the transmit frequency of the

generator is 4/3 times the analyzer frequency.

Mode: A, NF

SOURce<n>:EXTernal<generator>:FREQuency:OFFSet<m> < Offset>

This command defines the frequency offset of the selected generator with reference to the receive frequency.

This command is only valid for R&S FSV option External Tracking Generator (R&S FSV-B10).

Suffix:

<n> irrelevant

<generator> 1 | 2

tracking generator

For Noise Figure measurements (K30): 1 only

<m> 1 | 2

offset (for Noise Figure measurements (K30) only)

Remote Control - Commands

Parameters:

<Offset> <numeric value>, specified in Hz, kHz, MHz or GHz, rounded to

the nearest Hz

*RST: 0 Hz

Select the multiplication factor such that the frequency range of the generator is not exceeded if the following formula is applied to

the start and stop frequency of the analyzer:

 $F_{theorem} = \left| F_{thopse} * \frac{Munerator}{Denomin \ ator} + F_{type} \right|$

For Noise Figure measurements (R&S FSV-K30), the following

formula applies:

Generator Frequency = [(LO + Offset 1) * Factor 1 / Factor 2)] +

Offset 2

Example: SOUR:EXT:FREQ:OFFS 1GHZ

Sets a frequency offset of the generator transmit frequency com-

pared to the analyzer receive frequency of 1 GHz.

Mode: A, NF

SOURce<n>:EXTernal<generator>:FREQuency:SWEep[:STATe] <State>

This command activates or deactivates the frequency sweep for the selected generator.

This command is only valid for R&S FSV option External Tracking Generator (R&S FSV-B10).

Suffix:

<n> irrelevant

<generator> 1 | 2

external generator

Parameters:

<State> ON | OFF

*RST: OFF

Example: SOUR: EXT1: FREQ: SWE ON

Activates the frequency sweep for external generator 1.

Mode: A

SOURce<n>:EXTernal<generator>:POWer[:LEVel] <Level>

This command sets the output power of the selected generator.

This command is only valid for R&S FSV option External Tracking Generator (R&S FSV-B10).

Suffix:

<n> irrelevant
<generator> 1 | 2

tracking generator

For Noise Figure measurements (K30): 1 only

Remote Control - Commands

Parameters:

<Level> <numeric value>

*RST: -20 dBm

Example: SOUR:EXT:POW -30dBm

Sets the generator level to -30 dBm

Mode: A, NF

SOURce<n>:EXTernal<generator>:ROSCillator[:SOURce] <Source>

This command controls selection of the reference oscillator for the external tracking generator (requires option R&S FSV-B10).

If the external reference oscillator is selected, the reference signal must be connected to the rear panel of the instrument.

Suffix:

<n> irrelevant

<generator> 1 | 2

tracking generator

For Noise Figure measurements (K30): 1 only

Parameters:

<Source> INTernal

the internal reference is used

EXTernal

the external reference is used; if none is available, an error flag is

displayed in the status bar

EAUTo

the external reference is used as long as it is available, then the instrument switches to the internal reference (Spectrum mode

only)

*RST: INT

Example: SOUR: EXT: ROSC EXT

Switches to external reference oscillator

Mode: A, NF

SOURce<n>:FM:DEViation <Frequency>

This command defines the maximum frequency deviation at 1 V input voltage at the FM input of the tracking generator.

This command is available with a tracking generator (option R&S FSV-B9).

Suffix:

<n> 1...4

Selects the measurement window.

Remote Control - Commands

Parameters:

<Frequency> The possible value range is 100 Hz to 10 MHz in steps of 10 Hz.

Range: 100 Hz to 10 MHz

Increment: 10 Hz *RST: 100 Hz

Example: SOUR1:FM:DEV 1 MHz

Sets the maximum frequency deviation of the tracking generator

for screen A to 1 MHz.

Usage: SCPI confirmed

SOURce<n>:FM:STATe <State>

This command turns external frequency modulation of the tracking generator on and off.

External I/Q modulation is switched off, if active. This command is available with a tracking generator (option R&S FSV-B9).

Suffix:

<n> 1...4

Selects the measurement window.

Parameters:

<State> ON | OFF

*RST: OFF

Example: SOUR2:FM:STAT ON

Switches on the external frequency modulation of the tracking

generator for screen B.

Usage: SCPI confirmed

SOURce<n>:FREQuency:OFFSet <Offset>

This command defines a frequency offset of the tracking generator. Frequency-converting DUTs can be measured with this setting.

External I/Q modulation is switched off, if active. This command is available with a tracking generator (option R&S FSV-B9).

Suffix:

<n> 1...4

Selects the measurement window.

Parameters:

<Offset> Note that the values (start frequency – tracking frequency offset)

and (stop frequency – tracking frequency offset) are both > 1 kHz

or both < -1 kHz.

Range: -200 MHz to 200 MHz

*RST: 0 Hz

Example: SOUR: FREQ: OFFS 10MHz

Defines a frequency offset of the tracking generator of 10 MHz.

Remote Control – Commands

Usage: SCPI confirmed

SOURce:POWer Subsystem

The SOURce:POWer subsystem controls the power of the tracking generator signal (only with R&S FSV option B9 or B10).

| SOURce <n>:POWer[:LEVel][:IMMediate][:AMPLitude]</n> | 715 |
|--|-----|
| SOURce <n>:POWer[:LEVel][:IMMediate]:OFFSet</n> | |
| SOURce <n>:POWer:MODE</n> | |
| SOURce <n>:POWer:STARt</n> | 716 |
| SOURce <n>:POWer:STOP</n> | 716 |

SOURce<n>:POWer[:LEVel][:IMMediate][:AMPLitude] <Level>

This command defines the output level of the tracking generator.

Parameters:

<Level> Ouput level in dBm. The level range is specified in the data sheet.

*RST: -20 dBm

Example: SOUR: POW -20dBm

Sets the tracking generator level to -20 dBm.

Usage: SCPI confirmed

SOURce<n>:POWer[:LEVel][:IMMediate]:OFFSet <Offset>

This command defines a level offset for the tracking generator level. Thus, for example, attenuators or amplifiers at the output of the tracking generator can be taken into account for the setting.

Parameters:

<Offset> Range: -200 dB to +200 dB

*RST: 0dB

Example: SOUR: POW: OFFS -10dB

Sets the level offset of the tracking generator to – 20 dBm.

Usage: SCPI confirmed

SOURce<n>:POWer:MODE < Mode>

This command turns the power sweep on and off.

Suffix:

<n> 1...4

Selects the measurement window.

Remote Control – Commands

Parameters:

<Mode> FIXed

Power sweep is off.

SWEep

Power sweep is on.

If the power sweep is on, the R&S FSV enters the time domain (span = 0 Hz). During the sweep time, the power at the internal tracking generator is changed linearly from start power to stop power. The start and stop power for the power sweep are displayed in the diagram header ("INT TG <start power>... <stop

power>").

*RST: FIXed

Example: SOUR: POW: MODE SWE

Activates power sweep.

Usage: SCPI confirmed

SOURce<n>:POWer:STARt <Power>

This command defines the start power of the power sweep.

Suffix:

<n> 1...4

Selects the measurement window.

Parameters:

<Power> Range: -30 dBm to +5 dBm

*RST: 0 dBm

Example: SOUR: POW: STAR -20dBm

Usage: SCPI confirmed

SOURce<n>:POWer:STOP <Power>

This command defines the stop power of the power sweep. The stop value can be smaller than the start value.

Suffix:

<n> 1...4

Selects the measurement window.

Parameters:

<Power> Range: -30 dBm to +5 dBm

*RST: 0 dBm

Example: SOUR: POW: STOP -20dBm

Usage: SCPI confirmed

Remote Control – Commands

4.2.3.17 STATus: QUEStionable Subsystem

The STATus subsystem contains the commands for the status reporting system (for details refer to chapter 4.1.6, "Status Reporting System", on page 448). *RST does not influence the status registers.

The STATus: QUEStionable subsystem contains information about the observance of limits during adjacent power measurements, the reference and local oscillator, the observance of limit lines and limit margins and possible overloads of the unit.

| STATus:QUEStionable:ACPLimit[:EVENt]? | 717 |
|---|-----|
| STATus:QUEStionable:ACPLimit:CONDition? | 718 |
| STATus:QUEStionable:ACPLimit:ENABle | 718 |
| STATus:QUEStionable:ACPLimit:NTRansition | 718 |
| STATus:QUEStionable:ACPLimit:PTRansition | 718 |
| STATus:QUEStionable:DIQ:CONDition? | 719 |
| STATus:QUEStionable:DIQ[:EVENt]? | 719 |
| STATus:QUEStionable:DIQ:ENABle | 719 |
| STATus:QUEStionable:DIQ:NTRansition | 719 |
| STATus:QUEStionable:DIQ:PTRansition | |
| STATus:QUEStionable:FREQuency:CONDition? | 720 |
| STATus:QUEStionable:FREQuency:ENABle | 720 |
| STATus:QUEStionable:FREQuency[:EVENt]? | 720 |
| STATus:QUEStionable:FREQuency:NTRansition | 720 |
| STATus:QUEStionable:FREQuency:PTRansition | 721 |
| STATus:QUEStionable:LIMit <m> [:EVENt]?</m> | 721 |
| STATus:QUEStionable:LIMit <m>:CONDition?</m> | 721 |
| STATus:QUEStionable:LIMit <m>:ENABle</m> | 722 |
| STATus:QUEStionable:LIMit <m>:NTRansition</m> | 722 |
| STATus:QUEStionable:LIMit <m>:PTRansition</m> | 722 |
| STATus:QUEStionable:LMARgin <m>[:EVENt]?</m> | 723 |
| STATus:QUEStionable:LMARgin <m>:CONDition?</m> | 723 |
| STATus:QUEStionable:LMARgin <m>:ENABle</m> | 723 |
| STATus:QUEStionable:LMARgin <m>:NTRansition</m> | 724 |
| STATus:QUEStionable:LMARgin <m>:PTRansition</m> | 724 |
| STATus:QUEStionable:POWer[:EVENt]? | |
| STATus:QUEStionable:POWer:CONDition? | 725 |
| STATus:QUEStionable:POWer:ENABle | |
| STATus:QUEStionable:POWer:NTRansition | |
| STATus:QUEStionable:POWer:PTRansition | 725 |
| STATus:QUEStionable:SYNC[:EVENt]? | 726 |
| STATus:QUEStionable:SYNC:CONDition? | |
| STATus:QUEStionable:SYNC:ENABle | 726 |
| STATus:QUEStionable:SYNC:NTRansition | |
| STATus:QUEStionable:SYNC:PTRansition | 727 |
| | |

STATus:QUEStionable:ACPLimit[:EVENt]?

This command queries the contents of the "EVENt" part of the STATus:QUEStionable:ACPLimit register. Readout deletes the contents of the "EVENt" part.

Remote Control – Commands

Example: STAT:QUES:ACPL?

Usage: Query only

Mode: all

STATus: QUEStionable: ACPLimit: CONDition?

This command queries the contents of the "CONDition" part of the STATus:QUEStionable:ACPLimit register (see "STATus:QUEStionable:ACPLimit Register" on page 455). Readout does not delete the contents of the "CONDition" part.

Example: STAT:QUES:ACPL:COND?

Usage: Query only

Mode: all

STATus:QUEStionable:ACPLimit:ENABle <BitDefinition>

This command sets the bits of the "ENABle" part of the

STATus: QUEStionable: ACPLimit register. The "ENABle" register selectively enables the individual events of the associated "EVENt" part for the summary bit.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:ACPL:ENAB 65535

Mode: all

STATus:QUEStionable:ACPLimit:NTRansition <BitDefinition>

This command sets the edge detectors of all bits of the

STATus:QUEStionable:ACPLimit register from 1 to 0 for the transitions of the "CONDition" bit.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:ACPL:NTR 65535

Mode: all

STATus:QUEStionable:ACPLimit:PTRansition <BitDefinition>

This command sets the edge detectors of all bits of the

STATus:QUEStionable:ACPLimit register from 0 to 1 for the transitions of the "CONDition" bit.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:ACPL:PTR 65535

Remote Control – Commands

Mode: all

STATus:QUEStionable:DIQ:CONDition?

This command queries the contents of the "CONDition" part of the STATus:QUEStionable:DIQ register for IQ measurements (see "STATus:QUEStionable:DIQ Register" on page 456). Readout does not delete the contents of the "CONDition" part.

Example: STAT:QUES:DIQ:COND?

Usage: Query only

Mode: IQ

STATus:QUEStionable:DIQ[:EVENt]?

This command queries the contents of the "EVENt" part of the STATus:QUEStionable:DIQ register for IQ measurements.

Readout deletes the contents of the "EVENt" part.

Example: STAT:QUES:DIQ?

Usage: Query only

Mode: IQ

STATus:QUEStionable:DIQ:ENABle < Enable >

Setting parameters:

<Enable> numeric value
Usage: SCPI confirmed

Mode: all

STATus:QUEStionable:DIQ:NTRansition < NTransition >

Setting parameters:

<NTransition> numeric value
Usage: SCPI confirmed

Mode: all

STATus:QUEStionable:DIQ:PTRansition < PTranstion>

Setting parameters:

<PTranstion> numeric value

Usage: SCPI confirmed

Mode: all

Remote Control – Commands

STATus:QUEStionable:FREQuency:CONDition?

This command queries the contents of the "CONDition" part of the STATus:QUEStionable:FREQuency register (see "STATus:QUEStionable:FREQuency Register" on page 457). Readout does not delete the contents of the "CONDition" part.

Example: STAT:QUES:FREQ:COND?

Usage: Query only

Mode: all

STATus:QUEStionable:FREQuency:ENABle <BitDefinition>

This command sets the bits of the "ENABle" part of the STATUS:QUEStionable:FREQuency register. The "ENABle" register selectively enables the individual events of the associated "EVENt" part for the summary bit.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:FREQ:ENAB 65535

Mode: all

STATus:QUEStionable:FREQuency[:EVENt]?

This command queries the contents of the "EVENt" part of the STATus:QUEStionable:FREQuency register.

Readout deletes the contents of the "EVENt" part.

Example: STAT:QUES:FREQ?

Usage: Query only

Mode: all

STATus:QUEStionable:FREQuency:NTRansition <BitDefinition>

This command sets the edge detectors of all bits of the STATus:QUEStionable:FREQuency register from 1 to 0 for the transitions of the "CONDition" bit.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:FREQ:NTR 65535

Mode: all, except NF

Remote Control – Commands

STATus:QUEStionable:FREQuency:PTRansition <BitDefinition>

This command sets the edge detectors of all bits of the STATus:QUEStionable:FREQuency register from 0 to 1 for the transitions of the "CONDition" bit.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:FREQ:PTR 65535

Mode: all, except NF

STATus:QUEStionable:LIMit<m> [:EVENt]?

This command queries the contents of the "EVENt" part of the STATus:QUEStionable:LIMit register. Readout deletes the contents of the "EVENt" part.

Suffix:

<m> 1...4

window

For applications that do not have more than one measurement

window, the suffix <1...4> is irrelevant.

Example: STAT:QUES:LIM?

Usage: Query only

Mode: all

STATus:QUEStionable:LIMit<m>:CONDition?

This command queries the contents of the "CONDition" part of the STATus:QUEStionable:LIMit register (see "STATus:QUEStionable:LIMit Register" on page 457).

Readout does not delete the contents of the "CONDition" part.

Suffix:

<m> 1...4

window

For applications that do not have more than one measurement

window, the suffix <1...4> is irrelevant.

Example: STAT:QUES:LIM:COND?

Usage: Query only

Mode: all

Remote Control – Commands

STATus:QUEStionable:LIMit<m>:ENABle <BitDefinition>

This command sets the bits of the "ENABle" part of the STATus: QUEStionable register. The "ENABle" register selectively enables the individual events of the associated "EVENt" part for the summary bit.

Suffix:

<m> 1...4

window

For applications that do not have more than one measurement

window, the suffix <1...4> is irrelevant.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:LIM:ENAB 65535

Mode: all

STATus:QUEStionable:LIMit<m>:NTRansition <BitDefinition>

This command sets the edge detectors of all bits of the

STATus:QUEStionable:LIMit register from 1 to 0 for the transitions of the "CONDition" bit.

Suffix:

<m> 1...4

window

For applications that do not have more than one measurement

window, the suffix is irrelevant.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:LIM:NTR 65535

Mode: all, except NF

STATus:QUEStionable:LIMit<m>:PTRansition <BitDefinition>

This command sets the edge detectors of all bits of the

STATus:QUEStionable:LIMit register from 0 to 1 for the transitions of the "CONDition" bit.

Suffix:

<m> 1...4

window

For applications that do not have more than one measurement

window, the suffix is irrelevant.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:LIM:PTR 65535

Remote Control - Commands

Mode: all, except NF

STATus:QUEStionable:LMARgin<m>[:EVENt]?

This command queries the contents of the "EVENt" part of the STATus:QUEStionable:LMARgin register. Readout deletes the contents of the "EVENt" part.

Suffix:

<m> 1...4

window

For applications that do not have more than one measurement

window, the suffix is irrelevant.

Example: STAT:QUES:LMAR?

Usage: Query only

Mode: all

STATus:QUEStionable:LMARgin<m>:CONDition?

This command queries the contents of the "CONDition" part of the STATus:QUEStionable:LMARgin register (see "STATus:QUEStionable:LMARgin Register" on page 458). Readout does not delete the contents of the "CONDition" part.

Suffix:

<m> 1...4

window

For applications that do not have more than one measurement

window, the suffix is irrelevant.

Example: STAT:QUES:LMAR:COND?

Usage: Query only

Mode: all

STATus:QUEStionable:LMARgin<m>:ENABle <BitDefinition>

This command sets the bits of the "ENABle" part of the

STATus:QUEStionable:LMARgin register. The "ENABle" register selectively enables the individual events of the associated "EVENt" part for the summary bit.

Suffix:

<m> 1...4

window

For applications that do not have more than one measurement

window, the suffix is irrelevant.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:LMAR:ENAB 65535

Remote Control - Commands

Mode: all

STATus:QUEStionable:LMARgin<m>:NTRansition <BitDefinition>

This command sets the edge detectors of all bits of the

STATus: QUEStionable: LMARgin register from 1 to 0 for the transitions of the "CON-Dition" bit.

Suffix:

<m> 1...4

window

For applications that do not have more than one measurement

window, the suffix is irrelevant.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:LMAR:NTR 65535

Mode: all

STATus:QUEStionable:LMARgin<m>:PTRansition <BitDefinition>

This command sets the edge detectors of all bits of the

STATus: QUEStionable: LMARgin register from 0 to 1 for the transitions of the "CON-Dition" bit.

Suffix:

<m> 1...4

window

For applications that do not have more than one measurement

window, the suffix is irrelevant.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:LMAR:PTR 65535

Mode: all

STATus:QUEStionable:POWer[:EVENt]?

This command queries the contents of the "EVENt" part of the STATus:QUEStionable:POWer register. Readout deletes the contents of the "EVENt" part.

Example: STAT:QUES:POW?

Usage: Query only

SCPI confirmed

Mode: all

Remote Control – Commands

STATus:QUEStionable:POWer:CONDition?

This command queries the contents of the "CONDition" part of the STATus:QUEStionable:POWer register (see "STATus:QUEStionable:POWer Register" on page 459). Readout does not delete the contents of the "CONDition" part.

Example: STAT:QUES:POW:COND?

Usage: Query only

SCPI confirmed

Mode: all

STATus:QUEStionable:POWer:ENABle <BitDefinition>

This command sets the bits of the "ENABle" part of the STATus:QUEStionable:POWer register. The "ENABle" register selectively enables the individual events of the associated "EVENt" part for the summary bit.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:POW:ENAB 65535

Usage: SCPI confirmed

Mode: all

STATus:QUEStionable:POWer:NTRansition <BitDefinition>

This command sets the edge detectors of all bits of the STATus:QUEStionable:POWer register from 1 to 0 for the transitions of the "CONDition" bit.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUE:POWS:NTR 65535

Usage: SCPI confirmed

Mode: all

STATus:QUEStionable:POWer:PTRansition <BitDefinition>

This command sets the edge detectors of all bits of the

STATus:QUEStionable:POWer register from 0 to 1 for the transitions of the "CONDition" bit.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:POW:PTR 65535

Usage: SCPI confirmed

Remote Control - Commands

Mode: all

STATus:QUEStionable:SYNC[:EVENt]?

This command queries the contents of the "EVENt" part of the STATus:QUEStionable:SYNC register. For details see the description for the individual firmware applications.

Readout deletes the contents of the "EVENt" part.

Example: STAT:QUES:SYNC?

Usage: Query only

Mode: This command is required by the firmware applications only.

STATus:QUEStionable:SYNC:CONDition?

This command queries the contents of the "CONDition" part of the STATus:QUEStionable:SYNC register. For details see the description for the individual firmware applications.

Readout does not delete the contents of the "CONDition" part.

Example: STAT:QUES:SYNC:COND?

Usage: Query only

Mode: This command is required by the firmware applications only.

STATus:QUEStionable:SYNC:ENABle <BitDefinition>

This command sets the bits of the "ENABle" part of the

STATus:QUEStionable:SYNC register. The "ENABle" register selectively enables the individual events of the associated "EVENt" part for the summary bit.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:SYNC:ENAB 65535

Mode: This command is required by the firmware applications only.

STATus:QUEStionable:SYNC:NTRansition <BitDefinition>

This command sets the edge detectors of all bits of the

STATus:QUEStionable:SYNC register from 1 to 0 for the transitions of the "CONDition" bit.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:SYNC:NTR 65535

Mode: This command is required by the firmware applications only.

Remote Control – Commands

STATus:QUEStionable:SYNC:PTRansition <BitDefinition>

This command sets the edge detectors of all bits of the

STATus:QUEStionable:SYNC register from 0 to 1 for the transitions of the "CONDition" bit.

Parameters:

<BitDefinition> 0 to 65535

Example: STAT:QUES:SYNC:PTR 65535

Mode: This command is required by the firmware applications only.

4.2.3.18 SYSTem Subsystem

| SYSTem:COMMunicate:GPIB:RDEVice:COMMand | 727 |
|--|-----|
| SYSTem:COMMunicate:GPIB:RDEVice:GENerator <generator>:ADDRess</generator> | 728 |
| SYSTem:COMMunicate:RDEVice:GENerator <generator>:INTerface</generator> | 728 |
| SYSTem:COMMunicate:RDEVice:GENerator <generator>:LINK</generator> | 728 |
| SYSTem:COMMunicate:RDEVice:GENerator <generator>:TYPE</generator> | 729 |
| SYSTem:COMMunicate:RDEVice:PMETer:DEFine | 729 |
| SYSTem:COMMunicate:RDEVice:PMETer:CONFigure:AUTO[:STATe] | 730 |
| SYSTem:COMMunicate:RDEVice:PMETer:COUNt? | 731 |
| SYSTem:COMMunicate:TCPip:RDEVice:GENerator <generator>:ADDRess</generator> | 731 |
| SYSTem:SPEaker:VOLume | 731 |
| SYSTem:TIME:TSTamp? | 731 |

SYSTem:COMMunicate:GPIB:RDEVice:COMMand <GPIBAddress>, <Command>

.This command sends a command or query string to the external generator connected via the GPIB interface.

This command is only available if the R&S FSV option B10 (External Tracking Generator) is installed.

Parameters:

<GPIBAddress>,

<0...30>: GPIB address of the external generator connected via

<Command>

<command>: String with the command. Only basic I/O is possible.

Example: "SYST:COMM:GPIB:RDEF:COMM 18,'*RST'"

Resets generator.

the GPIB interface.

"SYST:COMM:GPIB:RDEF:COMM 18, 'SOURCE:FREQ:CW

2E9'"

Sets generator frequency to 2 GHz.

"SYST:COMM:GPIB:RDEF:COMM 18,'SOUR:POW 0'"

Sets generator power to 0dBm.

"SYST:COMM:GPIB:RDEF:COMM? 18, 'SENS:POW?'"

Queries the generator power.

Mode: A

Remote Control - Commands

SYSTem:COMMunicate:GPIB:RDEVice:GENerator<generator>:ADDRess

<Number>

Changes the IEC/IEEE-bus address of the external tracking generator.

This command is only available if the R&S FSV option B10 (External Tracking Generator) is installed.

Suffix:

<generator> 1 | 2

tracking generator

For Noise Figure measurements (K30): 1 only

Parameters:

<Number> Range: 0 to 30

*RST: 28

Example: SYST:COMM:GPIB:RDEV:GEN1:ADDR 15

Mode: A, NF

SYSTem:COMMunicate:RDEVice:GENerator<generator>:INTerface <Type>

Defines the interface used for the connection to the external tracking generator.

This command is only available if the R&S FSV option B10 (External Tracking Generator) is installed.

Suffix:

<generator> 1 | 2

tracking generator

For Noise Figure measurements (K30): 1 only

Parameters:

<Type> GPIB | TCPip

*RST: GPIB

Example: SYST:COMM:RDEV:GEN1:INT TCP

Mode: A, NF

SYSTem:COMMunicate:RDEVice:GENerator<generator>:LINK <Type>

This command selects the link type of the external generator if the GPIB interface is used.

The difference between the two GPIB operating modes is the execution speed. While, during GPIB operation, each frequency to be set is transmitted to the generator separately, a whole frequency list can be programmed in one go if the TTL interface is also used. Frequency switching can then be performed per TTL handshake which results in considerable speed advantages.

Notes: Only one of the two generators can be operated via the TTL interface at a time. The other generator must be configured via GPIB.

For Noise Figure measurements (K30), TTL synchronization has no effect.

Remote Control - Commands

This command is only available if the R&S FSV option B10 (External Tracking Generator) is installed.

Suffix:

<generator> 1 | 2

tracking generator

For Noise Figure measurements (K30): 1 only

Parameters:

<Type> GPIB | TTL

GPIB

GPIB connection without TTL synchronization (for all generators of other manufacturers and some Rohde & Schwarz devices)

TTL

GPIB connection with TTL synchronization (if available; for most

Rohde&Schwarz devices)

*RST: GPIB

Example: SYST:COMM:RDEV:GEN:LINK TTL

Selects GPIB + TTL interface for generator operation.

Mode: A, NF

SYSTem:COMMunicate:RDEVice:GENerator<generator>:TYPE <Name>

This command selects the type of external generator. For a list of the available generator types including the associated interface, see chapter 3.6.2.1, "Overview of Generators Supported by the R&S FSV", on page 343.

If no external generator type is currently configured, the query returns "NONE".

This command is only available if the R&S FSV option B10 (External Tracking Generator) is installed.

Suffix:

<generator> 1 | 2

tracking generator

For Noise Figure measurements (K30): 1 only

Parameters:

<Name> Generator name | NONE

*RST: NONE

Example: SYST:COMM:RDEV:GEN2:TYPE 'SME02'

Selects SME02 as generator 2

Mode: A, NF

SYSTem:COMMunicate:RDEVice:PMETer:DEFine <Placeholder>, <Type>, <Interface>, <SerialNo>

This command assigns the power sensor with the specified serial number to the selected power sensor index (configuration).

Remote Control - Commands

The query returns the power sensor type and serial number of the sensor assigned to the specified index.

Suffix:

1...4

Power sensor index

Setting parameters:

<Placeholder> Currently not evaluated

<SerialNo> Serial number of a connected power sensor

Query parameters:

<Type> The power sensor type, e.g. "NRP-Z81".

<Interface> Currently not evaluated

Return values:

<Placeholder> Currently not used

<Type> Detected power sensor type, e.g. "NRP-Z81".

<Interface> Interface the power sensor is connected to; always "USB"

<SerialNo> Serial number of the power sensor assigned to the specified index

Example: SYST:COMM:RDEV:PMET2:DEF '','NRP-Z81','',

'123456'

Assigns the power sensor with the serial number '123456' to the

configuration "Power Sensor 2".
SYST:COMM:RDEV:PMET2:DEF?

Queries the sensor assigned to "Power Sensor 2".

Result:

'','NRP-Z81','USB','123456'

The NRP-Z81 power sensor with the serial number '123456' is

assigned to the "Power Sensor 2".

Mode: all

SYSTem:COMMunicate:RDEVice:PMETer:CONFigure:AUTO[:STATe] < State>

This command defines whether the selected power sensor index is automatically assigned to a subsequently connected power sensor. See also "Power Sensor Assignment" on page 408.

Suffix:

1...4

Power sensor index

Parameters:

<State> ON | OFF

*RST: ON

Example: SYST:COMM:RDEV:PMET:CONF:AUTO OFF

Mode: ALL

Remote Control - Commands

SYSTem:COMMunicate:RDEVice:PMETer:COUNt?

This command queries the number of power sensors currently connected to the R&S FSV.

Suffix:

1...4

irrelevant

Example: SYST:COMM:RDEV:PMET:COUN?

Usage: Query only

Mode: ALL

SYSTem:COMMunicate:TCPip:RDEVice:GENerator<generator>:ADDRess

<Address>

Configures the TCP/IP address for the external tracking generator 1 or 2.

This command is only available if the R&S FSV option B10 (External Tracking Generator) is installed.

Suffix:

<generator> 1 | 2

tracking generator

For Noise Figure measurements (K30): 1 only

Parameters:

<Address> TCP/IP address between 0.0.0.0 and 0.255.255.255

*RST: 0.0.0.0

Example: SYST:COMM:TCP:RDEV:GEN1:ADDR 130.094.122.195

Mode: A

SYSTem:SPEaker:VOLume < Volume >

This command defines the volume of the built-in loudspeaker for demodulated signals.

The command is available with the audio demodulator (option R&S FSV-B3) and in the time domain in Spectrum mode.

Parameters:

<Volume> Range: 0 to 1

*RST: 0.5

Example: SYST:SPE:VOL 0

Switches the loudspeaker to mute.

SYSTem:TIME:TSTamp?

This command queries the time and date from the internal real time clock.

Remote Control - Commands

Return values: <TimeStamp>

Example: SYST:TIME:TSTamp?

Usage: Query only

4.2.3.19 TRACe Subsystem

The TRACe subsystem controls access to the instruments internal trace memory.

Some applications offer up to four measurement windows. For those, the suffix <n> for TRACe selects the measurement window. For all other applications, the suffix is irrelevant.

The TRACe subsystem contains the following subsystem:

"TRACe:IQ Subsystem" on page 736

Some further information on working with IQ data is provided here:

- chapter 3.5.6, "Working with I/Q Data", on page 333
- "I/Q Gating" on page 748

| Commands of the TRACe subsystem | 732 |
|---------------------------------|-----|
| TRACe:IQ Subsystem | 736 |
| I/Q Gating | 748 |

Commands of the TRACe subsystem

TRACe<n>:COPY <TraceNumber>, <TraceNumber>

This command copies data from one trace to another.

Suffix:

<n> window; For applications that do not have more than 1 measure-

ment window, the suffix <n> is irrelevant.

Parameters:

The first argument is the destination of the data to be copied, the

second argument describes the source.

Example: TRAC:COPY TRACE1, TRACE2

TRACe<n>[:DATA]? <ResultType>

This command returns the current trace data or measurement results. In case of several result displays, you have to use specific parameters to query the results.

Remote Control - Commands

The data format is variable. You can set it with FORMat [:DATA] on page 771. For more information on data formats see chapter 4.2.3.22, "Formats for Returned Values: ASCII Format and Binary Format", on page 756.

For details on saving and recalling data refer to chapter 4.2.4.7, "MMEMory Subsystem", on page 777.

Suffix:

<n> 1...

window; For applications that have only one measurement screen, the suffix is irrelevant.

Query parameters:

<ResultType>

TRACE1 | TRACE2 | TRACE3 | TRACE4 | TRACE5 | TRACE6 | SPECtrogram | SGRam | LIST | SPURious

Selects the type of result to be returned.

TRACE1 | ... | TRACE6

The query returns a list of results with one value for each sweep point in the currently set level unit.

For details see table 4-15

LIST

Returns the results of the list evaluation of the Spectrum Emission Mask and Spurious Emissions measurement (Spectrum mode only). For a description of the syntax see table 4-16 below.

SPURious

Returns the peak list of the Spurious Emissions measurement (Spectrum mode only)

SPECtrogram | SGRam

Returns the complete spectogram trace data (requires R&S FSV-K14 option).

For details see table 4-17.

Example: TRAC? TRACE1

Returns the trace data for Trace 1.

Usage: Query only

Mode: A, ADEMOD, BT, NF, PHN, TDS

Table 4-15: Results for <TRACe...> ResultTypes

The query returns a list of results with one value for each sweep point in the currently set level unit. By default, the list contains 691 values. The currently used number of sweep points can be determined using SWE:POIN?, see [SENSe:]SWEep:POINts on page 704.

FORMat REAL, 32 is used as format for binary transmission, and FORMat ASCii for ASCII transmission.

For details on formats refer to chapter 4.2.3.22, "Formats for Returned Values: ASCII Format and Binary Format", on page 756.

With the auto peak detector, only positive peak values can be read out.

In **IQ Analyzer mode**, if the result display configuration "Real/Imag (I/Q)" is selected, this query returns the I values of each trace point first, then the Q values:

 $\text{result} = I_1, I_2, ..., I_n, Q_1, Q_2, ..., Q_n$

Remote Control - Commands

Table 4-16: Results for <LIST> ResultType

Using the LIST parameter, the query returns the results of the list evaluation of the Spectrum Emission Mask and Spurious Emissions measurement (Spectrum mode only) with the following syntax:

<no>, <start>, <stop>, <rbw>, <freq>, <power abs>, <power rel>, <delta>, ,

where:

| <no>:</no> | peak number |
|--|---|
| <start>:</start> | start frequency of range |
| <stop>:</stop> | stop frequency of range |
| <rbw>:</rbw> | resolution bandwidth of range |
| <freq>:</freq> | frequency of peak |
| <pre><power abs="">:</power></pre> | absolute power in dBm of peak |
| <pre><power rel="">:</power></pre> | relative power in dBc (related to the channel power) of peak |
| <delta>:</delta> | distance to the limit line in dB (positive indicates value above the limit, fail) |
| check>: | limit fail (pass = 0, fail =1) |
| <unused1>:</unused1> | reserved (0.0) |
| <unused2>:</unused2> | reserved (0.0) |
| | |

Table 4-17: Results for Spectrogram measurements

For spectrogram measurements, the query returns the complete spectogram trace data (requires R&S FSV-K14 option). For each frame, the trace data is returned as a comma-separated list in the following order:

<TraceData_{Frame0}>, <TraceData_{Frame1}>, ...<TraceData_{FrameMinX}>

where <FrameMinX> is determined by CALC:SGR:FRAM:SEL MIN (see also example below)

The trace data for each frame corresponds to the syntax described for the <TRACe> result type.

To calculate the amount of returned values for <SPECtrogram> results:

CALC:SGR:FRAM:SEL MIN

CALC: SGR: FRAM: SEL? //returns value <FrameMinX>, e.g. -34

 ${\tt SWE:POIN?}$ //returns number of sweep points, e.g. 691

TRACE: DATA? SGR

//returns 34*691 = 25494 comma separated values for the spectrogram

TRACe<n>[:DATA] <Trace>, <Data>

The command transfers trace data from a control computer to the R&S FSV. The transfer of trace data into the R&S FSV memory is available only in spectrum analyzer mode.

The data format is variable. You can set it with FORMat [:DATA] on page 771. For more information on data formats see chapter 4.2.3.22, "Formats for Returned Values: ASCII Format and Binary Format", on page 756.

For details on saving and recalling data refer to chapter 4.2.4.7, "MMEMory Subsystem", on page 777.

Remote Control - Commands

Suffix:

<n> Sets the screen number you want to apply the command to.

For applications that have only one measurement screen, the suf-

fix is irrelevant.

Parameters:

<Trace> TRACE1 | TRACE2 | TRACE3 | TRACE4 | TRACE5 | TRACE6

Selects the trace you want to write data to.

Setting parameters:

<Data> Defines the data you want to transfer.

Example: TRAC TRACe1, +A\$

A\$ is a placeholder for the data list in the current format.

Usage: Setting only

Mode: A

TRACe<n>[:DATA]:MEMory? <Trace>,<OffsSwPoint>,<NoOfSwPoints>

This command queries the previously acquired trace data for the specified trace from the memory. As an offset and number of sweep points to be retrieved can be specified, the trace data can be retrieved in smaller portions, making the command faster than the TRAC: DATA? command. This is useful if only specific parts of the trace data are of interest.

If no parameters are specified with the command, the entire trace data is retrieved; in this case, the command is identical to TRAC: DATA? TRACE1

For details on the returned values see the TRAC:DATA? <TRACE... > command.

Suffix:

<n> 1...4

Selects the measurement window.

Query parameters:

<Trace> TRACE1 | TRACE2 | TRACE3 | TRACE4 | TRACE5 | TRACE6

<OffsSwPoint> The offset in sweep points related to the start of the measurement

at which data retrieval is to start.

<NoOfSwPoints> Number of sweep points to be retrieved from the trace.

Example: TRAC:DATA:MEM? TRACE1,25,100

Retrieves 100 sweep points from trace 1, starting at sweep point

25.

Usage: Query only

TRACe<n>[:DATA]:X? <TraceNumber>

This command reads the x-values of the selected trace.

Remote Control - Commands

Suffix:

<n> 1...4

window; For applications that have only one measurement screen,

the suffix is irrelevant.

Query parameters:

<TraceNumber> TRACE1 | TRACE2 | TRACE3 | TRACE4 | TRACE5 | TRACE6

Trace number

Example: TRACe:DATA:X? TRACE1

Returns the x-values for trace 1.

Usage: Query only

TRACe:IQ Subsystem

The commands of this subsystem are used for acquisition and output of measured IQ data.

Some further information on working with IQ data is provided here:

- chapter 3.5.6, "Working with I/Q Data", on page 333
- "I/Q Gating" on page 748

Different remote modes available

In remote control, two different modes for the I/Q analyzer functions are available. A quick mode for pure data acquisition, and a more sophisticated mode for acquisition and evaluation. The sophisticated evaluation mode can be enabled by a special command (see TRACe<n>: IQ:EVAL on page 744). In the quick data acquisition mode, which is activated by default with the TRACe<n>: IQ[:STATe] command, the new visualization functions are not available; however, performance is slightly improved.

The measurement results are output in the form of a list, three different formats can be selected for this list (TRACe<n>: IQ: DATA: FORMat command).

The FORMat command can be used to select between binary output (32 bit IEEE 754 floating-point values) and output in ASCII format.

For details on formats refer to Formats for Returned Values: ASCII Format and Binary Format.

Different procedures

The commands of this subsystem can be used in two ways:

- Measurement and result query with one command:
 This method causes the least delay between measurement and output of the result data, but it requires the control computer to wait actively for the response data.
- Setting up the instrument, start of the measurement via INIT and query of the result list at the end of the measurement:

Remote Control - Commands

With this method, the control computer can be used for other activities during the measurement. However, the additional time needed for synchronization via service request must be taken into account.

TRACe <n>:IQ[:STATe]</n>	737
TRACe <n>:IQ:AVERage:COUNt</n>	
TRACe <n>:IQ:AVERage[:STATe]</n>	738
TRACe <n>:IQ:BWIDth</n>	738
TRACe <n>:IQ:DATA</n>	739
TRACe <n>:IQ:DATA:FORMat</n>	739
TRACe <n>:IQ:DATA:MEMory?</n>	741
TRACe <n>:IQ:DIQFilter</n>	742
TRACe <n>:IQ:EGATe</n>	743
TRACe <n>:IQ:EGATe:GAP</n>	743
TRACe <n>:IQ:EGATe:LENGth</n>	743
TRACe <n>:IQ:EGATe:NOFgateperiods</n>	744
TRACe <n>:IQ:EGATe:TYPE</n>	744
TRACe <n>:IQ:EVAL</n>	744
TRACe <n>:IQ:RLENgth</n>	745
TRACe <n>:IQ:SET</n>	746
TRACe <n>:IQ:SRATe</n>	747
TRACe <n>:IQ:TPISample?</n>	748

TRACe<n>:IQ[:STATe] <State>

This command switches the I/Q data acquisition on or off.

I/Q data acquisition is not compatible with other measurement functions. Therefore, all other measurement functions are switched off as soon as the I/Q measurement function is switched on. The trace display is also switched off by this command. Therefore, all traces are set to "BLANK".

To switch trace display back on, use the TRACe<n>:IQ:EVAL command.

Note: to enable the evaluation functions of the IQ Analyzer, you must also execute the command TRACe < n > : IQ : EVAL.

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: TRAC: IQ ON

Switches on I/Q data acquisition

TRACe<n>:IQ:AVERage:COUNt <NumberSets>

This command defines the number of I/Q data sets that are to serve as a basis for averaging.

Remote Control - Commands

Suffix:

<n> irrelevant

Parameters:

<NumberSets> 0 to 32767

*RST: 0

Example: TRAC: IQ ON

Switches on acquisition of I/Q data.

TRAC: IQ: AVER ON

Enables averaging of the I/Q measurement data

TRAC: IQ: AVER: COUN 10

Selects averaging over 10 data sets

TRAC: IQ: DATA?

Starts the measurement and reads out the averaged data.

Usage: SCPI confirmed

TRACe<n>:IQ:AVERage[:STATe] <State>

The command enables averaging of the recorded I/Q data, provided that I/Q data acquisition was previously enabled with TRACe<n>:IQ[:STATe] on page 737.

With I/Q data averaging enabled, the maximum amount of I/Q data is limited to 512kS (524288 complex samples).

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: TRAC:IQ ON

Switches on acquisition of I/Q data.

TRAC: IQ: AVER ON

Enables averaging of the I/Q measurement data.

TRAC: IQ: AVER: COUN 10

Selects averaging over 10 data sets.

TRAC: IQ: DATA?

Starts the measurement and reads out the averaged data.

TRACe<n>:IQ:BWIDth

This command queries the flat, usable filter bandwidth of the final I/Q data.

The bandwidth depends on the defined user sample rate and the defined signal source (RF/Digital IQ), see also figure 3-36. This value can not be changed by the user.

Suffix:

<n> irrelevant

Example: TRAC: IQ: BWID?

Remote Control – Commands

TRACe<n>:IQ:DATA

This command starts a measurement with the settings defined via TRACe<n>: IQ:SET and returns the list of measurement results (I/Q samples) immediately after they are corrected in terms of frequency response. The number of measurement results depends on the settings defined with TRACe<n>: IQ:SET, the output format depends on the settings of the FORMat subsystem. The format of the data list is defined by the command TRACe<n>: IQ:DATA:FORMat.

The command requires all response data to be read out completely before the instrument accepts further commands.

The result values are scaled linearly in Volts and correspond to the voltage at the RF or digital input of the instrument. The number of the returned values is 2 * the number of samples.

Note: Using the command with the *RST values for the TRACe<n>:IQ:SET command, the following minimum buffer sizes for the response data are recommended:

ASCII format: 10 kBytes Binary format: 2 kBytes

Suffix:

<n> irrelevant

Example: TRAC: IQ: STAT ON

Enables acquisition of I/Q data

TRAC: IQ: SET NORM, 10MHz, 32MHz, EXT, POS, 0, 4096

Measurement configuration: Sample Rate = 32 MHz Trigger Source = External Trigger Slope = Positive Pretrigger Samples = 0 Number of Samples = 4096

FORMat REAL, 32

Selects format of response data

TRAC: IQ: DATA?

Starts measurement and reads results

TRACe<n>:IQ:DATA:FORMat <Format>

This command defines the transfer format of the I/Q data.

Remote Control – Commands

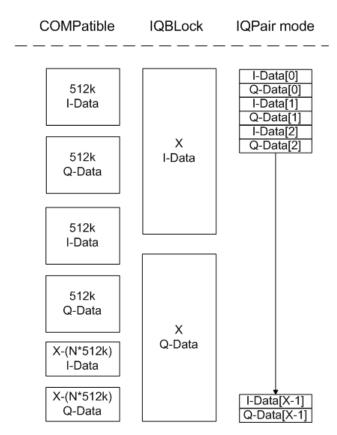


Fig. 4-4: IQ data formats

Note: 512k corresponds to 524288 samples

$$\#of\ I-Data = \#of\ Q-Data = \frac{\#of\ DataBytes}{8}$$

$$Q-Data-Offset = \frac{(\#of\ DataBytes)}{2} + LengthIndicatorDigits$$

Suffix:

<n> irrelevant

Parameters:

*RST: IQBL

For maximum performance, the formats "Compatible" or "IQPair" should be used. Furthermore, for large amounts of data, the data should be in binary format to improve performance.

For further details on formats refer to chapter 4.2.3.22, "Formats for Patturned Values: ASCII Format and Binary Format"

for Returned Values: ASCII Format and Binary Format",

on page 756.

Remote Control – Commands

TRACe<n>:IQ:DATA:MEMory? <OffsetSamples>,<NoOfSamples>

This command reads out previously acquired (and frequency response corrected) I/Q data from the memory. Furthermore, the offset related to the start of measurement and the number of I/Q samples are given. Thus, a previously acquired data set can be read out in smaller portions. If no parameters are given, all data is read from the memory. The maximum amount of available data depends on the settings of the TRACe<n>: IQ: SET command, the output format on the settings in the FORMat subsystem.

The returned values are scaled linear in unit Volt and correspond to the voltage at the RF or digital input of the instrument.

The format of the output buffer corresponds to the TRACe < n > : IQ:DATA command.

The command requires all response data to be read out completely before the instrument accepts further commands.

If no I/Q data is available in memory because the corresponding measurement was not started, the command causes a query error.

Suffix:

<n> irrelevant

Parameters:

<OffsetSamples> Offset of the values to be read, in relation to the start of the

acquired data.

Range: 0 to <# of samples> – 1, with <# of samples> being

the value set by the "TRACe:IQ:SET" command

*RST: 0

<NoOfSamples> Number of measurement values to be read.

Range: 1 to <# of samples> - <offset samples> with <# of

samples> being the value set by the

"TRACe:IQ:SET" command

*RST: <# of samples>

Remote Control - Commands

Example: TRAC:IQ:STAT ON

Enables acquisition of I/Q data

TRAC: IQ: SET NORM, 10MHz, 32MHz, EXT, POS, 100, 4096

Measurement configuration:

Sample Rate = 32 MHz Trigger Source = External Trigger Slope = Positive Pretrigger Samples = 100 Number of Samples = 4096

INIT; *WAI

Starts measurement and wait for sync

FORMat REAL, 32

Determines output format

To read the results:

TRAC: IQ: DATA: MEM?
Reads all 4096 I/Q data

TRAC: IQ: DATA: MEM? 0,2048

Reads 2048 I/Q data starting at the beginning of data acquisition

TRAC: IQ: DATA: MEM? 2048, 1024

Reads 1024 I/Q data from half of the recorded data

TRAC: IQ: DATA: MEM? 100,512

Reads 512 I/Q data starting at the trigger point (< Pretrigger Sam-

ples> was 100)

Usage: Query only

TRACe<n>:IQ:DIQFilter <State>

This command is only available when using the Digital Baseband Interface (R&S FSV-B17).

By default, a decimation filter is used during data acquisition to reduce the sample rate to the value defined using TRACe<n>: IQ: SRATe.

If the filter is bypassed, the sample rate is identical to the input sample rate configured for the Digital I/Q input source (see INPut:DIQ:SRATe on page 615).

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

ON

The digital I/Q filter bypass is on, i.e. no filter or resampler is used during I/Q data acquisition.

OFF

The filter bypass is off, i.e. decimation filter and resampler are

used during I/Q data acquisition.

*RST: OFF

Example: TRAC:IQ:DIQF ON

Remote Control - Commands

Mode: IQ

TRACe<n>:IQ:EGATe <State>

Activates or deactivates the gate function for IQ data measurements. This command is only valid for TRAC:IQ ON and trigger modes "EXT" and "IFP". The gate trigger is specified using TRACe<n>: IQ: SET on page 746. For details see "I/Q Gating" on page 748.

This function is not available if the R&S Digital I/Q Interface (R&S FSV-B17) is active.

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: TRAC: IQ: EGAT: ON

TRACe<n>:IQ:EGATe:GAP <Samples>

Defines the interval between several gate periods in samples. For details see "I/Q Gating" on page 748.

This function is not available if the R&S Digital I/Q Interface (R&S FSV-B17) is active.

Suffix:

<n> irrelevant

Parameters:

<Samples> <numeric value>

Max = MaxPreTriggerSamples * 128 MHz/sample rate pretrigger samples defined by TRACe<n>:IQ:SET; sample rate defined by TRACe<n>:IQ:SRATe)

Range: 1...Max (samples)

*RST: 100

Example: TRAC:IQ:EGAT:GAP 2

TRACe<n>:IQ:EGATe:LENGth <GateLength>

Defines the gate length in samples in edge mode. For details see "I/Q Gating" on page 748.

This function is not available if the R&S Digital I/Q Interface (R&S FSV-B17) is active.

Suffix:

<n> irrelevant

Remote Control - Commands

Parameters:

<GateLength> <numeric value>

Max = MaxPreTriggerSamples * 128 MHz/sample rate pretrigger samples defined by TRACe<n>:IQ:SET; sample rate defined by TRACe<n>:IQ:SRATe)

Range: 1...Max (samples)

*RST: 100

Example: TRAC:IQ:EGAT:LENG 2000

TRACe<n>:IQ:EGATe:NOFgateperiods < Number>

Defines the number of gate periods after a trigger signal. For details see "I/Q Gating" on page 748.

This function is not available if the R&S Digital I/Q Interface (R&S FSV-B17) is active.

Suffix:

<n> irrelevant

Parameters:

<Number> 1...1023

*RST: 1

Example: TRAC:IQ:EGAT:NOF 2

TRACe<n>:IQ:EGATe:TYPE <Type>

Specifies the gate trigger type used for data collection. For details see "I/Q Gating" on page 748.

Note: Using gating with gate mode "level" and an IFP trigger (TRIGger<n>[: SEQuence]:SOURce), the holdoff time for the IFP trigger (see TRIGger<n>[: SEQuence]:IFPower:HOLDoff on page 750) is ignored.

This function is not available if the R&S Digital I/Q Interface (R&S FSV-B17) is active.

Suffix:

<n> irrelevant

Parameters:

<Type> LEVel | EDGE

*RST: EDGE

Example: TRAC: IQ: EGAT: TYPE LEV

TRACe<n>:IQ:EVAL <State>

This command enables or disables the IQ data evaluation mode and is a prerequisite for the IQ Analyzer functions.

Remote Control - Commands

Before this command can be executed, IQ data acquistion must be enabled (see TRACe < n > : IQ[:STATe] on page 737). This command automatically disables the IQ data evaluation mode to provide optimum performance for IQ-data acquisition.

If you start the IQ Analyzer manually by selecting the "IQ Analyzer" mode in the R&S FSV, or use the CALCulate<n>: FORMat command, the IQ data evaluation mode is automatically activated.

The maximum number of samples for RF input is 200 MS. For details see chapter 3.5.6, "Working with I/Q Data", on page 333.

For digital input see table 3-14.

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

ON

all functions of the IQ Analyzer are available

OFF

no traces or marker operations are available; IQ data can only be captured, but with a better performance than in active IQ data

evaluation mode *RST: OFF

Example: TRAC: IQ ON

Enables IQ data acquisition

TRAC: IQ: EVAL ON

Enables the IQ data evaluation mode.

TRACe<n>:IQ:RLENgth <NoOfSamples>

This command sets the record length for the acquired I/Q data. Increasing the record length automatically also increases the measurement time.

Note: Alternatively, you can define the measurement time using the SENS: SWE: TIME command.

Suffix:

<n> irrelevant

Parameters:

<NoOfSamples> Number of measurement values to record.

For digital input via the R&S Digital I/Q Interface (R&S FSVB17)

the valid number of samples is described in table 3-14.

Range: 1 ... 209715200(= 200*1024*1024);

*RST: 691

Example: TRAC:IQ:RLEN 256

Remote Control – Commands

TRACe<n>:IQ:SET NORM,<Placeholder>, <SampleRate>, <TriggerMode>, <TriggerSlope>, <PretriggerSamp>, <NumberSamples>

This command defines the settings of the R&S FSV hardware for the measurement of I/Q data. This allows setting the sample rate, trigger conditions and the record length.

If this command is omitted, the current instrument settings are used for the corresponding parameters.

This command switches to IQ mode automatically (see also TRACe < n > : IQ[:STATe] on page 737).

The trigger level can be set using the TRIGger<n>[:SEQuence]:SOURce command.

Note: When using the default settings with the TRACe<n>: IQ: DATA command, the following minimum buffer sizes for the response data are recommended: ASCII format 10 kBytes, Binary format 2 kBytes.

Tip: To determine the trigger point in the sample (for "External" or "IF Power" trigger mode), use the TRACe < n > : IQ: TPISample? on page 748 command.

Parameters:

NORM is not evaluated, but must be inserted

<Placeholder> numeric value

is not evaluated, but must be inserted

<SampleRate> Sample rate of the I/Q data (user sample rate). See chap-

ter 3.5.6.1, "Sample Rate and Maximum Usable Bandwidth (RF

Input)", on page 334 for possible values.

For digital input via the R&S Digital I/Q Interface (R&S FSVB17)

the valid sample rates are described in table 3-14

<TriggerMode> IMMediate | EXTernal | IFPower | BBPower | PSE

Selection of the trigger source used for the measurement. For details on trigger sources, see "Trg/Gate Source"

on page 140.

For IMM mode, gating is automatically deactivated.

*RST: IMM

<TriggerSlope> POSitive | NEGative

Used trigger slope.

*RST: POS

Remote Control – Commands

<Pre><PretriggerSamp>

Defines the trigger offset in terms of pretrigger samples. Negative

values correspond to a trigger delay.

This value also defines the interval between the trigger signal and

the gate edge in samples.

Range:

RF input without gating: 0 to (200 MS - 1)

RF input with gating: 0 to [(200 MS * SR/128 MHz)-1] Digital input: 0 to (MaxNofSamples -1); MaxNofSamples as

defined in table 3-15

Range: 0 to (MaxPreTriggerSamples * 128 MHz/sample

rate).

*RST: 0

<NumberSamples>

Number of measurement values to record (including the pretrigger

samples).

For digital input via the R&S Digital I/Q Interface (R&S FSVB17)

the valid number of samples is described in table 3-14.

Range: 1 ... 209715200(= 200*1024*1024);

*RST: 128

Example:

TRAC: IQ: SET NORM, 10 MHz, 32 MHz, EXT, POS, 0, 2048

Reads 2048 I/Q-values starting at the trigger point.

sample rate = 32 MHz trigger = External slope = Positive

TRAC:IQ:SET NORM,10 MHz,4 MHz,EXT,POS,1024,512

Reads 512 I/Q-values from 1024 measurement points before the

trigger point.

sample rate = 4 MHz trigger = External slope = Positive

TRACe<n>:IQ:SRATe <SampleRate>

This command sets the final user sample rate for the acquired I/Q data. Thus, the sample rate can be modified without affecting the other settings.

Note: The smaller the user sample rate, the smaller the usable I/Q bandwidth, see TRACe<n>: IQ:BWIDth on page 738.

Suffix:

<n> irrelevant

Remote Control – Commands

Parameters:

<SampleRate> Sample rate of the I/Q data (user sample rate). See chap-

ter 3.5.6.1, "Sample Rate and Maximum Usable Bandwidth (RF

Input)", on page 334 for possible values.

For digital input via the R&S Digital I/Q Interface (R&S FSVB17) the valid sample rates are described in "Sample rates, bandwidths and other limitations" in the description of the B17 option in the

base unit.

*RST: 32 MHz (for R&S FSV40 model 1307.9002K39: 12.5

MHz)

TRAC: IQ: SRAT 4 MHZ Example:

TRACe<n>:IQ:TPISample?

This command determines the time offset of the trigger in the sample (trigger position in sample = TPIS). This value can only be determined in triggered measurements using external or IFPower triggers, otherwise the value is 0. The value is not user-definable.

This command is not available if the R&S Digital I/Q Interface (R&S FSV-B17 option) is active.

Suffix:

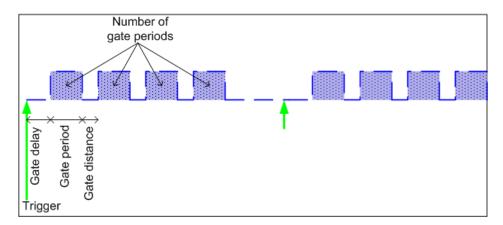
irrelevant <n>

Example: TRAC: IQ: TPIS?

Usage: Query only

I/Q Gating

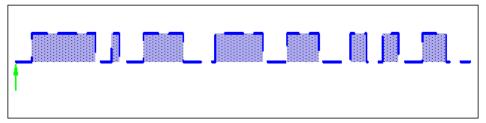
Sometimes in spectrum analysis, measurements are based on a certain length of time called the gate area. With I/Q gating, you can define the gate area using the gate length, the distance between the periods and the number of periods. The gate length and the distance between the capture periods are specified in samples.



I/Q gating is only available using remote commands; manual configuration is not possible.

Using I/Q gating, the gate area can be defined using the following methods:

Edge triggered recording After a trigger signal, the gate period is defined by a gate length and a gate distance. All data in the gate period is recorded until the required number of samples has been recorded.


Remote Control – Commands

SCPI command: TRACE:IQ:EGATE:TYPE EDGE, see TRACe<n>:IQ:EGATe:TYPE on page 744

Level triggered recording

After a trigger signal, all data is recorded in which the gate signal is set to 1, which means it has exceeded a level. In this case, the gate signal can be generated by the IFP trigger, for example: each time the IFP level is exceeded, the IFP trigger signal is set to 1 and the samples in this area are recorded as gate samples.

The number of complex samples to be recorded prior to the trigger event can be selected (see TRACe < n > : IQ : SET on page 746) for all available trigger sources, except for "Free Run".

SCPI command: TRACE:IQ:EGATE:TYPE LEV, see TRACe<n>:IQ:EGATE:
TYPE on page 744

4.2.3.20 TRIGger Subsystem

The TRIGger subsystem is used to synchronize instrument actions with events. It is thus possible to control and synchronize the start of a sweep.

| TRIGger <n>[:SEQuence]:HOLDoff[:TIME]</n> | 750 |
|---|-----|
| TRIGger <n>[:SEQuence]:BBPower:HOLDoff</n> | |
| TRIGger <n>[:SEQuence]:IFPower:HOLDoff</n> | |
| TRIGger <n>[:SEQuence]:IFPower:HYSTeresis</n> | 751 |
| TRIGger <n>[:SEQuence]:LEVel:BBPower</n> | 751 |
| TRIGger <n>[:SEQuence]:LEVel[:EXTernal]</n> | |
| TRIGger <n>[:SEQuence]:LEVel:IFPower</n> | |
| TRIGger <n>[:SEQuence]:LEVel:RFPower</n> | |
| TRIGger <n>[:SEQuence]:I EVel:VIDeo</n> | |

Remote Control – Commands

| TRIGger <n>[:SEQuence]:SLOPe</n> | 752 |
|---|-----|
| TRIGger <n>[:SEQuence]:SOURce</n> | |
| TRIGger <n>[:SEQuence]:TIME:RINTerval</n> | |

TRIGger<n>[:SEQuence]:HOLDoff[:TIME] <Delay>

This command defines the length of the trigger delay.

A negative delay time (pretrigger) can be set in zero span only.

Suffix:

<n> irrelevant

Parameters:

<Delay> Range: zero span: -sweeptime (see data sheet) to 30 s; span:

0 to 30 s

*RST: 0 s

Example: TRIG: HOLD 500us

TRIGger<n>[:SEQuence]:BBPower:HOLDoff <Value>

This command sets the holding time before the next BB power trigger event (for digital input via the R&S Digital I/Q Interface, R&S FSV-B17).

Suffix:

<n> irrelevant

Parameters:

<Value> *RST: 150 ns

Example: TRIG:SOUR BBP

Sets the baseband power trigger source.

TRIG:BBP:HOLD 200 ns Sets the holding time to 200 ns.

Mode: all

TRIGger<n>[:SEQuence]:IFPower:HOLDoff <Value>

This command sets the holding time before the next IF power trigger event.

Note: Using gating with gate mode "level" (see TRACe<n>:IQ:EGATe:TYPE on page 744) and an IFP trigger (see TRIGger<n>[:SEQuence]:LEVel:IFPower on page 752), the holdoff time for the IFP trigger is ignored for frequency sweep, FFT sweep, zero span and IQ mode measurements.

Suffix:

<n> irrelevant

Parameters:

<Value> *RST: 150 ns

Remote Control – Commands

Example: TRIG:SOUR IFP

Sets the IF power trigger source.

TRIG: IFP: HOLD 200 ns

Sets the holding time to 200 ns.

TRIGger<n>[:SEQuence]:IFPower:HYSTeresis <Value>

This command sets the limit that the hysteresis value for the IF power trigger has to fall below in order to trigger the next measurement.

Suffix:

<n> irrelevant

Parameters:

<Value> *RST: 3 dB
Example: TRIG:SOUR IFP

Sets the IF power trigger source.

TRIG: IFP: HYST 10DB

Sets the hysteresis limit value.

TRIGger<n>[:SEQuence]:LEVel:BBPower <Level>

This command sets the level of the baseband power trigger source (for digital input via the R&S Digital I/Q Interface, R&S FSV-B17).

Suffix:

<n> irrelevant

Parameters:

<Level> Range: -50 dBm to +20 dBm

*RST: -20 DBM

Example: TRIG:LEV:BB -30DBM

Mode: All

TRIGger<n>[:SEQuence]:LEVel[:EXTernal] < TriggerLevel>

This command sets the level of the external trigger source in Volt.

Suffix:

<n> irrelevant

Parameters:

<TriggerLevel> Range: 0.5 V to 3.5 V

*RST: 1.4 V

Example: TRIG:LEV 2V

Remote Control – Commands

TRIGger<n>[:SEQuence]:LEVel:IFPower <TriggerLevel>

This command defines the power level at the third intermediate frequency that must be exceeded to cause a trigger event. Note that any RF attenuation or preamplification is considered when the trigger level is analyzed. If defined, a reference level offset is also considered.

Suffix:

<n> irrelevant

Parameters:

<TriggerLevel> *RST: -20 dBm

Example: TRIG:LEV:IFP -30DBM

TRIGger<n>[:SEQuence]:LEVel:RFPower <TriggerLevel>

This command defines the power level at the third intermediate frequency that must be exceeded to cause a trigger event. Note that any RF attenuation or preamplification is considered when the trigger level is analyzed. If defined, a reference level offset is also considered.

Suffix:

<n> irrelevant

Parameters:

<TriggerLevel> *RST: -20 dBm

Example: TRIG:LEV:RFP -30dBm

TRIGger<n>[:SEQuence]:LEVel:VIDeo <Value>

This command sets the level of the video trigger source.

Suffix:

<n> irrelevant

Parameters:

<Value> 0 to 100 PCT

*RST: 50 PCT

Example: TRIG:LEV:VID 50PCT

TRIGger<n>[:SEQuence]:SLOPe <Type>

This command selects the slope of the trigger signal. The selected trigger slope applies to all trigger signal sources.

Suffix:

<n> irrelevant

Parameters:

<Type> POSitive | NEGative

*RST: POSitive

Remote Control - Commands

Example: TRIG:SLOP NEG

TRIGger<n>[:SEQuence]:SOURce <Source>

This command selects the trigger source.

Note: Using gating with gate mode "level" (TRACe<n>: IQ:EGATe:TYPE on page 744/ [SENSe:]SWEep:EGATe:TYPE) and an IFP trigger, the holdoff time for the IFP trigger (see TRIGger<n>[:SEQuence]:HOLDoff[:TIME] on page 750) is ignored for frequency sweep, FFT sweep, zero span and IQ mode measurements.

When triggering or gating is activated, the squelch function is automatically disabled (see [SENSe:]DEMod:SQUelch[:STATe]).

For details on trigger modes refer to "Trg/Gate Source" on page 140.

For details on trigger modes refer to the "Trg/Gate Source" softkey in the base unit description.

Suffix:

<n> irrelevant

Parameters:

<Source> IMMediate

Free Run

EXTern

External trigger

IFPower

Power trigger at the second intermediate frequency

RFPower

Power trigger at the first intermediate frequency

GP0 | GP1 | GP2 | GP3 | GP4 | GP5

For I/Q Analyzer or AnalogDemod mode only:

Defines triggering of the measurement directly via the LVDS connector. The parameter specifies which general purpose bit (0 to 5) will provide the trigger data.

This trigger mode is available for input from the R&S Digital I/Q Interface (option R&S FSV-B17) only.

The assignment of the general purpose bits used by the Digital IQ trigger to the LVDS connector pins is provided in table 4-18 (See also table 3-20).

VIDeo

Video mode is only available in the time domain and only in Spectrum mode.

BBPower

Baseband power (for digital input via the R&S Digital I/Q Interface, R&S FSV-B17)

PSEN

External power sensor (requires R&S FSV-K9 option)

*RST: IMMediate

Remote Control - Commands

Example: TRIG:SOUR EXT

Selects the external trigger input as source of the trigger signal

Table 4-18: Assignment of general purpose bits to LVDS connector pins

| Bit | LVDS pin |
|-----|---------------------|
| GP0 | SDATA4_P - Trigger1 |
| GP1 | SDATA4_P - Trigger2 |
| GP2 | SDATA0_P - Reserve1 |
| GP3 | SDATA4_P - Reserve2 |
| GP4 | SDATA0_P - Marker1 |
| GP5 | SDATA4_P - Marker2 |

TRIGger<n>[:SEQuence]:TIME:RINTerval <Interval>

This command sets the repetition interval for the time trigger source.

Suffix:

<n> irrelevant

Parameters:

<Interval> 2.0 ms to 5000

*RST: 1.0

Example: TRIG:SOUR TIME

Selects the time trigger input for triggering.

TRIG:TIME:RINT 50

The sweep starts every 50 s.

Mode: All

4.2.3.21 UNIT Subsystem

The UNIT subsystem sets the basic unit of the setting parameters.

UNIT<n>:POWer <Unit>

This command selects the default unit.

The unit is the same for al measurementl windows.

Parameters:

<Unit> DBM | V | A | W | DBPW | WATT | DBPT | DBUV | DBMV | VOLT |

DBUA | AMPere

*RST: DBM

Example: UNIT: POW DBUV

Sets the power unit to dBm.

Usage: SCPI confirmed

Remote Control – Commands

UNIT<n>:PMETer:POWer <Unit>

This command selects the unit for absolute power sensor measurement for the selected sensor.

Suffix:

<n> irrelevant

1...4

Power sensor index

Parameters:

<Unit> DBM | WATT | W

*RST: DBM

Example: UNIT: PMET: POW DBM

Usage: SCPI confirmed

Mode: PSM

UNIT<n>:PMETer:POWer:RATio <Unit>

This command selects the unit for relative power sensor measurement for the selected sensor.

Suffix:

<n> irrelevant

1...4

Power sensor index

Parameters:

<Unit> DB | PCT

*RST: DB

Example: UNIT: PMET: POW: RAT DB

Usage: SCPI confirmed

Mode: PSM

UNIT:THD < Mode>

Selects the unit for THD measurements.

Parameters:

<Mode> DB | PCT

*RST: DB

Example: UNIT: THD PCT

Mode: ADEMOD, SFM

Remote Control - Commands

4.2.3.22 Formats for Returned Values: ASCII Format and Binary Format

ASCII Format (FORMat ASCII)

The command reads out a list of comma separated values (CSV) of the measured values in floating point format.

Reading out data in binary format is quicker than in ASCII format. Thus, binary format is recommended for large amounts of data.

Binary Format (FORMat REAL,32)

The command reads out binary data (Definite Length Block Data according to IEEE 488.2), each measurement value being formatted in 32 Bit IEEE 754 Floating-Point-Format.

Depending on the number of samples to be transferred, 2 different kinds of syntax are used:

For <10¹⁰ samples:

The schema of the result string is as follows:

#<NoOfDigits><NoOfDataBytes><value1><value2>...<value n>, with

| # | Header prefix, 1 byte |
|---------------------------------|---|
| <noofdigits></noofdigits> | Number of digits of the following number of data bytes (= 4 in the example), 1 byte |
| <noofdatabytes></noofdatabytes> | Number of following data bytes in decimal form (= 1024 in the example), 19 bytes |
| <value></value> | Data values, each one is a 4-byte floating point value |

Example:

#41024<value1><value2>...<value 256>

4: the following number of data bytes has 4 digits

1024: 1024 Bytes of following data; float: 4 Bytes / value => 1024 / 4 = 256 values (128 I and 128 Q values)

<value x>: 4 Byte values, must be interpreted as float

For ≧10¹⁰ samples:

The schema of the result string is as follows:

#(<NoOfDataBytes>)<value1><value2>...<value n>, with

| # | Header prefix, 1 byte |
|---------------------------------|--|
| (| 1 byte |
| <noofdatabytes></noofdatabytes> | number of following data bytes (= 1024 in the example), 10 bytes |

Remote Control - Commands

|) | 1 byte |
|-----------------|--|
| <value></value> | Data values, each one is a 4-byte floating point value |

Example:

#(1677721600)<value 1><value 2> ... <value 419430400>

(1677721600): 1677721600 Bytes of following data; float: 4 Bytes / value ==> 1677721600/ 4 = 419430400 values (200Ms I and 200Ms Q values)

<value x>: 4 Byte values, must be interpreted as float

4.2.4 Remote Control – Description of Measurement-Independent Commands

In this section all remote control commands that are independent of a particular measurement mode are described in detail. For details on specific "Spectrum" mode commands refer to chapter 4.2.3, "Remote Control – Description of Analyzer Commands", on page 474.

| 4.2.4.1 | CALibration Subsystem | 757 |
|----------|---|-----|
| 4.2.4.2 | DIAGnostic Subsystem | 759 |
| 4.2.4.3 | DISPlay Subsystem | 764 |
| 4.2.4.4 | CMAP Suffix Assignment | 769 |
| 4.2.4.5 | FORMat Subsytem | 771 |
| 4.2.4.6 | HCOPy Subsystem | 771 |
| 4.2.4.7 | MMEMory Subsystem | 777 |
| 4.2.4.8 | OUTPut Subsystem (Option Additional Interfaces, B5) | 789 |
| 4.2.4.9 | SENSe Subsystem | 790 |
| | SENSe:CORRection Subsystem | 790 |
| | SENSe:ROSCillator Subsystem | 794 |
| 4.2.4.10 | SOURce Subsystem | 795 |
| | SOURce:TEMPerature Subsystem | 795 |
| | SOURce:EXTernal Subsystem | 795 |
| 4.2.4.11 | STATus Subsystem | 796 |
| 4.2.4.12 | SYSTem Subsystem | 799 |
| | | |

4.2.4.1 CALibration Subsystem

The commands of the CALibration subsystem determine the data for system error correction in the instrument.

Remote Control – Commands

| CALibration:ABORt | 758 |
|---------------------|-----|
| CALibration[:ALL]? | 758 |
| CALibration:RESult? | |
| CALibration:STATe | 759 |

CALibration:ABORt

This command aborts the current calibration routine.

Example: CAL:ABORt

Aborts calibration.

Usage: Event

SCPI confirmed

CALibration[:ALL]?

This command initiates a calibration routine and queries if calibration was successful.

During the acquisition of correction data the instrument does not accept any remote control commands.

In order to recognize when the acquisition of correction data is completed, the MAV bit in the status byte can be used. If the associated bit is set in the Service Request Enable Register, the instrument generates a service request after the acquisition of correction data has been completed.

Return values:

<CalibrationState> 0

The command returns a '0' if calibration was successful.

Example: *CLS

Resets the status management.

*SRE 16

Enables MAV bit in the Service Request Enable Register.

*CAL?

Starts the correction data recording, and then a service request is

generated.

Usage: Query only

SCPI confirmed

CALibration: RESult?

This command returns the results collected during calibration.

Return values:

<CalibrationData> String containing the calibration data.

Remote Control - Commands

Example: CAL:RES?

would return, e.g.

Total Calibration Status:

PASSED, Date (dd/mm/yyyy): 12/07/2004,

Time: 16:24:54, Runtime: 00.06

Usage: Query only

CALibration:STATe <State>

This command includes or excludes calibration data in the actual measurement.

Parameters:

<State> ON | OFF

Example: CAL:STAT OFF

Sets up the instrument to ignore the calibration data.

Usage: SCPI confirmed

4.2.4.2 DIAGnostic Subsystem

The DIAGnostic subsystem contains the commands which support instrument diagnostics for maintenance, service and repair. In accordance with the SCPI standard, all of these commands are device-specific.

| DIAGnostic <n>:SERVice:BIOSinfo?</n> | 750 |
|---|-----|
| | |
| DIAGnostic <n>:SERVice:HWINfo?</n> | 760 |
| DIAGnostic <n>:SERVice:INPut:PULSed:CFRequency</n> | 760 |
| DIAGnostic <n>:SERVice:INPut:PULSed:MCFRequency</n> | 761 |
| DIAGnostic <n>:SERVice:INPut[:SELect]</n> | 761 |
| DIAGnostic <n>:SERVice:NSOurce</n> | 761 |
| DIAGnostic <n>:SERVice:SFUNction</n> | 762 |
| DIAGnostic <n>:SERVice:SFUNction:LASTresult?</n> | 762 |
| DIAGnostic <n>:SERVice:SFUNction:RESults:DELete</n> | 762 |
| DIAGnostic <n>:SERVice:SFUNction:RESults:SAVE</n> | 762 |
| DIAGnostic <n>:SERVice:STESt:RESult?</n> | 763 |
| DIAGnostic <n>:SERVice:TEMPerature:FRONt?</n> | |
| DIAGnostic <n>:SERVice:VERSinfo?</n> | |

DIAGnostic<n>:SERVice:BIOSinfo?

This command queries the CPU board BIOS version.

Suffix:

<n> irrelevant

Return values:

<Version> ASCII string containing the BIOS version, e.g. 47.11.

Example: DIAG:SERV:BIOS?

Returns the BIOS version.

Remote Control – Commands

Usage: Query only

DIAGnostic<n>:SERVice:HWINfo?

This command queries the hardware information.

Suffix:

<n> irrelevant

Return values:

<HardwareInfo> "<component 1>|<serial #>|<order #>|<model>| <hardware</pre>

code>|<revision>|<subrevision>",

"<component 2>|<serial #>|<order #>|<model>| <hardware

code>|<revision>|<subrevision>",

...

Table lines are output as string data and are separated by commas. The individual columns of the table are separated from each

other by |.

Example: DIAG:SERV:HWIN?

Queries the hardware information.

"FRONTEND|100001/003|1300.3009|03|01|00|00",
"MOTHERBOARD|123456/002|1300.3080|02|00|00|00",

. . .

Usage: Query only

DIAGnostic<n>:SERVice:INPut:PULSed:CFRequency <Frequency>

This command defines the frequency of the calibration signal.

Before you can use the command, you have to feed in a calibration signal with DIAGnostic<n>:SERVice:INPut[:SELect] on page 761.

Suffix:

<n> irrelevant

Parameters:

<Frequency> Possible frequencies of the calibration signal are fix.

If you define a frequency that is not available, the R&S FSV uses the next available frequency. Example: a frequency of 20 MHz is

rounded up to the next available frequency (21.33 MHz).

*RST: 64 MHz

Example: DIAG:SERV:INP:PULS:CFR 128 MHz

Defines a calibration signal frequency of 128 MHz.

Usage: SCPI confirmed

Remote Control – Commands

DIAGnostic<n>:SERVice:INPut:PULSed:MCFRequency <Frequency>

This command sets the calibration frequency for frequencies greater than 7 GHz. This command only takes effect if a microwave calibration signal is selected for input (DIAGnostic<n>:SERVice:INPut[:SELect] on page 761).

Suffix:

<n> irrelevant

Parameters:

<Frequency> <numeric value>

*RST: 7 GHz

Example: DIAG:SERV:INP:PULS:MCFR 7,1 GHz

Usage: SCPI confirmed

DIAGnostic<n>:SERVice:INPut[:SELect] <Signal>

This command selects the source of the signal.

You can feed in a signal from the RF input or the calibration signal.

Suffix:

<n> irrelevant

Parameters:

<Signal> CALibration

Calibration MCALibration

Microwave calibration (for R&S FSV 13 and 30 only)

RF RF input

*RST: RF

Example: DIAG:SERV:INP CAL

Selects the calibration signal as the input signal

DIAGnostic<n>:SERVice:NSOurce <State>

This command switches the 28 V supply of the noise source on the front panel on or off.

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: DIAG:SERV:NSO ON

Remote Control - Commands

DIAGnostic<n>:SERVice:SFUNction <ServiceFunction>

This command starts a service function.

The service functions are available after you have entered the level 1 or level 2 system password.

Suffix:

<n> irrelevant

Parameters:

<ServiceFunction> String containing the ID of the service function.

The ID of the service function is made up out of five numbers,

separated by a point.

function group numberboard number

function number

• parameter 1 (see the Service Manual)

• parameter 2 (see the Service Manual)

Example: DIAG:SERV:SFUN '2.0.2.12.1'

Usage: Event

DIAGnostic<n>:SERVice:SFUNction:LASTresult?

This command queries the results of the most recent service function you have used.

Suffix:

<n> irrelevant

Example: DIAG:SERV:SFUN:LAST?

Usage: Query only

DIAGnostic<n>:SERVice:SFUNction:RESults:DELete

This command deletes the results of the most recent service function you have used.

Suffix:

<n> irrelevant

Example: DIAG:SERV:SFUN:RES:DEL

Usage: Event

DIAGnostic<n>:SERVice:SFUNction:RESults:SAVE <FileName>

This command saves the results of the most recent service function you have used in a file.

Suffix:

<n> irrelevant

Remote Control - Commands

Parameters:

<FileName> String containing the file name.

Example: DIAG:SERV:SFUN:RES:SAVE "C:\diag"

DIAGnostic<n>:SERVice:STESt:RESult?

This command queries the self test results.

Suffix:

<n> irrelevant

Parameters:

<Results> String of data containing the results.

The rows of the self test result table are separated by commas.

Example: DIAG:SERV:STES:RES?

would return, e.g.:

"Total Selftest Status:

PASSED", "Date (dd/mm/yyyy): 09/07/2004 TIME:

16:24:54", "Runtime: 00:06", "...

Usage: Query only

DIAGnostic<n>:SERVice:TEMPerature:FRONt?

This command queries the temperature of the frontend.

Parameters:

<Temperature> Temperature of the frontend.
Example: DIAG:SERV:TEMP:FRON?

Usage: Query only

DIAGnostic<n>:SERVice:VERSinfo?

This command queries information about the hardware and software components.

Suffix:

<n> irrelevant

Return values:

<Information> String containing the version of hardware and software compo-

nents including the types of licenses for installed firmware options.

Remote Control - Commands

Example: DIAG:SERV:VERS?

Queries the version information.

Response:

Instrument Firmware |1.60

BIOS |5.1.22.3

Image Version |3.0

CPLD |3.0

PCI-FPGA |8.007

Data Sheet Version | 01.00

Time Control Management ||active

RF Preamplifier B22| |permanent

Electronic Attenuator B25| |permanent Frequency Extension 20 Hz B29| |permanent

40 MHz Bandwidth B70| |permanent

Analog Demod K7| |permanent

FM Stereo K7S| |permanent

Bluetooth K8| |permanent

Power Sensor Support K9| |permanent

Spectrogram K14| |permanent

Vector Signal Analysis K70|1.60|permanent

3GPP Base Station K72|1.60|permanent

3GPP Mobile Station K73|1.60|permanent

TD-SCDMA Base Station K76|1.60|permanent

TD-SCDMA Mobile Station K77|1.60|permanent

CDMA2000 Base Station K82|1.60|permanent

CDMA2000 Mobile Station K83|1.60|permanent

1xEV-DO Base Station K84|1.60|permanent

1xEV-DO Mobile Station K85|1.60|permanent

OFDM-VSA K96| |permanent

LTE FDD Downlink K100| |permanent

LTE FDD Uplink K101| |permanent

LTE Downlink MIMO K102| |permanent

LTE TDD Downlink K104| |permanent

LTE TDD Uplink K105| |permanent

Usage: Query only

SCPI confirmed

4.2.4.3 DISPlay Subsystem

The DISPLay subsystem controls the selection and presentation of textual and graphic information as well as of measurement data on the display.

Some applications offer up to four measurement windows. For those, the suffix <1....4> for WINDow selects the measurement window. For all other applications, the suffix is irrelevant.

Remote Control – Commands

Further Information

chapter 4.2.4.4, "CMAP Suffix Assignment", on page 769

DISPlay:ANNotation:FREQuency	765
DISPlay:CMAP <item>:DEFault</item>	765
DISPlay:CMAP <item>:HSL</item>	765
DISPlay:CMAP <item>:PDEFined</item>	766
DISPlay:LOGO	
DISPlay:PSAVe:HOLDoff	767
DISPlay:PSAVe[:STATe]	767
DISPlay:SKEYs[:STATe]	767
DISPlay:TBAR[STATe]	767
DISPlay:THEMe:CATalog?	767
DISPlay:THEMe:SELect	
DISPlay:TOUChscreen:STATe	768
DISPlay[:WINDow <n>]:TEXT[:DATA]</n>	768
DISPlay[:WINDow <n>]:TEXT:STATe</n>	
DISPlay[:WINDow <n>]:TIME</n>	
DISPlay[:WINDow <n>]:TIME:FORMat</n>	769

DISPlay:ANNotation:FREQuency <State>

This command switches the x-axis annotation on or off.

Parameters:

<State> ON | OFF

*RST: ON

Example: DISP:ANN:FREQ OFF

Usage: SCPI confirmed

DISPlay:CMAP<item>:DEFault <Setting>

This command resets the screen colors of all display items to their default settings.

Suffix:

<item> irrelevant

Parameters:

<Setting> 1 | 2

Default settings DEFault1 and DEFault2

Example: DISP:CMAP:DEF2

Selects default setting 2 for setting the colors.

Usage: Event

SCPI confirmed

DISPlay:CMAP<item>:HSL <ColorTable>

This command defines the color table of the instrument.

Remote Control - Commands

The set values are not changed by *RST.

Suffix:

<item> Selects the display item. For more information see chapter 4.2.4.4,

"CMAP Suffix Assignment", on page 769.

Parameters:

<ColorTable> hue | sat | lum

hue TINT sat

SATURATION

lum

BRIGHTNESS

The value range is 0 to 1 for all parameters.

Example: DISP:CMAP2:HSL 0.3,0.8,1.0

Changes the grid color.

Usage: SCPI confirmed

DISPlay:CMAP<item>:PDEFined <Color>

This command defines the color table of the instrument using predefined color values. Each suffix of CMAP is assigned to one or several graphical elements which can be modified by varying the corresponding color setting.

The values set are not changed by *RST.

Suffix:

<item> Selects the display item. For more information see chapter 4.2.4.4,

"CMAP Suffix Assignment", on page 769.

Parameters:

<Color> BLACk | BLUE | BROWn | GREen | CYAN | RED | MAGenta |

YELLow | WHITe | DGRAy | LGRAy | LBLUe | LGREen | LCYan |

LRED | LMAGenta

Example: DISP:CMAP2:PDEF GRE

Usage: SCPI confirmed

DISPlay:LOGO <State>

This command switches the company logo on the screen on or off.

Parameters:

<State> ON | OFF

*RST: ON

Example: DISP:LOGO OFF

Remote Control – Commands

DISPlay:PSAVe:HOLDoff <Minutes>

This command sets the holdoff time for the power-save mode of the display. The available value range is 1 to 60 minutes, the resolution 1 minute. The entry is dimensionless.

Parameters:

<Minutes> 1 to 60

*RST: 15

Example: DISP:PSAV:HOLD 30

DISPlay:PSAVe[:STATe] <State>

This command switches on or off the power-save mode of the display. With the power-save mode activated the display including backlight is completely switched off after the elapse of the response time (see <code>DISPlay:PSAVe:HOLDoff</code> command).

This mode is recommended to protect the display, especially if the instrument is operated exclusively via remote control.

Parameters:

<State> ON | OFF

*RST: OFF

Example: DISP:PSAVe ON

Switches on the power-save mode.

DISPlay:SKEYs[:STATe] <State>

This command turns the softkey bar in the display on and off.

Parameters:

<State> ON | OFF

*RST: ON

Example: DISP:SKEY OFF

DISPlay:TBAR[STATe] < State>

This command turns the toolbar in the display on or off.

Parameters:

<State> ON | OFF

*RST: OFF

Example: DISP: TOOL ON

DISPlay:THEMe:CATalog?

This command queries the available themes for the display.

Example: DISP:THEMe:CAT?

Remote Control - Commands

Usage: Query only

DISPlay:THEMe:SELect <Theme>

This command selects a theme for the screen display. The theme defines the colors used for keys and screen elements, for example.

Parameters:

<Theme> String containing the name of the theme.

*RST: SPL

Example: DISP:THEM:SEL "OceanBlue"

DISPlay:TOUChscreen:STATe <State>

This command turns the touch screen functionality on, off, or partially on.

Parameters:

<State> ON | OFF | FRAMe

ON

Touch screen function is active for entire screen

OFF

Touch screen is deactivated for entire screen

FRAMe

Touch screen is deactivated for the diagram area of the screen, but active for the surrounding Softkeys, toolbars and menus.

*RST: ON

Example: DISP:TOUC:STAT ON

DISPlay[:WINDow<n>]:TEXT[:DATA] <Comment>

This command defines a comment (max. 20 characters) which can be displayed in one of the measurement windows.

Suffix:

<n> Selects the measurement window.

Parameters:

<Comment> *RST: (empty)

Example: DISP:WIND:TEXT 'Noise Measurement'

Defines the screen title.

DISPlay[:WINDow<n>]:TEXT:STATe <State>

This command turns the display of the comment (screen title) on and off.

Suffix:

<n> Selects the measurement window.

Remote Control – Commands

Parameters:

<State> ON | OFF

*RST: OFF

Example: DISP:TEXT:STAT ON

Switches on the title.

DISPlay[:WINDow<n>]:TIME <State>

This command turns the display of date and time on and off.

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: DISP:TIME ON

DISPlay[:WINDow<n>]:TIME:FORMat <Format>

This command selects the time and date display format.

Suffix:

<n> irrelevant

Parameters:

<Format> US | DE

*RST: DE

Example: DISP:TIME ON

Switches the screen display of date and time on.

DISP:TIME:FORM US

Switches the date and time format to US.

4.2.4.4 CMAP Suffix Assignment

Each suffix of CMAP is assigned one or several graphical elements which can be modified by varying the corresponding color setting. The following assignment applies:

Suffix	Description
CMAP1	Background
CMAP2	Grid
CMAP3 *)	Common Text
CMAP4 *)	Check Status OK
CMAP5 *)	Check Status Error
CMAP6 *)	Text Special 1

Remote Control – Commands

Suffix	Description
CMAP7 *)	Text Special 2
CMAP8	Trace 1
CMAP9	Trace 2
CMAP10	Trace 3
CMAP11	Marker Info Text
CMAP12	Limit Lines
CMAP13	Limit and Margin Check – "Pass"
CMAP14	Limit and Margin Check – "Fail"
CMAP15 *)	Softkey Text
CMAP16 *)	Softkey Background
CMAP17 *)	Selected Field Text
CMAP18 *)	Selected Field Background
CMAP19 *)	Softkey 3D Bright Part
CMAP20 *)	Softkey 3D Dark Part
CMAP21 *)	Softkey State "On"
CMAP22 *)	Softkey State "Dialog open"
CMAP23 *)	Softkey Text Disabled
CMAP24	Logo
CMAP25	Trace 4
CMAP26	Grid – Minorlines
CMAP27	Marker
CMAP28	Display Lines
CMAP29 *)	Sweepcount – Text
CMAP30	Limit and Margin Check – Text
CMAP31	Limit and Margin Check – \"Margin\"
CMAP32 *)	Table Overall – Title Text
CMAP33 *)	Table Overall – Title Background
CMAP34 *)	Table Overall – Text
CMAP35 *)	Table Overall – Background
CMAP36 *)	Table Value – Title Text
CMAP37 *)	Table Value – Title Background
CMAP38 *)	Table Value – Text
CMAP39 *)	Table Value – Background

Remote Control - Commands

Suffix	Description
CMAP40	Trace 5
CMAP41	Trace 6

^{*)} these settings can only be defined via the theme, see chapter 4.2.4.3, "DISPlay Subsystem", on page 764, and are thus ignored in the SCPI command

4.2.4.5 FORMat Subsytem

The FORMat subsystem specifies the data format of the data transmitted from and to the instrument.

FORMat[:DATA] <Format>

This command selects the data format for the data transmitted from the R&S FSV to the controlling computer. It is used for the transmission of trace data. The data format of trace data received by the instrument is automatically recognized, regardless of the format which is programmed.

In the "Spectrum" mode, the format setting REAL, 32 is used for the binary transmission of trace data.

(See also TRACe<n>[:DATA]? on page 732).

Parameters:

<Format> ASCii

ASCII data are transmitted in plain text, separated by commas.

REAL

REAL data are transmitted as 32-bit IEEE 754 floating-point num-

bers in the "definite length block format".

*RST: ASCII

Example: FORM REAL, 32

FORM ASC

4.2.4.6 HCOPy Subsystem

The HCOPy subsystem controls the output of display information for documentation purposes on output devices or files. The instrument allows two independent printer configurations which can be set separately with the suffix <1|2>.

HCOPy:ABORt	772
HCOPy:CMAP <item>:DEFault</item>	
HCOPy:CMAP <item>:HSL</item>	772
HCOPy:CMAP <item>:PDEFined</item>	773
HCOPy:DESTination<1 2>	773
HCOPy:DEVice:COLor	774
HCOPy:DEVice:LANGuage<1 2>	774
HCOPy[:IMMediate<1 2>]	775
HCOPy[:IMMediate<1 2>]:NEXT	775

Remote Control – Commands

HCOPy:ITEM:ALL	776
HCOPy:ITEM:WINDow:TABLe:STATe	776
HCOPy:ITEM:WINDow:TEXT	776
HCOPy:PAGE:ORIentation<1 2>	776
HCOPv:TDSTamp:STATe<1 2>	

HCOPy:ABORt

This command aborts a running hardcopy output.

Example: HCOP:ABOR

Usage: Event

SCPI confirmed

HCOPy:CMAP<item>:DEFault <ColorSet>

This command defines the color scheme for print jobs.

Suffix:

<item> Selects the item for which the color scheme is to be defined.

For details on the CMAP assignment refer to chapter 4.2.4.4,

"CMAP Suffix Assignment", on page 769.

Parameters:

<ColorSet> 1 | 2 | 3 | 4

1

current screen colors with the background in white and the grid in

black.

2

optimized color set

3

user defined color set

4

current screen colors without any changes (setting for hardcopies)

Example: HCOP:CMAP:DEF2

Selects the optimized color set for the color settings of a printout

or a hardcopy.

Usage: Event

SCPI confirmed

HCOPy:CMAP<item>:HSL

This command selects the color for various screen elements in print jobs.

The values set are not changed by *RST.

Remote Control - Commands

Suffix:

<item> Selects the item for which the color scheme is to be defined.

For details on the CMAP assignment refer to chapter 4.2.4.4,

"CMAP Suffix Assignment", on page 769.

Parameters:

hue | sat | lum

hue
tint
sat
saturation
lum
brightness

The value range is 0 to 1 for all parameters.

Example: HCOP:CMAP2:HSL 0.3,0.8,1.0

Changes the grid color

Usage: SCPI confirmed

HCOPy:CMAP<item>:PDEFined <Color>

This command selects a predefined color for various screen elements in print jobs.

The values set are not changed by *RST.

Suffix:

<item> Selects the item for which the color scheme is to be defined.

For details on the CMAP assignment refer to chapter 4.2.4.4,

"CMAP Suffix Assignment", on page 769.

Parameters:

<Color> BLACk | BLUE | BROWn | GREen | CYAN | RED | MAGenta |

YELLow | WHITe | DGRAy | LGRAy | LBLUe | LGREen | LCYan |

LRED | LMAGenta

Example: HCOP:CMAP2:PDEF GRE

Usage: SCPI confirmed

HCOPy:DESTination<1|2> < Medium>

This command selects the destination of a print job.

The type of instrument is selected with SYSTem:COMMunicate:PRINter: SELect <1|2>, which automatically selects a default output medium. Therefore HCOPY:DESTination should always be sent after setting the device type.

The suffix <1|2> selects the printing device.

Remote Control – Commands

Parameters:

<Medium> 'MMEM'

Sends the hardcopy to a file.

You can select the file name with MMEMory: NAME
You can select the file format with HCOPy: DEVice:

LANGuage<1|2>.

'SYST:COMM:PRIN'

Sends the hardcopy to the printer.

You can select the printer with SYSTem: COMMunicate:

PRINter:SELect <1|2>.

'SYST:COMM:CLIP'

Sends the hardcopy to the clipboard.

The format should be WEMF.

*RST: SYST:COMM:CLIP

Example: SYST:COMM:PRIN:SEL2 'LASER on LPT1'

Selects the printer and output medium for device 2.

HCOP: DEST2 'SYST: COMM: PRIN' Selects the printer interface as device 2.

Usage: SCPI confirmed

HCOPy:DEVice:COLor <State>

This command turns color printing on and off.

Parameters:

<State> ON | OFF

ON

Color output

OFF

Black and white output

*RST: OFF

Example: HCOP:DEV:COL ON

Usage: SCPI confirmed

HCOPy:DEVice:LANGuage<1|2> <Format>

This command selects the file format for a print job.

The suffix <1|2> selects the printing device.

Remote Control - Commands

Parameters:

<Format> GDI | WMF, EWMF | BMP, JPG, PNG

GDI

Graphics Device Interface:

Default format for the output to a printer configured under Windows. Must be selected for the output to the printer interface. Can be used for the output to a file. The printer driver configured under Windows is used in this case and a printer-specific file format is thus generated.

(see also HCOPy: DESTination<1|2> command)

WMF, EWMF

WINDOWS Metafile and Enhanced Metafile Format:

Data formats for output files which can be integrated in corresponding programs for documentation purposes at a later time. WMF can only be used for output to a file and EWMF also for the

output to the clipboard.

(see also HCOPy: DESTination<1 | 2> command)

BMP, JPG, PNG

Data format for output to files only.

Example: HCOP: DEV: LANG WMF

Usage: SCPI confirmed

HCOPy[:IMMediate<1|2>]

This command initiates a print job.

If you are printing to a file, the file name depends on MMEMory: NAME.

The suffix <1|2> selects the printing device.

Example: HCOP: DEV: LANG BMP

Selects the data format.

HCOP: DEST 'MMEM'

Directs the hardcopy to a file.

MMEM:NAME 'C:\R_S\instr\user\Print.bmp'

Selects the file name. If the file Print.bmp already exists, it is

replaced.

Saves the hardcopy output into the file Print.bmp.

Usage: Event

SCPI confirmed

HCOPy[:IMMediate<1|2>]:NEXT

This command initiates a print job.

If you are printing to a file, the file name depends on MMEMory: NAME. This command adds a consecutive number to the file name.

Remote Control - Commands

The suffix <1|2> selects the printing device.

Example: HCOP:DEV:LANG BMP

Selects the data format. HCOP: DEST 'MMEM'

Directs the hardcopy to a file.

MMEM:NAME 'C:\R_S\instr\user\Print.bmp'

Selects the file name.

HCOP

Saves the hardcopy output into the file Print.bmp.

HCOP:NEXT

Saves the hardcopy output into the file Print_001.bmp.

HCOP:NEXT

Saves the hardcopy output into the file Print_002.bmp.

Usage: Event

SCPI confirmed

HCOPy:ITEM:ALL

This command includes all screen elements in the printout.

The screen elements include comments, title, time and date.

Example: HCOP:ITEM:ALL

Usage: Event

SCPI confirmed

HCOPy:ITEM:WINDow:TABLe:STATe <State>

This command turns printing of the currently active table on and off.

Parameters:

<State> ON | OFF

*RST: OFF

Example: HCOP:ITEM:WIND:TAB:STAT ON

HCOPy:ITEM:WINDow:TEXT < Comment>

This command defines a comment added to the printout.

Parameters:

<Comment> String containing the comment with a maximum of 100 charcaters.

The line feed is by means of the characters @.

Example: HCOP:ITEM:WIND:TEXT 'comment'

HCOPy:PAGE:ORIentation<1|2> < Orientation>

The command selects the format of the printout.

Remote Control - Commands

The command is only available if the output device is a printer (see HCOPy: DESTination<1 | 2> on page 773).

Parameters:

<Orientation> LANDscape | PORTrait

*RST: PORT

Example: HCOP:PAGE:ORI LAND

Usage: SCPI confirmed

HCOPy:TDSTamp:STATe<1|2> <State>

This command includes or excludes the time and date in the printout.

The suffix <1|2> selects the printing device.

Parameters:

<State> ON | OFF

*RST: OFF

Example: HCOP:TDST:STAT OFF

4.2.4.7 MMEMory Subsystem

The MMEMory (mass memory) subsystem provides commands which allow for access to the storage media of the instrument and for storing and loading various instrument settings.

The various drives can be addressed via the "mass storage unit specifier" <msus> using the conventional DOS syntax. The internal hard disk is addressed by "C:". For details on drives refer to chapter 3.1.2, "Saving and Recalling Settings Files – SAVE/RCL Key", on page 67.

The file names <file_name> are indicated as string parameters with the commands being enclosed in quotation marks. They also comply with DOS conventions.

DOS file names consist of max. 8 ASCII characters and an extension of up to three characters separated from the file name by a dot "." Both, the dot and the extension are optional. The dot is not part of the file name. DOS file names do not distinguish between uppercase and lowercase notation. All letters and digits are permitted as well as the special characters "_", "^", "\$", "~", "!", "#", "%", "&", "-", "{", "}", "(", ")", "@" and "`". Reserved file names are CLOCK\$, CON, AUX, COM1 to COM4, LPT1 to LPT3, NUL and PRN.

The two characters "*" and "?" have the function of so-called "wildcards", i.e., they are variables for selection of several files. The question mark "?" replaces exactly one character, the asterisk means any of the remaining characters in the file name. "*.*" thus means all files in a directory.

In this section all MMEMory commands that are independent of a particular measurement mode are described in detail. For details on specific "Spectrum" mode commands refer to chapter 4.2.3.11, "MMEMory Subsystem", on page 622.

Remote Control - Commands

MMEMory:CATalog?	778
MMEMory:CATalog:LONG?	779
MMEMory:CDIRectory	780
MMEMory:CLEar:ALL	780
MMEMory:CLEar:STATe 1,	780
MMEMory:COMMent	780
MMEMory:COPY	781
MMEMory:DATA	781
MMEMory:DELete	782
MMEMory:LOAD:AUTO	782
MMEMory:LOAD:STATe	783
MMEMory:MDIRectory	783
MMEMory:MOVE	784
MMEMory: MSIS	784
MMEMory:NAME	784
MMEMory:NETWork:DISConnect	785
MMEMory:NETWork:MAP	785
MMEMory:NETWork:UNUSeddrives?	785
MMEMory:NETWork:USEDdrives?	786
MMEMory:RDIRectory	786
MMEMory:SELect[:ITEM]:ALL	786
MMEMory:SELect[:ITEM]:DEFault	786
MMEMory:SELect[:ITEM]:HWSettings	786
MMEMory:SELect[:ITEM]:LINes:ALL	787
MMEMory:SELect[:ITEM]:NONE	787
MMEMory:SELect[:ITEM]:SGRam	787
MMEMory:SELect[:ITEM]:TRACe[:ACTive]	788
MMEMory:SELect[:ITEM]:TRANsducer:ALL	788
MMEMory:STORe <n>:STATe</n>	788
MMEMory:STORe <n>:STATe:NEXT</n>	788
MMEMory:USER <softkey></softkey>	789

MMEMory: CATalog?

This command reads the indicated directory.

Query parameters:

<Path> <path>

DOS Path name

The path name should be conform to DOS conventions and may also include the drive name. According to DOS convention, wild-card characters can be entered in order to query e.g. a list of all files of a partial type.

files of a certain type.

Return values:

Result List of file names in the form of strings separated by commas

Remote Control - Commands

Example: MMEM:CAT? 'C:\R S\Instr\user*.DFL'

SPOOL, have 6 letters and the extension ".WMF". SPOOL1.WMF, SPOOL3.WMF

Usage: Query only

SCPI confirmed

MMEMory: CATalog: LONG?

Corresponds to MMEMory: CATalog? on page 778, but displays extended information on the files contained in the current or specified directory.

This command is an event and therefore has no *RST value and no query.

Query parameters:

<Path> <path>

DOS Path name

The path name should be in conformance with DOS conventions

and may also include the drive name.

Following this value, for each file, a string is listed according to the

following syntax:

"<File name>, <suffix>, <Length of file in

bytes>"

Return values:

Result <total number of bytes the directory contains>,"<File name1>,

<suffix1>, <Length of file 2 in bytes>","<File name 2>, <suffix2>, <Length of file2 in bytes>",...,"<File name n>, <suffix n>, <Length

of file n in bytes>"

The response value consists of a list of strings, separated by commas. It begins with the total number of bytes the directory contains.

Then the information for each file is returned.

The <suffix> may be:

- ASCii

- BINary

- STAT

Example: MMEM:CAT:LONG? 'C:\R_S\Instr\user

Returns all files in C:\R S\Instr\user:

1776,3331993600, "autolog.txt,ASC,1520",

"autologin.reg,BIN,144", "no autologin.reg,BIN,

112"

Query for the current directory:

MMEM: CDIR? Response:

C:\R_S\Instr\user
MMEM:CAT:LONG?

Returns all files in C:\R_S\Instr\user.

Remote Control - Commands

Usage: Query only

SCPI confirmed

MMEMory: CDIRectory < Directory>

This command changes the current directory.

Parameters:

<directory_name>
DOS path name

In addition to the path name, the indication of the directory may contain the drive name. The path name complies with the DOS

conventions.

Example: MMEM:CDIR 'C:\R S\Instr\user'

Selects the directory C:\R_S\Instr\user.

Usage: SCPI confirmed

MMEMory:CLEar:ALL

This command deletes all instrument configuration files in the current directory.

You can select the directory with MMEMory: CDIRectory on page 780. The default directory is C:\R_S\instr\user.

Example: MMEM:CLE:ALL

Usage: Event

MMEMory:CLEar:STATe 1, <FileName>

This command deletes the instrument settings file selected by <file_name>. All associated files on the mass memory storage are cleared.

Parameters:

<FileName> 1,<file_name>

with <file name> = DOS file name without extension

The file name includes indication of the path and may also include

the drive. The path name complies with DOS conventions.

Example: MMEM:CLE:STAT 1,'TEST'

Usage: Event

MMEMory: COMMent < Comment>

This command defines a comment for the stored settings.

Parameters:

<Comment>

Remote Control - Commands

Example: MMEMory: COMMent "ACP measurement with Standard

Tetra from 23.05."

MMEMory::MMEMory:STORe1:STATe 1, "ACP_T"

As a result, in the selection list for recall settings, the comment

"ACP measurement with Standard Tetra from

23.05." is added to the ACP entry.

Usage: SCPI confirmed

MMEMory:COPY <FileSource>,<FileDestination>

This command copies the files indicated in <file_source> to the destination directory indicated with <file_destination> or to the destination file indicated by <file_destination> if <file_source> is just a file.

Parameters:

<FileSource>,<FileDestfilationarce>,<file_destination> = <file_name>

<file_source>,<file_destination> = <file_name>

DOS file name

The indication of the file name may include the path and the drive name. The file names and path information must be in accordance

with the DOS conventions.

Example: MMEM:COPY 'C:\R_S\Instr\user\SETUP.CFG', 'E:'

Usage: Event

SCPI confirmed

MMEMory:DATA <FileName>, [<Block>]

This command writes the block data contained in <block> into the file characterized by <file_name>. The delimiter must be set to EOI to obtain error-free data transfer.

The associated query command reads the indicated file from the mass memory and transfers it to the remote control computer. It should be noted that the buffer memory of the control computer should be large enough to store the file. The setting of the delimiter is irrelevant in this case.

The command is useful for reading stored settings files or trace data from the instrument or for transferring them to the instrument.

Parameters:

<FileName> '<file name>' (file name in single quotes)

selects the file to be transferred

<Block> binary data block with the following structure: #<digit for the length</p>

of the length information><length information (number of bytes)

for the binary data><binary data>

Remote Control - Commands

Example: MMEM:DATA 'TEST01.HCP', #216 This is the file

where:

#2: the next 2 characters are the length indication 16: number of subsequent binary data bytes

This is the file: 16 bytes stored as binary data in the file

TEST01.HCP

MMEM:DATA? 'TEST01.HCP'

Transfers the file TEST01.HCP from the instrument to the control

computer.

Usage: SCPI confirmed

MMEMory: DELete < File Name >

This command deletes the indicated files.

Parameters:

<FileName> = DOS file name

The indication of the file name contains the path and, optionally, the drive name. Indication of the path complies with DOS conven-

tions.

Example: MMEM: DEL 'TEST01.HCP'

The file TEST01.HCP is deleted.

Usage: SCPI confirmed

MMEMory:LOAD:AUTO < Mode>

This command defines which settings file is automatically loaded after the device is switched on. The contents of the file are read after switching on the device and used to define the new device state.

The settings file defined as auto recall set can also be restored by the *RST on page 472 command.

Parameters:

<Mode> 1,'FACTORY' | 1,'<file_name>' | with <file_name>

1,'FACTORY'

deactivates the startup recall function

1,'<file_name>'

activates the startup recall function and defines the settings file to

be loaded

with <file name>

DOS file name with or without extension

The file name includes indication of the path and may also include the drive name. The path name complies with DOS conventions.

Example: MMEM:LOAD:AUTO 1,'C:\R_S\Instr\user\TEST'

Usage: Event

Remote Control - Commands

MMEMory:LOAD:STATe 1, <FileName>

This command restores and activates an instrument configuration stored in a *.dfl file.

Note that files with other formats cannot be loaded with this command.

The contents that are reloaded from the file are defined by the last selection made either in the "Save/Recall" dialogs (manual operation) or through the MMEMory: SELect[:ITEM] commands (remote operation; the settings are identical in both cases).

By default, the selection is limited to the user settings ("User Settings" selection in the dialogs, HWSettings in SCPI). The selection is not reset by PRESET or *RST.

As a consequence, the results of a SCPI script using the MMEMory:LOAD:STATe command without a previous MMEMory:SELect[:ITEM] command may vary, depending on previous actions in the GUI or in previous scripts, even if the script starts with the *RST command.

It is therefore recommended that you use the appropriate MMEMory: SELect[:ITEM] command before using MMEMory:LOAD:STATe.

Parameters:

1

<FileName> DOS file name with or without extension

The file name includes indication of the path and may also include the drive name. The path name complies with DOS conventions.

Example: MMEM:SEL:ALL

//Save all items (User Settings, All Traces, All Limit Lines) from the

R&S FSV.

MMEM:LOAD:STAT 1, 'C:\R_S\Instr\user\TEST01'

//Reloads all items

In the "Recall" dialog, select only "User Settings" and "All Limit

Lines"

MMEM:LOAD:STAT 1, 'C:\R S\Instr\user\TEST01'

//Reloads user settings and all limit lines.

*RST

//Reset instrument.

MMEM:LOAD:STAT 1, 'C:\R S\Instr\user\TEST01'

//Selected items are retained. Reloads user settings and all limit

lines.

Restart the instrument (using the ON/OFF key on the front panel).

MMEM:LOAD:STAT 1, 'C:\R S\Instr\user\TEST01'

// Selected items are set to default. Reloads only the user settings.

Usage: SCPI confirmed

MMEMory: MDIRectory < Directory>

This command creates a new directory. The file name includes indication of the path and may also include the drive name. The path name complies with DOS conventions.

Remote Control - Commands

Parameters:

Usage: Event

MMEMory: MOVE <FileSource>, <FileDestination>

This command renames existing files, if <file_destination> contains no path indication. Otherwise the file is moved to the indicated path and stored under the file name specified there, if any.

Parameters:

<FileSource>,<FileDestfiletisoerce>,<file destination> = <file name> = DOS file name

The file name includes indication of the path and may also include the drive. The path name complies with DOS conventions.

Example: MMEM:MOVE 'C:\TEST01.CFG','SETUP.CFG'

Renames TEST01.CFG in SETUP.CFG in directory C:\.
MMEM:MOVE 'C:\TEST01.CFG','C:\R S\Instr\user

Moves TEST01.CFG from C:\ to C:\R_S\Instr\user.

MMEM:MOVE 'C:\TEST01.CFG','C:
\R S\Instr\user\SETUP.CFG'

Moves TEST01.CFG from C:\ to C:\R_S\Instr\user and renames

the file in SETUP.CFG.

Usage: Event

SCPI confirmed

MMEMory: MSIS < Device>

This command changes to the drive indicated. The drive may be the internal hard disk C:.

Parameters:

<Device> = A: | C: ... Z:

*RST: "C:

The path name complies with DOS conventions.

Example: MMEM:MSIS 'C:'

Usage: SCPI confirmed

MMEMory:NAME <FileName>

This command defines a destination file for the printout started with the $\texttt{HCOPy}[: \texttt{IMMediate} < 1 \mid 2 >]$ on page 775 command. In this case the printer output must be routed to a file as destination.

Remote Control – Commands

Parameters:

<FileName> = DOS file name

The file name includes indication of the path and may also include the drive name. The file name and path information comply with

DOS conventions.

Example: MMEM:NAME 'C:\R S\instr\user\PRINT1.BMP'

Selects the file name.

Usage: Event

SCPI confirmed

MMEMory: NETWork: DISConnect < Drive>

This command disconnects the selected drive.

Parameters:

<Drive>

Example: MMEM:NETW:DISC 'T:'

Disconnects network drive T:

Usage: Event

MMEMory:NETWork:MAP

This command maps a drive to a server or server folder of the network. As a prerequisite in Microsoft networks, sharing of this server or server folder must be enabled.

Parameters:

with = '<string>','<string>'

'<drive>','<\host name or IP address\share name>'

[,'<string>','<string>'],[<Boolean>]

'<user name>','<password>',

ON | OFF for connecting under a different user name, and ena-

bling/disabling reconnect at logon.

The entry is optional. The Boolean parameter can be omitted.

Example: MMEM:NETW:MAP 'T:','\server\folder'

Maps drive T: to folder on server.

Usage: Event

MMEMory: NETWork: UNUSeddrives?

This command lists all unused network drive names.

This command is only a query and therefore has no *RST value.

Example: MMEM:NETW:UNUS?

Lists all unused network drive names.

Usage: Query only

Remote Control - Commands

MMEMory:NETWork:USEDdrives? <ResultType>

This command lists all mapped network drives.

Query parameters:

<ResultType> ON

Lists all mapped network drives including the folder information.

OFF

Lists all mapped network drive names.

*RST: OFF

Example: MMEM:NETW:USED? ON

Lists all mapped network drives including the folder information.

Usage: Query only

MMEMory:RDIRectory < Directory>

This command deletes the indicated directory. The directory name includes indication of the path and may also include the drive name. The path name complies with DOS conventions.

Parameters:

Example: MMEM:RDIR 'C:\TEST'

Usage: Event

MMEMory:SELect[:ITEM]:ALL

This command includes all data subsets in the list of device settings to be stored/loaded.

Example: MMEM:SEL:ALL

Usage: Event

MMEMory:SELect[:ITEM]:DEFault

This command includes the default list in the settings file to be stored/loaded. For details on hardware settings refer to the MMEMory: SELect[:ITEM]: HWSettings on page 786 command.

Example: MMEM:SEL:DEFault

MMEMory:SELect[:ITEM]:HWSettings <State>

This command includes the hardware settings in the settings file to be stored/loaded. The hardware settings include:

- current configuration of general device parameters (general setup)
- · current setting of the measurement hardware including markers

Remote Control – Commands

activated limit lines:

A settings file may include 8 limit lines at maximum. This number includes the activated limit lines and, if available, the de-activated limit lines last used.

Therefore the combination of the non-activated restored limit lines depends on the sequence of use with the MMEMory: LOAD: STATE on page 783 command.

- · user-defined color setting
- configuration for the hardcopy output

Parameters:

<State> ON | OFF

*RST: ON

Example: MMEM:SEL:HWS ON

MMEMory:SELect[:ITEM]:LINes:ALL <State>

This command includes all limit lines (activated and de-activated) in the settings file to be stored/loaded.

Parameters:

<State> ON | OFF

*RST: OFF

Example: MMEM:SEL:LIN:ALL ON

MMEMory:SELect[:ITEM]:NONE

This command excludes all items from the settings file to be stored/loaded.

Example: MMEM: SEL: NONE

Usage: Event

MMEMory:SELect[:ITEM]:SGRam <boolean>

This command adds the spectrogram data to the list of data subsets of a save/recall device setting.

Parameters:

<boolean> ON | OFF

*RST: OFF

Example: MEM:SEL:SGR ON

Adds the spectrogram data to the list of data subsets.

Mode: SPECM

Remote Control – Commands

MMEMory:SELect[:ITEM]:TRACe[:ACTive] <State>

This command includes the active traces in the settings file to be stored/loaded. Active traces are all traces whose state is not blank.

Parameters:

<State> ON | OFF

*RST: OFF, i.e. no traces is stored

Example: MMEM:SEL:TRAC ON

MMEMory:SELect[:ITEM]:TRANsducer:ALL <State>

This command includes all transducer factors and sets in the settings file to be stored/loaded.

Parameters:

<State> ON | OFF

*RST: OFF

Example: MMEM:SEL:TRAN:ALL ON

MMEMory:STORe<n>:STATe <State>

This command stores the current device settings in a *.dfl file.

Suffix:

<n> irrelevant

Parameters:

<State> 1,<file_name>

with <file_name>

DOS file name with or without extension

The file name includes the indication of the path and may also include the drive name. The path name complies with DOS con-

ventions.

Example: MMEM:STOR:STAT 1, 'Save'

Saves the current device settings in the file Save.dfl.

Usage: Event

SCPI confirmed

MMEMory:STORe<n>:STATe:NEXT

This command stores the current device settings in a *.dfl file. The file name used in the last saving process is automatically counted up to the next unused name.

Suffix:

<n> irrelevant

Remote Control - Commands

Example: MMEM:STOR:STAT 1,'Save'

Saves the current device settings in the file Save.dfl.

MMEM:STOR:STAT:NEXT

Saves the current device settings in the file Save 001.dfl

MMEM:STOR:STAT:NEXT

Saves the current device settings in the file Save 002.dfl

Usage: Event

MMEMory: USER < Softkey > < Filename > , < Label >

This command defines the settings file to be loaded when the specified user-definable softkey is selected. The settings file must exist, otherwise an error occurs.

Suffix:

<Softkey> 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

Number of the softkey in the "User" menu.

Parameters:

<Filename> string

This parameter defines the path and file name of the settings to

be loaded.

<Label> string

This parameter defines the label of the user-definable softkey.

*RST: User<Softkey_number>

Example: MMEM:USER1 'C:\MySaveSets\Set1','Set1'

Loads settings file Set1 when the "Set1" softkey in the "User"

menu is selected.

Example: MMEM:USER3 'C:\MySaveSets\Set3',''

Loads settings file Set3 when the "User3" softkey in the "User"

menu is selected.

4.2.4.8 OUTPut Subsystem (Option Additional Interfaces, B5)

The OUTPut subsystem controls the output features of the instrument.

OUTPut:IF[:SOURce]	789
OUTPut:TRIGger	790

OUTPut:IF[:SOURce] <Source>

This command selects the source of the IF output.

Remote Control – Commands

Parameters:

<Source> IF

intermediate frequency output

VIDeo

video output, 200 mV

*RST: IF

Example: OUTP: IF VID

Selects the video signal for the IF output connector.

OUTPut:TRIGger <PortLevel>

This command selects level of the Trigger Out port. Thus, you can trigger an additional device via the external trigger port, for example.

Parameters:

<PortLevel> LOW | HIGH

*RST: LOW

Example: OUTP:TRIG HIGH

4.2.4.9 SENSe Subsystem

The SENSe subsystem is organized in several subsystems. The commands of these subsystems directly control device-specific settings; they do not refer to the signal characteristics of the measurement signal.

The SENSe subsystem controls the essential parameters of the analyzer. In accordance with the SCPI standard, the keyword "SENSe" is optional for this reason, which means that it is not necessary to include the SENSe node in command sequences.

SENSe:CORRection Subsystem	790
SENSe:ROSCillator Subsystem	794

SENSe:CORRection Subsystem

This subsystem controls calibration and normalization.

[SENSe:]CORRection:TRANsducer:ADJust:RLEVel[:STATe]	791
[SENSe:]CORRection:TRANsducer:COMMent	
[SENSe:]CORRection:TRANsducer:DATA	791
[SENSe:]CORRection:TRANsducer:DELete	792
[SENSe:]CORRection:TRANsducer:SCALing	792
[SENSe:]CORRection:TRANsducer:SELect	
[SENSe:]CORRection:TRANsducer[:STATe]	793
[SENSe:]CORRection:TRANsducer:UNIT	793
[SENSe:]CORRection:TRANsducer:VIEW	

Remote Control – Commands

[SENSe:]CORRection:TRANsducer:ADJust:RLEVel[:STATe] <State>

This command turns automatic adjustment of the reference level regarding the transducer factor characteristics on and off.

Before you can use the command, you have to select a transducer factor with [SENSe:]CORRection:TRANsducer:SELect.

Parameters:

<State> ON

Automatically adjusts the reference level with respect to the trans-

ducer factor characteristics.

OFF

Manual adjustment of the reference level with respect to the trans-

ducer factor characteristics is necessary.

*RST: OFF

Example: CORR:TRAN:SEL 'FACTOR'

CORR:TRAN:STAT ON

Selects and turns on a transducer factor.

CORR:TRAN:ADJ:RLEV ON

Adjusts the reference level to the characteristics of the transducer.

[SENSe:]CORRection:TRANsducer:COMMent < Comment>

This command defines a comment for a transducer factor.

Before you can use the command, you have to select a transducer factor with

[SENSe:]CORRection:TRANsducer:SELect on page 792.

Parameters:

<Comment> String containing the comment.

*RST: (empty comment)

Example: CORR:TRAN:SEL 'FACTOR'

CORR: TRAN: STAT ON

Selects and turns on a transducer factor.

CORR: TRAN: COMM 'FACTOR FOR ANTENNA'

Defines a comment for the selected transducer factor.

[SENSe:]CORRection:TRANsducer:DATA <Frequency>,<Level>

This command defines the shape of the transducer factor.

[SENSe:]CORRection:TRANsducer:SELect on page 792.

A transducer factor may contain up to 625 reference values. Each reference value is a combination of a frequency and a level value.

Before you can use this command, you have to select a transducer factor with

Remote Control – Commands

Parameters:

<Frequency> Numeric value in Hz.

The frequency values have to be in ascending order.

<Level> The unit depends on [SENSe:]CORRection:TRANsducer:

UNIT on page 793. By default, it is dB.

Example: SENS:CORR:TRAN:SEL 'TRAN 1'

Selects the transducer factor CORR:TRAN:UNIT 'DB'

Selects the unit for the transducer.

CORR: TRAN: DATA 1MHZ, -30, 2MHZ, -40

Defines the frequency/level pairs 1 MHz, -30 dB and 2 MHz, -40

dB.

[SENSe:]CORRection:TRANsducer:DELete

This command deletes a transducer factor.

Before you can use the command, you have to select a transducer factor with

[SENSe:]CORRection:TRANsducer:SELect.

Example: CORR:TRAN:SEL 'Transducer 1'

CORR:TRAN:DEL

Deletes the selected transducer.

Usage: Event

[SENSe:]CORRection:TRANsducer:SCALing <Scale>

This command selects the scale of the transducer factor.

Before you can use the command, you have to select a transducer factor with [SENSe:]CORRection:TRANsducer:SELect on page 792R&S FSV.

Parameters:

<Scale> LINear | LOGarithmic

*RST: LINear

Example: CORR:TRAN:SEL 'FACTOR'

CORR:TRAN:SCAL LOG

Selects a transducer and scales it logarithmically.

[SENSe:]CORRection:TRANsducer:SELect <FileName>

This command creates or selects a transducer factor.

Parameters:

<FileName> String containing the name of the transducer factor.

If the name does not exist yet, the R&S FSV creates a transducer

factor by that name.

Remote Control – Commands

Example: CORR:TRAN:SEL 'Transducer 1'

Selects the corresponding transducer factor.

[SENSe:]CORRection:TRANsducer[:STATe] <State>

This command turns a transducer factor on and off.

Before you can use the command, you have to select a transducer factor with [SENSe:]CORRection:TRANsducer:SELect.

You can turn on up to 8 transducer factors at the same time.

Parameters:

<State> ON | OFF

*RST: OFF

Example: CORR:TRAN:SEL 'Transducer 1'

CORR: TRAN ON

Turns the transducer factor on.

[SENSe:]CORRection:TRANsducer:UNIT <Unit>

This command selects the unit of a transducer factor.

Before you can use the command, you have to select a transducer factor with [SENSe:]CORRection:TRANsducer:SELect.

Note that the unit of all active transducer factors must be the same or in relative terms (dB).

Parameters:

<Unit> String containing one of the following units:

DB | DBM | DBMV | DBUV | DBUV/M | DBUA DBUA/M | DBPW |

DBPT

*RST: DB

Example: CORR:TRAN:SEL 'FACTOR'

CORR:TRAN:UNIT 'DBUV'

Selects a transducer based on the unit dBµV.

[SENSe:]CORRection:TRANsducer:VIEW <State>

This command includes or excludes a figure of a transducer factor in the diagram.

Before you can use the command, you have to select a transducer factor with

[SENSe:]CORRection:TRANsducer:SELect.

Parameters:

<State> ON | OFF

*RST: OFF

Remote Control - Commands

Example: CORR:TRAN:SEL 'FACTOR'

CORR:TRAN:VIEW ON

Selects and displays a transducer factor.

SENSe:ROSCillator Subsystem

This subsystem controls the reference oscillator. The suffix in SENSe is irrelevant for the commands of this subsystem.

SOURce:EXTernal<1 2>:ROSCillator: EXTernal:FREQuency	794
[SENSe:]ROSCillator:EXTernal:FREQuency	
[SENSe:]ROSCillator:SOURce	
[SENSe:]ROSCillator:SOURce:EAUTo?	795

SOURce:EXTernal<1|2>:ROSCillator: EXTernal:FREQuency [SENSe:]ROSCillator:EXTernal:FREQuency < Frequency >

This command defines the frequency of the external reference oscillator.

If the external reference oscillator is selected, the reference signal must be connected to the rear panel of the instrument.

Parameters:

<Frequency> Range: 1 MHz to 20 MHz

Example: ROSC:EXT:FREQ 13

Sets the frequency to 13 MHz. SOUR: EXT: ROSC: EXT: FREQ 13

Usage: SCPI confirmed

[SENSe:]ROSCillator:SOURce <Source>

This command selects the reference oscillator.

If the external reference oscillator is selected, the reference signal must be connected to the rear panel of the instrument.

Parameters:

<Source> INTernal

The internal reference is used (10 MHz)

EXTernal

The external reference is used; if none is available, an error flag

is displayed in the status bar

EAUTo

The external reference is used as long as it is available, then the

instrument switches to the internal reference

Example: ROSC: SOUR EXT

Usage: SCPI confirmed

Remote Control – Commands

[SENSe:]ROSCillator:SOURce:EAUTo?

This command queries the current reference type in case you have activated an automatic switch to the internal reference if the external reference is missing.

Return values:

<Reference> INT

internal reference

EXT

external reference

Example: SENS:ROSC:SOUR:EAUT?

Queries the currently available reference type.

Usage: Query only

4.2.4.10 SOURce Subsystem

The SOURce subsystem controls the output signals of the instrument.

SOURce: TEMPerature Subsystem

SOURce<n>:TEMPerature:APRobe

This command queries the sensor temperature.

Suffix:

<n> irrelevant

Parameters:

1 (CPU)

Example: SOUR: TEMP: APR? 1

Queries the temperature of the CPU sensor.

Mode: all

SOURce: EXTernal Subsystem

The SOURce:EXTernal subsystem controls the operation of the unit with option External Generator Control (R&S FSV-B10). The commands are only valid for the selected window. The suffix <generator> specifies the external generator 1 or 2.

The commands of the SOURce:EXTernal subsystem assume that the addressed generator was correctly configured with the commands of subsystem
SYSTem:COMMunicate.

If no external generator is selected, if the GPIB or TCP/IP address is not correct, or the generator is not ready for operation, an error message is displayed ("Ext. Generator GPIB Handshake Error!" or "Ext. Generator TCPIP Handshake Error!".

Remote Control – Commands

SOURce<n>:EXTernal<generator>:ROSCillator[:SOURce] <Source>

This command switches between external and internal reference oscillator.

Note: in Spectrum mode, this command defines the reference oscillator for the external tracking generator, see <code>SOURce<n>:EXTernal<generator>:ROSCillator[:SOURce]</code> on page 713.

Suffix:

<n> irrelevant <generator> irrelevant

Parameters:

<Source> INTernal | EXTernal

*RST: INT

Example: SOUR: EXT: ROSC EXT

Switches to external reference oscillator

Mode: all

4.2.4.11 STATus Subsystem

The STATus subsystem contains the commands for the status reporting system (see the Operating Manual on CD-ROM, chapter 5 "Remote Control – Basics"). *RST does not influence the status registers.

STATus:OPERation[:EVENt]	796
STATus:OPERation:CONDition	
STATus:OPERation:ENABle	797
STATus:OPERation:PTRansition.	797
STATus:OPERation:NTRansition	797
STATus:PRESet	798
STATus:QUEStionable:CONDition	798
STATus:QUEStionable[:EVENt]?	798
STATus:QUEStionable:ENABle	798
STATus:QUEStionable:PTRansition	799
STATus:QUEStionable:NTRansition	799
STATus:QUEue[:NEXT?]?	799

STATus:OPERation[:EVENt]

This command queries the contents of the EVENt part of the STATus:OPERation register. The contents of the EVENt part are deleted after readout.

Example: STAT:OPER?

Mode: all

Remote Control – Commands

STATus: OPERation: CONDition

This command queries the CONDition part of the STATus: OPERation register (see the base unit description of status registers in the Remote Control Basics chapter).

Readout does not delete the contents of the CONDition part. The value returned reflects the current hardware status.

Example: STAT:OPER:COND?

Mode: all

STATus: OPERation: ENABle

This command sets the bits of the ENABle section of the STATus:OPERation register. The ENABle register selectively enables the individual events of the associated EVENt section for the summary bit in the status byte.

Parameters:

0 to 65535

Example: STAT:OPER:ENAB 65535

Usage: SCPI confirmed

Mode: all

STATus: OPERation: PTRansition

This command sets the edge detectors of all bits of the STATus:OPERation register from 0 to 1 for the transitions of the CONDition bit.

Parameters:

0 to 65535

Example: STAT:OPER:PTR 65535

Usage: SCPI confirmed

Mode: all

STATus:OPERation:NTRansition

This command sets the edge detectors of all bits of the STATus:OPERation register from 1 to 0 for the transitions of the CONDition bit.

Parameters:

0 to 65535

Example: STAT:OPER:NTR 65535

Usage: SCPI confirmed

Mode: all

Remote Control - Commands

STATus:PRESet

This command resets the edge detectors and ENABle parts of all registers to a defined value. All PTRansition parts are set to FFFFh, i.e. all transitions from 0 to 1 are detected. All NTRansition parts are set to 0, i.e. a transition from 1 to 0 in a CONDition bit is not detected. The ENABle part of the STATus:OPERation and STATus:QUEStionable registers are set to 0, i.e. all events in these registers are not passed on.

Example: STAT: PRES

Usage: SCPI confirmed

Mode: all

STATus:QUEStionable:CONDition

This command queries the CONDition part of the "STATus:QUEStionable" register. This part contains the sum bit of the next lower register. This register part can only be read, but not written into or cleared. Readout does not delete the contents of the CONDition part.

Example: STAT: QUES: COND?

Mode: all

STATus:QUEStionable[:EVENt]?

This command queries the contents of the EVENt part of the STATus:QUEStionable register. The EVENt part indicates whether an event has occurred since the last reading, it is the "memory" of the condition part. It only indicates events passed on by the transition filters. It is permanently updated by the instrument. This part can only be read by the user. Reading the register clears it.

Example: STAT:QUES?

Usage: Query only

Mode: all

STATus: QUEStionable: ENABle

This command sets the bits of the ENABle section of the STATus:QUEStionable register. The ENABle register selectively enables the individual events of the associated EVENt section for the summary bit in the status byte.

Parameters:

0 to 65535

Example: STAT:QUES:ENAB 65535

Usage: SCPI confirmed

Mode: all

Remote Control – Commands

STATus:QUEStionable:PTRansition

This command sets the edge detectors of all bits of the STATus:QUEStionable register from 0 to 1 for the transitions of the CONDition bit.

Parameters:

0 to 65535

Example: STAT:QUES:PTR 65535

Usage: SCPI confirmed

Mode: all

STATus:QUEStionable:NTRansition

This command sets the edge detectors of all bits of the STATus:OPERation register from 1 to 0 for the transitions of the CONDition bit.

Parameters:

0 to 65535

Example: STAT:QUES:NTR 65535

Usage: SCPI confirmed

Mode: all

STATus:QUEue[:NEXT?]?

This command queries the earliest error queue entry and deletes it.

Positive error numbers indicate device-specific errors, negative error numbers are error messages defined by SCPI. If the error queue is empty, the error number 0, "No error", is returned. This command is identical to the SYSTem: ERROr [: NEXT]? command.

Example: STAT:QUES?

Usage: Query only

SCPI confirmed

Mode: all

4.2.4.12 SYSTem Subsystem

This subsystem contains a series of commands for general functions.

SYSTem:APPLication:SRECovery[:STATe]	800
SYSTem:CLOGging	801
SYSTem:COMMunicate:GPIB[:SELF]:ADDRess	801
SYSTem:COMMunicate:GPIB[:SELF]:RTERminator	801
SYSTem:COMMunicate:PRINter:ENUMerate:FIRSt?	801
SYSTem:COMMunicate:PRINter:ENUMerate[:NEXT]?	802
SYSTem:COMMunicate:PRINter:SELect <1 2>	802
SYSTem:COMMunicate:TCPip:CONTrol?	802

Remote Control – Commands

SYSTem:COMPatible	803
SYSTem:DATE	803
SYSTem:DEVice:ID?/SYSTem:DID?	803
SYSTem:DISPlay:FPANel	803
SYSTem:DISPlay:UPDate	803
SYSTem:ERRor:CLEar:ALL	804
SYSTem:ERRor:LIST?	804
SYSTem:ERRor[:NEXT]?	804
SYSTem:FIRMware:UPDate	804
SYSTem:FORMat:IDENt	805
SYSTem:HPCoupling	805
SYSTem:IDENtify:FACTory	805
SYSTem:IDENtify[:STRing]	806
SYSTem:IFGain:MODE	806
SYSTem:KLOCk	806
SYSTem:LANGuage	807
SYSTem:LXI:INFo?	807
SYSTem:LXI:LANReset	807
SYSTem:LXI:MDEScription	808
SYSTem:LXI:PASSword	
SYSTem:PASSword[:CENable]	808
SYSTem:PASSword:RESet	808
SYSTem:PRESet	808
SYSTem:REVision:FACTory	809
SYSTem:REVision[:STRing]	
SYSTem:RSW	809
SYSTem:SHUTdown	810
SYSTem:TIME	810
SYSTem:VERSion?	810

SYSTem:APPLication:SRECovery[:STATe] <State>

Controls instrument behavior when switching between measurement applications, e.g. from "Spectrum" to "Analog Demod" and back.

If activated, the current instrument settings are stored when you switch to a different application. When you switch back to the previous application, the corresponding instrument settings are restored. Thus, the settings of the individual applications are independant of each other.

If deactivated (default), only a few parameters of the current instrument setting are passed between applications (e.g. center frequency, level settings).

Note that although the default value is "OFF", this parameter is not reset using the PRESET key. Thus it must be deactivated manually, if necessary.

Parameters:

<State> ON | OFF

*RST: OFF (not restored using the "PRESET" function)

Example: SYST:APPL:SREC ON

Remote Control - Commands

SYSTem:CLOGging <State>

This command turns logging of remote commands on and off.

Parameters:

<State> ON

Writes all remote commands that have been sent to a file.

The destination is C:

\R S\instr\ScpiLogging\ScpiLog.txt.

OFF

*RST: OFF

SYSTem:COMMunicate:GPIB[:SELF]:ADDRess <Address>

This command changes the GPIB address of the unit.

Parameters:

<Address> 0 to 30

*RST: (no influence on this parameter, factory default 20)

Example: SYST:COMM:GPIB:ADDR 18

Usage: SCPI confirmed

SYSTem:COMMunicate:GPIB[:SELF]:RTERminator < Terminator>

This command changes the GPIB receive terminator.

According to the standard the terminator in ASCII is <LF> and/or <EOI>. For binary data transfers (e.g. trace data) from the control computer to the instrument, the binary code (0AH) used for <LF> might be included in the binary data block, and therefore should not be interpreted as a terminator in this particular case. This can be avoided by changing the receive terminator to EOI.

Output of binary data from the instrument to the control computer does not require such a terminator change.

Parameters:

<Terminator> LFEOI | EOI

*RST: (no influence on this parameter, factory default

LFEOI)

Example: SYST:COMM:GPIB:RTER EOI

SYSTem:COMMunicate:PRINter:ENUMerate:FIRSt?

This command queries the name of the first printer (in the list of printers) available under Windows XP.

The names of other installed printers can be queried with the SYSTem: COMMunicate: PRINter: ENUMerate [: NEXT]? command.

Remote Control - Commands

If no printer is configured an empty string is output.

Parameters:

*RST: NONE

Example: SYST:COMM:PRIN:ENUM:FIRS?

Usage: Query only

SYSTem:COMMunicate:PRINter:ENUMerate[:NEXT]?

This command queries the name of the next printer installed under Windows XP. After all available printer names have been output, an empty string enclosed by quotation marks (") is output for the next query. Further queries are answered by a query error.

The SYSTem: COMMunicate: PRINter: ENUMerate: FIRSt? command should be sent previously to return to the beginning of the printer list and query the name of the first printer.

Example: SYST:COMM:PRIN:ENUM?

Usage: Query only

SYSTem:COMMunicate:PRINter:SELect <1|2> <PrinterName>

This command selects one of the printers configured under Windows XP including the associated output destination.

The specified printer name must be a string (entered in quotes) as returned by the commands

 ${\tt SYSTem:COMMunicate:PRINter:ENUMerate:FIRSt?} \ \textbf{or}$

SYSTem:COMMunicate:PRINter:ENUMerate[:NEXT]?

The $\texttt{HCOPy:DESTination} < 1 \mid 2 >$ on page 773 command is used to select an output medium other than the default one.

Parameters:

<PrinterName> "<printer_name>"

*RST: NONE

Example: SYST:COMM:PRIN:SEL "LASER on LPT1"

SYSTem:COMMunicate:TCPip:CONTrol?

This command outputs the control port for the LAN socket connection. An error indicates that the socket connection is not supported.

Example: SYST:COMM:TCP:CONT?

Usage: Query only

Remote Control – Commands

SYSTem:COMPatible < Mode>

Sets the device in a state compatible to previous R&S signal analyzers, e.g. regarding the number of sweep points.

Parameters:

<mode> DEFault | FSU | FSP

Example: SYST:COMP FSP

Usage: SCPI confirmed

SYSTem:DATE < Date>

This command is used to enter the date for the internal calendar.

The sequence of entry is year, month, day.

Only user accounts with administrator rights can set the date.

Parameters:

<Date> 1980 to 2099, 1 to 12, 1 to 31

Example: SYST:DATE 2000,6,1

Usage: SCPI confirmed

SYSTem:DEVice:ID?/SYSTem:DID?

.Both commands are identical and return the unique ID of the R&S FSV device.

Example: SYST: DEV: ID?

1307.9002K07-100123-aZ

Usage: Query only

SCPI confirmed

SYSTem:DISPlay:FPANel <State>

This command activates or deactivates the display of the front panel keys on the screen.

With the display activated, the instrument can be operated on the screen using the mouse by pressing the corresponding buttons.

Parameters:

<State> ON | OFF

*RST: OFF

Example: SYST:DISP:FPAN ON

SYSTem:DISPlay:UPDate <State>

In remote control mode, this command switches on or off the instrument display. If switched on, only the diagrams, traces and display fields are displayed and updated.

Remote Control - Commands

The best performance is obtained if the display output is switched off during remote control.

Parameters:

<State> ON | OFF

*RST: OFF

Example: SYST:DISP:UPD ON

SYSTem:ERRor:CLEar:ALL

This command deletes all entries in the table SYSTEM MESSAGES.

Example: SYST:ERR:CLE:ALL

Usage: Event

SYSTem: ERRor: LIST?

This command reads all system messages and returns a list of comma separated strings. Each string corresponds to an entry in the table SYSTEM MESSAGES.

If the error list is empty, an empty string " is returned.

This command is a query and therefore has no *RST value.

Example: SYST:ERR:LIST?

Usage: Query only

SYSTem:ERRor[:NEXT]?

This command queries the earliest error queue entry and deletes it.

Positive error numbers indicate device-specific errors, negative error numbers are error messages defined by SCPI. If the error queue is empty, the error number 0, "No error", is returned.

This command is a query and therefore has no *RST value.

Example: STAT:ERR?

Usage: Query only

SCPI confirmed

SYSTem:FIRMware:UPDate

This command starts a firmware update using the *.msi files in the selected directory. The default path is D:\FW_UPDATE. The path is changed via the MMEMory:COMMent command. To store the update files the MMEMory:DATA command is used.

Only user accounts with administrator rights can perform a firmware update.

Remote Control - Commands

Example: SYST:FIRM:UPD 'D:\FW UPDATE'

Starts the firmware update from directory "D:\FW UPDATE".

Usage: Event

SYSTem:FORMat:IDENt

This command defines the response format to the *IDN? on page 470 command. This function is intended for re-use of existing control programs together with the R&S FSV.

Parameters:

FSL | LEGacy | NEW

LEGacy

Format is compatible to the R&S FSP/FSU/FSQ family

NEW

R&S FSV format

FSL

Format is compatible to the R&S FSL family

*RST: NEW

Example: SYST:FORM:IDEN LEG

Adapts the return value of *IDN? to the R&S FSP/FSU/FSQ family.

SYSTem:HPCoupling < Coupling Type>

Controls the default coupling ratios in the HP emulation mode for:

- span and resolution bandwidth (Span/RBW) and
- resolution bandwidth and video bandwidth (RBW/VBW)

For FSP (=FSV), the standard parameter coupling of the instrument is used. As a result, in most cases a shorter sweeptime is used than in case of HP.

This command is only available if a HP language is selected using SYSTem: LANGuage

.

Parameters:

<CouplingType> HP | FSP

*RST: FSP

Example: SYSTem:HPC HP

Usage: SCPI confirmed

SYSTem:IDENtify:FACTory

Resets the response to the *IDN? query to the default value, e.g. after a user string was defined using the ID String User softkey.

Remote Control - Commands

Example: SYST:IDEN:FACT

*IDN?
Response:

Rohde&Schwarz, R&S FSV-7,

1307.9002K07/101768,1.05

Usage: Event

SCPI confirmed

SYSTem:IDENtify[:STRing] <String>

Sets the response to the *IDN? query to the defined string, e.g. after the default value was reset using the ID String Factory softkey.

Parameters:

<String>

Example: Set the response to 'MyDevice':

SYST:IDEN:STR 'MyDevice'

Query the response: SYST:IDEN:STR?

Response: MyDevice

Usage: SCPI confirmed

SYSTem:IFGain:MODE < Mode>

Configures the internal IF gain settings in HP emulation mode due to the application needs. This setting is only taken into account for resolution bandwidth < 300 kHz and is only available if a HP language is selected using SYSTem: LANGuage.

Parameters:

<Mode> NORM | PULS

NORM

Optimized for high dynamic range, overload limit is close to refer-

ence level.

PULS

Optimized for pulsed signals, overload limit up to 10 dB above

reference level.

*RST: NORM

Example: SYST:IFG:MODE PULS

Usage: SCPI confirmed

SYSTem:KLOCk <State>

This command activates the local lockout (remote control) or returns to the local mode.

Remote Control - Commands

Parameters:

<State> ON

LLO (local lockout)

OFF

GTL (go to local)
*RST: OFF

Example: SYST: KLOK ON

Activates LLO (remote control)

SYSTem:LANGuage < Language >

This command defines the system language. Default is SCPI which defines the standard remote control behavior of the instrument. The other parameters are to simulate the corresponding HP analyzer. The parameter "PSA89600" sets the device in a state in which it can be used for IQ capturing from the 89600 vector signal analyzer software.

Parameters:

<Language> "SCPI" | "8560E" | "8561E" | "8562E" | "8563E" | "8564E" |

"8565E" | "8566A" | "8566B" | "8568A" | "8568A_DC" | "8568B" |

"8568B_DC" | "8591E" | "8594E" | "71100C" | "71200C" |

"71209A" | "PSA89600"

*RST: SCPI

Example: SYST:LANG '8560E'

Sets the system language to 8560E to simulate the HP analyzer.

SYSTem:LXI:INFo?

This guery returns the current parameters of the LXI class C.

Only user accounts with administrator rights are able to use LXI functionality.

Return values:

(example) <MAC adress> | <IP adress> | <Auto MDIX>

Usage: Query only

SYSTem:LXI:LANReset

This command resets the LAN configuration to the values required by the LXI standard. In addition, the password is reset to its initial state aas well as the LXI instrument description.

Only user accounts with administrator rights are able to use LXI functionality.

Example: SYST:LXI:LANR

Usage: Event

Remote Control – Commands

SYSTem:LXI:MDEScription <String>

This command shows the LXI instrument description. Also, the instrument description can be changed using this command.

Only user accounts with administrator rights are able to use LXI functionality.

Parameters:

<String>

Example: SYST:LXI:MDES

SYSTem:LXI:PASSword < Password>

This command shows or changes the LXI password.

Only user accounts with administrator rights are able to use LXI functionality.

Parameters:

<Password> <password>

Example: SYST:LXI:PASS

SYSTem:PASSword[:CENable] <Password>

This command enables access to the service functions by means of the password.

Parameters:

<Password> <password>

Example: SYST: PASS XXXX

Usage: Event

SCPI confirmed

SYSTem:PASSword:RESet

This command resets the service password.

Example: SYST: PASS: RES

Usage: Event

SCPI confirmed

SYSTem:PRESet

This command initiates an instrument reset.

The effect of this command corresponds to that of the **PRESET** key with manual operation or to the *RST command. For details on preset settings refer to chapter 3.2.1, "Initializing the Configuration – PRESET Key", on page 86.

Example: SYST: PRES

Usage: SCPI confirmed

Remote Control – Commands

SYSTem:REVision:FACTory

Resets the response to the REV? query to the default value, e.g. after a user string was defined using the SYSTem:REVision[:STRing] command. (REV? query available for HP emulation only, see chapter 4.2.5, "GPIB Commands of HP Models 856xE, 8566A/B, 8568A/B and 8594E", on page 810.)

Example: Define the system language:

SYST:LANG '8563E'

Set the response back to factory setting:

SYS: REV: FACT

Query the revision:

REV?
Response:
920528

Usage: Event

SCPI confirmed

SYSTem:REVision[:STRing] <Name>

Sets the response to the REV? queryto the defined string (HP emulation only, see chapter 4.2.5, "GPIB Commands of HP Models 856xE, 8566A/B, 8568A/B and 8594E", on page 810).

Parameters:

<Name>

Example: Define the system language:

SYST:LANG '8563E' Query the revision:

REV?
Response: 920528

Set the response to 'NewRevision': SYST:REV:STR 'NewRevision'

Query the response: SYST:REV:STR? Response: NewRevision

SYSTem:RSW <State>

Controls a repeated sweep of the E1 and MKPK HI HP model commands (for details on the commands refer to chapter 4.2.5, "GPIB Commands of HP Models 856xE, 8566A/B, 8568A/B and 8594E", on page 810). If the repeated sweep is OFF, the marker is set without sweeping before.

This command is only available if a HP language is selected using SYSTem: LANGuage

Operating Manual 1307.9331.12 - 18

Remote Control - Commands

Parameters:

<State> ON | OFF

*RST: OFF

Example: SYSTem: RSW ON

Usage: SCPI confirmed

SYSTem:SHUTdown

This command shuts down the instrument.

Usage: Event

SYSTem:TIME <Time>

This command sets the internal clock. The sequence of entry is hour, minute, second.

Only user accounts with administrator rights are able to set the time.

Parameters:

<Time> 0 to 23, 0 to 59, 0 to 59

Example: SYST:TIME 12,30,30

Usage: SCPI confirmed

SYSTem: VERSion?

This command queries the number of the SCPI version, which is relevant for the instru-

This command is a query and therefore has no *RST value.

Example: SYST: VERS?

Usage: Query only

SCPI confirmed

4.2.5 GPIB Commands of HP Models 856xE, 8566A/B, 8568A/B and 8594E

The R&S FSV analyzer family supports a subset of the GPIB commands of HP models 8560E, 8561E, 8562E, 8563E, 8564E, 8565E, 8566A, 8566B, 8568A, 8568B and 8594E.

Despite the differences in system architecture and device features, the supported commands have been implemented in a way to ensure a sufficiently high degree of correspondence with the original.

This includes the support of syntax rules for not only newer device families (B and E models) but for the previous A family as well.

In many cases the selection of commands supported by the R&S FSV is sufficient to run an existing GPIB program without adaptation.

Remote Control – Commands

After the introduction, this section includes the following topics:

4.2.5.1	GPIB Languages	811
4.2.5.2	Command Set of Models 8560E, 8561E, 8562E, 8563E, 8564E, 8565E, 8566A/B, 85B, 8591E, 8594E, 71100C, 71200C, and 71209A	
4.2.5.3	Special Features of the Syntax Parsing Algorithms for 8566A and 8568A Models	836
4.2.5.4	Special Behavior of Commands	837
4.2.5.5	Model-Dependent Default Settings	839
4.2.5.6	Data Output Formats	840
4.2.5.7	Trace Data Output Formats	840
4.2.5.8	Trace Data Input Formats	840
4.2.5.9	GPIB Status Reporting	840

4.2.5.1 **GPIB Languages**

The R&S FSV analyzer family supports a subset of the GPIB commands used by other devices. Thus it can emulate other devices in order to use existing remote control programs.

The device model to be emulated is selected manually using the key sequence "SETUP > General Setup > GPIB > Compatible Mode > GPIB Language". Via the GPIB interface using the command.

In order to emulate device models that are not part of the selection list of the "GPIB Language" softkey, you can modify the identification string received in response to the ID command (key sequence "SETUP > General Setup > GPIB > ID String User"). Thus, any device model whose command set is compatible with one of the supported device models can be emulated.

In order to emulate device models that are not part of the selection list of the GPIB "Language" setting, you can modify the identification string received in response to the ID command ("Identification String" setting). Thus, any device model whose command set is compatible with one of the supported device models can be emulated.

Supported languages

Language	Comment
SCPI	
71100C	Compatible to 8566A/B
71200C	Compatible to 8566A/B
71209A	Compatible to 8566A/B
8560E	
8561E	

Remote Control – Commands

Language	Comment
8562E	
8563E	
8564E	
8565E	
8566A	Command sets A and B are available. Command sets A and B differ in the rules regarding the command structure.
8566B	
8568A	Command sets A and B are available. Command sets A and B differ in the rules regarding the command structure.
8568A_DC	Uses DC input coupling by default if supported by the instrument
8568B	Command sets A and B are available. Command sets A and B differ in the rules regarding the command structure.
8568B_DC	Uses DC input coupling by default if supported by the instrument
8591E	Compatible to 8594E
8594E	Command sets A and B are available. Command sets A and B differ in the rules regarding the command structure.
PSA89600	

Notes:

- If you select a language other than "SCPI", the GPIB address is set to 18 if it was 20 before.
- The Start/stop frequency, reference level and number of sweep points are adapted to the selected instrument model.
- When you switch between remote control languages, the following settings or changes are made:

SCPI:

The instrument performs a PRESET.

8566A/B, 8568A/B, 8594E; FSEA, FSEB, FSEM; FSEK:

- The instrument performs a PRESET.
- The following instrument settings are changed:

Table 4-19: Instrument settings for emulation of 8566A/B, 8568A/B, 8594E; FSEA, FSEB, FSEM; FSEK instruments

Model	# of Trace Points	Start Freq.	Stop Freq.	Ref Level	Input Coupling
8566A/B	1001	2 GHz	22 GHz	0 dBm	AC
8568A/B	1001	0 Hz	1.5 GHz	0 dBm	AC
8560E	601	0 Hz	2.9 GHz	0 dBm	AC
8561E	601	0 Hz	6.5 GHz	0 dBm	AC
8562E	601	0 Hz	13.2 GHz	0 dBm	AC

Remote Control - Commands

Model	# of Trace Points	Start Freq.	Stop Freq.	Ref Level	Input Coupling
8563E	601	0 Hz	26.5 GHz	0 dBm	AC
8564E	601	0 Hz	40 GHz	0 dBm	AC
8565E	601	0 Hz	50 GHz	0 dBm	AC
8594E	401	0 Hz	3 GHz	0 dBm	AC

Note: The stop frequency indicated in the table may be limited to the corresponding frequency of the R&S FSV, if required.

4.2.5.2 Command Set of Models 8560E, 8561E, 8562E, 8563E, 8564E, 8565E, 8566A/B, 8568A/B, 8591E, 8594E, 71100C, 71200C, and 71209A

As with the original units, the R&S FSV includes the command set of the A models in the command set of the B models.

The HP model 8591E is compatible to HP model 8594E, the HP models 71100C, 71200C, and 71209A are compatible to HP models 8566A/B.

Command	Supported subset	Function	Corresp. HP- Models	Status
A1	A1	Clear/Write A	HP 8566A/ HP 8568A	available
A2	A2	Max Hold A	HP 8566A/ HP 8568A	available
А3	А3	View A	HP 8566A/ HP 8568A	available
A4	A4	Blank A	HP 8566A/ HP 8568A	available
ABORT 1)	ABORT	Stop previous function	HP 856xE/ HP 8566B/HP 8568B/HP 8594E	available
ADD		Add	HP 8566B/ HP 8568B/ HP 8594E	available
ADJALL	ADJALL	Adjust all	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
ADJCRT ²⁾	ADJCRT	Adjust CRT	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
ADJIF ²⁾	ADJIF	Auto adjust IF	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
AMB	AMB ON OFF AMB 1 0 AMB?	Trace A – B -> Trace A	HP 856xE/ HP 8594E	available
AMBPL	AMBPL ON OFF AMBPL 1 0 AMBPL?		HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
AMPCORDATA	AMPCORDATA <freq>,<amp>, AMPCORDATA?</amp></freq>	Amplitude Correction Data	HP 856xE	available
AMPCOR	AMPCOR ON OFF AMPCOR 1 0 AMPCOR?	Amplitude Correction	HP 856xE	available
AMPCORSIZE	AMPCORSIZE?	Amplitude Correction Data Array Size	HP 856xE	available
AMPCORRCL	AMPCORRCL <numeric value=""></numeric>	Amplitude Correction Recall	HP 856xE	available
AMPCORSAVE	AMPCORSAVE <numeric value=""></numeric>	Amplitude Correction Save	HP 856xE	available
ANNOT	ANNOT ON OFF ANNOT 1 0 ANNOT?	Annotation	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
АРВ	APB	Trace A + B -> Trace A	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
АТ	AT <numeric_value> DB DM DM AT DN AT UP AT AUTO AT?</numeric_value>	Attenuation	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
AUNITS	AUNITS DBM DBMV DBUV AUNITS?	Amplitude Units	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
AUTOCPL	AUTOCPL	Coupling default	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
AXB	AXB	Exchange trace A and B	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
B1	B1	Clear/Write B	HP 8566A/ HP 8568A	available
B2	B2	Max Hold B	HP 8566A/ HP 8568A	available
В3	В3	View B	HP 8566A/ HP 8568A	available
B4	B4	Blank B	HP 8566A/ HP 8568A	available
BL	BL	Trace B – Display Line -> Trace B	HP 8566A/ HP 8568A	available
BML	BML	Trace B – Display Line -> Trace B	HP 856xE/ HP8594E	available
втс	втс	Transfer Trace B -> C	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
BXC	BXC	Exchange Trace B and C	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
BLANK	BLANK TRA TRB TRC	Blank Trace	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
C1	C1	A-B off	HP 8566A/ HP 8568A	available

Command	Supported subset	Function	Corresp. HP- Models	Status
C2	C2	A-B -> A	HP 8566A/ HP 8568A	available
CA	CA	Couple Attenuation	HP 8566A/ HP 8568A	available
CAL 1)	CAL ALL CAL ON CAL OFF	Start analyzer self alignment	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
CF	CF <numeric_value> HZ KHZ MHZ GHZ CF UP CF DN CF?</numeric_value>	Center Frequency	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
CHANPWR	CHANPWR TRA TRB, <numeric_value>,?</numeric_value>	Channel Power Measurement	HP 856xE/ HP 8594E	available
CHPWRBW	CHPWRBW <numeric_value> HZ KHZ MHZ GHZ</numeric_value>	Channel Power Band- width	HP 856xE/ HP 8594E	available
CLRW	CLRW TRA TRB TRC	Clear/Write Trace	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
CLS 1)	CLS	Clear all status bits	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
CONTS	CONTS		HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
COUPLE	COUPLE ACIDC	Input coupling	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
CR	CR	Couple RBW	HP 8566A/ HP 8568A	available
CS	cs	Couple Step Size	HP 8566A/ HP 8568A	available

Command	Supported subset	Function	Corresp. HP- Models	Status
СТ	СТ	Couple SWT	HP 8566A/ HP 8568A	available
СТА		Convert to absolute units	HP 8566B/ HP 8568B/ HP 8594E	available
CV	cv	Couple VBW	HP 8566A/ HP 8568A	available
D1 ²⁾	D1	Display Size normal	HP 8566A/ HP 8568A	available
DA ²⁾	DA	Display address		available
DEMOD 1)	DEMOD ON OFF AM FM	AF Demodulator	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
DEMODAGC ²⁾	DEMODAGC ON OFF 1 0 DEMODAGC?	Demodulation AGC	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
DEMODT	DEMODT <numeric_value> S MS US SC DEMODT UP DN DEMODT?</numeric_value>	Demodulation time	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
DET	DET POS SMP NEG DET?	Detector	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
DISPOSE 2)	ONEOS TRMATH ONSWP ALL <numeric_value></numeric_value>			available
DIV		Divide	HP 8566B/ HP 8568B/ HP 8594E	available
DL	DL <numeric_value> DB DM DL DN DL UP DL ON DL OFF DL?</numeric_value>	Display Line	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
DLE	DLE ON OFF	Display Line enable	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
DONE	DONE DONE?	Done query	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
DW ²⁾	DW	Write to display and increment address		available
E1	E1	Peak Search	HP 8566A/ HP 8568A	available
E2	E2	Marker to Center Freq.	HP 8566A/ HP 8568A	available
E3	E3	Deltamarker Step Size	HP 8566A/ HP 8568A	available
E4	E4	Marker to Ref. Level	available	available
EDITDONE		limit line edit done	HP 856xE	available
EDITLIML		edit limit line	HP 856xE	available
ERR	ERR 250 cal level error ERR 300 LO unlock ERR 472 cal error digital filter ERR 473 cal error analog filter ERR 552 cal error log amp ERR 902 unscale track- ing generator ERR 906 oven cold ERR 117 numeric unit error ERR 112 Unrecognized Command	Now some FSx errors are mapped to HP errors.	HP8568A HP856xE	not yet availa- ble
ERR?	ERR?	Error queue query	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	not yet availa- ble
EX	EX	Exchange trace A and B	HP 8566A/ HP 8568A	available

Command	Supported subset	Function	Corresp. HP- Models	Status
FA	FA <numeric_value> HZ KHZ MHZ GHZ FA UP FA DN FA?</numeric_value>	Start Frequency	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
FB	FB <numeric_value> HZ KHZ MHZ GHZ FB UP FB DN FB?</numeric_value>	Stop Frequency	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
FDSP		Frequency display off	8560E 8561E 8562E 8563E 8564E 8565E	available
FOFFSET 1)	FOFFSET <numeric_value> HZ KHZ MHZ GHZ FOFFSET?</numeric_value>	Frequency Offset	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
FREF	FREF INTIEXT	Reference Frequency	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
FS	FS	Full Span	HP 8566A/ HP 8568A	available
FUNCDEF		Define Function Function must be in one line between delimiters @	HP 8594E/ HP 856xE/ HP 8566B	available
GATE 1)	GATE ON OFF GATE 1 0		HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
GATECTL 1)	GATECTL EDGE LEVEL GATECTL?		HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
GD ¹⁾	GD <numeric_value> US MS SC GD DN</numeric_value>		HP 856xE/ HP 8566B/ HP 8568B/	available
	GD UP GD?		HP 8594E	
GL 1)	GL <numeric_value> US MS SC</numeric_value>		HP 856xE/ HP 8566B/	available
	GL DN GL UP GL?		HP 8568B/ HP 8594E	
GP 1)	GP POS NEG GP?		HP 856xE/ HP 8566B/ HP 8568B/	available
GRAT ²⁾	GRAT ON OFF	Graticule	HP 8594E HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
I1	I1		HP 8566A/ HP 8568A	available
12	12		HP 8566A/ HP 8568A	available
ID	ID ID?	Identify	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
INZ 1)	INZ 75 INZ 50 INZ?	Input Impedance	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
IP	IP	Instrument preset	HP 8566A/ HP 8568A	available
KEYDEF	KEYDEF	Key definition	HP 8566B/ HP 856xE/ HP 859xE	available
KEYEXEC	KEYEXEC	Key execute	HP 8566B	available

Command	Supported subset	Function	Corresp. HP- Models	Status
KS=	KS= <numeric_value> HZ KHZ MHZ GHZ KS= DN KS= UP KS=?</numeric_value>	Marker Frequency Counter Resolution	HP 8566A/ HP 8568A	available
KS/	KS/	Manual Peaking	HP 8566A/ HP 8568A	available
KS(KS(Lock register	HP 8566A/ HP 8568A	available
KS)	KS)	Unlock register	HP 8566A/ HP 8568A	available
KS91	KS91	Read Amplitude Error	HP 8566A/ HP 8568A	available
KSA	KSA	Amplitude Units in dBm	HP 8566A/ HP 8568A	available
KSB	KSB	Amplitude Units in dBmV	HP 8566A/ HP 8568A	available
KSC	KSC	Amplitude Units in dBuV	HP 8566A/ HP 8568A	available
KSD	KSD	Amplitude Units in V	HP 8566A/ HP 8568A	available
KSE	KSE <numeric_value> <char data="">@</char></numeric_value>	Title mode	HP 8566A/ HP 8568A	available
KSG	KSG KSG ON KSG <numeric_value></numeric_value>	Video Averaging on	HP 8566A/ HP 8568A	available
KSH	KSH	Video Averaging Off	HP 8566A/ HP 8568A	available
KSK		Marker to Next Peak	HP 8566A/ HP 8568A	available
KSL		Marker Noise off	HP 8566A/ HP 8568A	available
KSM		Marker Noise on	HP 8566A/ HP 8568A	available
KSO	KSO	Deltamarker to span	HP 8566A/ HP 8568A	available
KSP	KSP <numeric_value></numeric_value>	HPIB address	HP 8566A/ HP 8568A	available

Command	Supported subset	Function	Corresp. HP- Models	Status
KSQ ²⁾	KSQ	Band lock off	HP 8566A/ HP 8568A	available
KST	KST	Fast Preset	HP 8566A/ HP 8568A	available
KSV	KSV <numeric_value> HZ KHZ MHZ GHZ KSV?</numeric_value>	Frequency Offset	HP 8566A/ HP 8568A	available
KSW	KSW	Error Correction Routine	HP 8566A/ HP 8568A	available
KSX	KSX	Correction Values On	HP 8566A/ HP 8568A	available
KSY	KSY	Correction Values Off	HP 8566A/ HP 8568A	available
KSZ	KSZ <numeric_value> DB KSZ?</numeric_value>	Reference Value Offset	HP 8566A/ HP 8568A	available
KSa	KSa	Normal Detection	HP 8566A/ HP 8568A	available
KSb	KSb	Pos Peak Detection	HP 8566A/ HP 8568A	available
KSd	KSd	Neg Peak Detection	HP 8566A/ HP 8568A	available
KSe	KSe	Sample Detection	HP 8566A/ HP 8568A	available
KSg		CRT beam off		available
KSh		CRT beam on		available
KSj	KSj	View Trace C	HP 8566A/ HP 8568A	available
KSk	KSk	Blank Trace C	HP 8566A/ HP 8568A	available
KSI	KSI	Transfer B to C	HP 8566A/ HP 8568A	available
KSm	KSm	Graticule off	HP 8566A/ HP 8568A	available
KSn ²⁾	KSn	Grid on	HP 8566A/ HP 8568A	available
KSo	KSn	Character display off	HP 8566A/ HP 8568A	available

Command	Supported subset	Function	Corresp. HP- Models	Status
KSp	KSp	Character display on	HP 8566A/ HP 8568A	available
KSr	KSr	Create service request	HP 8566A/ HP 8568A	available
KSt ²⁾	KSt	Band lock on	HP 8566A/ HP 8568A	available
KSv ²⁾	KSv	Signal ident on	HP 8566A/ HP 8568A	available
LO	LO	Display line off	HP 8566A/ HP 8568A	available
LB	LB <numeric_value> <char data="">@</char></numeric_value>	Label	HP 8566A/ HP 8568A	available
LF	LF	Low frequency band preset	HP 8566A/ HP 8568A	available
LIMD		limit line delta	HP 856xE	available
LIMF		limit line frequency	HP 856xE	available
LIMIFAIL		limit fail query	HP 856xE	available
LIMIPURGE		purge limit line	HP 856xE	available
LIMIRCL		recall limit line	HP 856xE	available
LIMIREL		relative limit line	HP 856xE	available
LIMISAV		save limit line	HP 856xE	available
LIMITEST		limit line test	HP 856xE	available
LIML		lower limit line value	HP 856xE	available
LIMM		middle limit line value	HP 856xE	available
LIMTFL		flat limit line segment	HP 856xE	available
LIMTSL		slope limit line segment	HP 856xE	available
LIMU		upper limit line value	HP 856xE	available
LG	LG <numeric_value> DB DM LG?</numeric_value>	Amplitude Scale Log	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
LL ²⁾	LL	Plot command	HP 8566A/ HP 8568A	available

Command	Supported subset	Function	Corresp. HP- Models	Status
LN	LN	Amplitude Scale Lin	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
M1	M1	Marker Off	HP 8566A/ HP 8568A	available
M2	M2 M2 <numeric_value> HZ KHZ MHZ GHZ M2 DN M2 UP M2?</numeric_value>	Marker Normal	HP 8566A/ HP 8568A	available
M3	M3 M3 < numeric_value > HZ KHZ MHZ GHZ M3 DN M3 UP M3?	Delta Marker	HP 8566A/ HP 8568A	available
M4	M4 <numeric_value> HZ KHZ MHZ GHZ</numeric_value>	Marker Zoom	HP 8566A/ HP 8568A	available
MA	MA	Marker Amplitude	HP 8566A/ HP 8568A	available
MC0	мсо	Marker Count off	HP 8566A/ HP 8568A	available
MC1	MC1	Marker Count on	HP 8566A/ HP 8568A	available
MDS	MDS	Measurement data size	HP 8566B	available
MEAS		Measurement status	HP 856xE	available
MF	MF MF?	Marker Frequency	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MINH ¹⁾	MINH TRC	Minimum Hold	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
МКА	MKA <numeric_value> MKA?</numeric_value>	Marker Amplitude	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKACT	MKACT 1 MKACT?	Select the active marker	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	not available
MKBW 1)	MKBW <numeric_value> MKBW ON MKBW OFF</numeric_value>	N dB Down	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKD	MKD MKD <numeric_value> HZ KHZ MHZ GHZ MKD DN MKD UP MKD ON MKD OFF MKD?</numeric_value>	Delta Marker	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKDR	MKDR <numeric_value> HZ KHZ MHZ GHZ S SC MS MSEC USMKDR?</numeric_value>	Delta Marker reverse	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKDR?		Delta Marker reverse query		available
MKF	MKF <numeric_value> HZ KHZ MHZ GHZ MKF?</numeric_value>	Set Marker Frequency	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKFC	MKFC ON OFF	Frequency Counter on/ off	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
MKFCR 1)	MKFCR <numeric_value> HZ KHZ MHZ GHZ MKFCR DN MKFCR UP MKFCR?</numeric_value>	Frequency Counter Resolution	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKMIN	MKMIN	Marker -> Min	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKN	MKN MKN <numeric_value> HZ KHZ MHZ GHZ MKN DN MKN UP MKN ON MKN OFF MKN?</numeric_value>	Normal Marker	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKNOISE	MKNOISE ON OFF MKNOISE 1 0 MKNOISE?	Noise Measurement	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKOFF	MKOFF MKOFF ALL	Marker off	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKP	MKP <numeric_value> MKP?</numeric_value>	Marker position	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
МКРК	MKPK MKPK HI MKPK NH MKPK NR MKPK NL	Marker Search	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
МКРТ	MKPT MKPT HI MKPT NH MKPT NR MKPT NL	Marker Peak Threshold	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
MKPX	MKPX <numeric_value></numeric_value>	Peak Excursion	HP 856xE/	available
	MKPX DN		HP 8568B/	
	MKPX UP		HP 8594E	
	MKPX?		111 0004E	
MKRL	MKRL	Ref Level = Marker Level	HP 856xE/	available
			HP 8566B/	
			HP 8568B/	
			HP 8594E	
MKSP	MKSP	Deltamarker to span	HP 856xE/	available
			HP 8566B/	
			HP 8568B/	
			HP 8594E	
MKSS	MKSS	CF Stepsize = Marker	HP 856xE/	available
		Freq	HP 8566B/	
			HP 8568B/	
			HP 8594E	
MKT	MKT <numeric_value></numeric_value>	MKF = fstart + MKT/ SWT*Span	HP 856xE/	available
	SIMSIUSISC		HP 8594E	
	MKT?			
MKTRACE	MKTRACE TRA TRB	Marker to Trace	HP 856xE/	available
	TRC		HP 8566B/	
			HP 8568B/	
			HP 8594E	
MKTRACK	MKTRACK ONJOFF	Signal Track	HP 856xE/	available
	MKTRACK 1 0		HP 8566B/	
	MKTRACK?		HP 8568B/	
			HP 8594E	
MKTYPE	MKTYPE AMP	Marker type	HP 856xE/	available
	MK TYPE?		HP 8566B/	
			HP 8568B/	
			HP 8594E	
ML		Mixer level	HP 856xE	available
MOV	MOV TRAITRBITRC,	Move Trace Contents	HP 856xE/	available
	TRA TRB T RC		HP 8566B/	
			HP 8568B/	
			HP 8594E	
MPY		Multiply	HP 8566B/	available
			HP 8568B/	
			HP 8594E	

Command	Supported subset	Function	Corresp. HP- Models	Status
МТО	МТО	Marker Track Off	HP 8566A/ HP 8568A	available
MT1	MT1	Marker Track On	HP 8566A/ HP 8568A	available
МХМН	MXMH TRA TRB	Maximum Hold	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
NORMALIZE	NORMALIZE	Normalize trace	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	not available available
NRL 1)	NRL <numeric_value> DB DM NRL?</numeric_value>	Normalized Reference Level	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
NRPOS	NRPOS <numeric_value> NRL?</numeric_value>	Normalize position	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
O1	01	Format ASCII, Values 0 to 4095	HP 8566A/ HP 8568A	available
O2	O2	Format Binary, Values 0 to 4095	HP 8566A/ HP 8568A	available
О3	О3	Format ASCII	HP 8566A/ HP 8568A	available
OA	OA	Output All	HP 8566A/ HP 8568A	available
OL	OL <80 characters> OL?	Output Learn String	HP 8566A/ HP 8568A	available
ОТ	ОТ	Output Trace Annotations	HP 8566A/ HP 8568A	available
PA	PA <numeric_value>, <numeric_value< td=""><td>Plot command</td><td>HP 8566A/ HP 8568A</td><td>available</td></numeric_value<></numeric_value>	Plot command	HP 8566A/ HP 8568A	available
PD	PD <numeric_value>, <numeric_value< td=""><td>Plot command</td><td>HP 8566A/ HP 8568A</td><td>available</td></numeric_value<></numeric_value>	Plot command	HP 8566A/ HP 8568A	available
PH_MKF		Spot frequency in Hz	HP 856xE	available
PH_FMIN		Min offset frequency to be measured	HP 856xE	available

Command	Supported subset	Function	Corresp. HP- Models	Status
PH_FMAX		Max offset frequency to be measured	HP 856xE	available
PH_MKA		Queries amplitude at the spot frequency	HP 856xE	available
PH_DRIFT		0: for stable signals, 1: for drifty	HP 856xE	available
PH_RLVL		Reference level for the log plot	HP 856xE	available
PH_SMTHV		Trace smoothing	HP 856xE	available
PH_VBR		Filtering	HP 856xE	available
PH_RMSPT		Amount of data points to skip when doing the integration	HP 856xE	available
PH_RMSFL		Lower integration frequency in Hz	HP 856xE	available
PH_RMSFU		Upper integration frequency in Hz	HP 856xE	available
PH_EXIT		Quits phase noise	HP 856xE	available
PH_F_UDT		Updates internal frequency variables	HP 856xE	available
PH_LMT_L		Apply limits to PH_FMIN and PH_FMAX	HP 856xE	available
PH_MEAS		Generates log frequency plot	HP 856xE	available
PH_MKF_D		Updates the spot frequency	HP 856xE	available
PH_RMS		Requests the rms phase noise	HP 856xE	available
PH_RMSFT		Updates internal frequency variables	HP 856xE	available
PH_RMSX		Calculates the rms phase noise	HP 856xE	available
PH_SPOTF		Executes the spot frequency measurement	HP 856xE	available
PLOTORG ²⁾	PLOTORG DSP GRT	Plot command	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
PLOTSRC ²⁾	PLOTSRC ANNT GRT TRB TRA ALLDSP GRT	Plot command	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
PP	PP	Preselector Peaking	HP 8566A/ HP 8568A	available
PRINT 1)	PRINT 1 0	Hardcopy	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
PSDAC ²⁾	PSDAC <numeric_value> PSDAC UP DN</numeric_value>	Preselector DAC value	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
PSTATE ²⁾	PSTATE ON OFF 1 0	Protect State	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
PU	PU	Pen Up	HP 8566A/ HP 8568A	available
PWRBW	PWRBW	Power Bandwidth	HP 8566B/ HP 859x/ HP 856xE	available
R1	R1	Set Status Bit Enable	HP 8566A/ HP 8568A	available
R2	R2	Set Status Bit Enable	HP 8566A/ HP 8568A	available
R3	R3	Set Status Bit Enable	HP 8566A/ HP 8568A	available
R4	R4	Set Status Bit Enable	HP 8566A/ HP 8568A	available
RB	RB <numeric_value> HZ KHZ MHZ GHZ RB DN RB UP RB AUTO RB?</numeric_value>	Resolution Bandwidth	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
RBR	RBR <numeric_value> RBR DN RBR UP RBR?</numeric_value>	Resolution Bandwidth Ratio	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
RC16	RC16	Recall Last State	HP 8566A/ HP 8568A	available

Command	Supported subset	Function	Corresp. HP- Models	Status
RCLS	RCLS <numeric_value></numeric_value>	Recall State Register	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
RCLT	RCLT TRA TRB, <num- ber></num- 	Recall Trace	HP856xE/ HP8594E	available
RESET	RESET	Instrument preset	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
REV	REV REV?	Firmware revision	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
RL	RL <numeric_value> DB DM RL DN RL UP RL?</numeric_value>	Reference Level	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
RLCAL	RLCAL <numeric_value></numeric_value>	Reference Level Calibration	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
RCLOSCAL	RCLOSCAL	Recall Open/Short Average	HP 856xE/ HP 8594E	not available
RCLTHRU	RCLTHRU	Recall Thru	HP 856xE/ HP 8594E	not available
RLPOS 1)	RLPOS <numeric_value> RLPOS DN RLPOS UP RLPOS?</numeric_value>	Reference Level Position	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
ROFFSET	ROFFSET <numeric_value> DB DM ROFFSET?</numeric_value>	Reference Level Offset	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
RQS	RQS	Service Request Bit mask	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
S1	S1	Continuous Sweep	HP 8566A/ HP 8568A	available
S2	S2	Single Sweep	HP 8566A/ HP 8568A	available
SADD		add a limit line segment	HP 856xE	available
SAVES	SAVES <numeric_value></numeric_value>	Save State Register	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
SAVET	SAVET TRA TRB, <num- ber></num- 	Save Trace	HP856xE/ HP8594E	available
SDEL		delete limit line segment	HP 856xE	available
SDON		limit line segment done	HP 856xE	available
SEDI		edit limit line segment	HP 856xE	available
SMOOTH	SMOOTH TRA TRB TRC, <number of="" points=""></number>	Smooth Trace	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
SNGLS	SNGLS	Single Sweep	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
SQUELCH ²⁾	SQUELCH <numeric_value> DM DB SQUELCH UP DN SQUELCH ON OFF</numeric_value>	Squelch	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
SP	SP <numeric_value> HZ KHZ MHZ GHZ SP DN SP UP SP?</numeric_value>	Span	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
SRCNORM 1)	SRCNORM ON OFF SRCNORM 1 0	Source Normalization	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	not available

Command	Supported subset	Function	Corresp. HP- Models	Status
SRCPOFS 1)	SRCPOFS <numeric_value> DB DM SRCPOFS DN SRCPOFS UP SRCPOFS?</numeric_value>	Source Power Offset	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	not available
SRCPWR 1)	SRCPWR <numeric_value> DB DM SRCPWR DN SRCPWR UP SRCPWR ON SRCPWR OFF SRCPWR?</numeric_value>	Source Power	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	not available
SS	SS <numeric_value> HZ KHZ MHZ GHZ SS DN SS UP SS AUTO SS?</numeric_value>	CF Step Size	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
ST	ST <numeric_value> US MS SC ST DN ST UP ST AUTO ST?</numeric_value>	Sweep Time	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
STB	STB	Status byte query	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
STOREOPEN	STOREOPEN	Store Open	HP 856xE/ HP 8594E	not available
STORESHORT	STORESHORT	Store Short	HP 856xE/ HP 8594E	not available
STORETHRU	STORETHRU	Store Thru	HP 856xE/ HP 8594E	not available
SUB		Subtract	HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
SUM		sum of trace amplitudes	HP 8566B/ HP 8568B/ HP 8594E	available
SV16	SV16	Save State	HP 8566A/ HP 8568A	available
SWPCPL ²⁾	SWPCPL SA SR SWPCPL?	Sweep Couple	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
SWPOUT ²⁾	SWPOUT FAV FAVA RAMP SWPOUT?	Sweep Output	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
ТО	ТО	Threshold off	HP 8566A/ HP 8568A	available
T1	T1	Free Run Trigger	HP 8566A/ HP 8568A	available
T2 ²⁾	T2	Line Trigger	HP 8566A/ HP 8568A	available
Т3	Т3	External Trigger	HP 8566A/ HP 8568A	available
T4	T4	Video Trigger	HP 8566A/ HP 8568A	available
ТА	ТА	Transfer A	HP 8566A/ HP 8568A	available
TACL	TACL?	Returns instantaneous measurement results. See TRACe <trace #="">:IMMediate:LEVel? for full description.</trace>		not available
TBCL	TBCL?			
TCCL	TCCL?			
TACR	TACR?	Returns instantaneous measurement results. See TRACe <trace #="">:IMMediate:LEVel? for full description.</trace>		not available
TBCR	TBCR?			
TCCR	TCCR?			

Command	Supported subset	Function	Corresp. HP- Models	Status
ТВ	ТВ	Transfer B	HP 8566A/ HP 8568A	available
TDF	TDF P TDF M TDF B TDF A TDF I	Trace Data Format	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
TH	TH <numeric_value> DB DM TH DN TH UP TH ON TH OFF TH AUTO TH?</numeric_value>	Threshold	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
THE	THE ON OFF	Threshold Line enable	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
TIMEDSP 1)	TIMEDSP ON OFF TIMEDSP 1 0 TIMEDSP?	Time Display	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
ТМ	TM FREE VID EXT LINE ²⁾ TM?	Trigger Mode	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
TM LINE 2)	TM LINE	Trigger Line	HP 8566B	available
TRA	TRA B TRA A TRA I	Transfer A	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
TRB	TRB B TRB A TRB I	Transfer B	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
TRSTAT	TRSTAT?	Trace State Query	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Remote Control - Commands

Command	Supported subset	Function	Corresp. HP- Models	Status
TS	TS	Take Sweep	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
UR ²⁾	UR	Plot Command	HP 8566A/ HP 8568A	available
VARDEF	VARDEF	Variable definition, arrays are not supported	HP 8566B/ HP 8568B/ HP 8594E	available
VAVG	VAVG VAVG TRA TRB TRC	Video Averaging	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
VB	VB <numeric_value> HZ KHZ MHZ GHZ VB DN VB UP VB AUTO VB?</numeric_value>	Video Bandwidth	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
VBR 1)	VBR <numeric_value> VBR DN VBR UP VBR?</numeric_value>	Video Bandwidth Ratio	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
VIEW	VIEW TRA TRB TRC		HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
VTL	VTL <numeric_value> DB DM VTL DN VTL UP VTL?</numeric_value>	Video Trigger Level	HP 856xE/ HP 8594E	not available
1) HP 8594E only	у			
2) Command is a	ccepted without error message	, but is ignored		

4.2.5.3 Special Features of the Syntax Parsing Algorithms for 8566A and 8568A Models

The command syntax is very different for models A and B. Different names are assigned to identical instrument functions, and the command structure likewise differs considerably between models A and models B.

Remote Control – Commands

The command structure for models A is as follows:

```
<command>::= <command
code>[<SPC>][<data>|<step>][<SPC>][<delimiter>][<command
code>]...<delimiter>

<data>::= <Value>[<SPC>][<units
code>][<SPC>][<delimiter>][<SPC>][<data>]...

<step>::= UP|DN

where

<command code> = see Table "Supported Commands"

<Value> = integer or floating-point numerical value

<units code> = DM | -DM | DB | HZ | KZ | MZ | GZ | MV | UV | SC | MS | US

<delimiter> = <CR> | <LF> | <,> | <;> | <ETX>

<SPC> = 32<sub>10</sub>

<ETX> = 3<sub>10</sub>
```

Command sections given in [] are optional.

The R&S FSV GPIB hardware differs from that used in the HP analyzers. Therefore, the following constraint exists:

<LF>| <EOI> are still used as delimiters since the GPIB hardware is able to identify them. The other delimiters are identified and evaluated during syntax analysis.

4.2.5.4 Special Behavior of Commands

Command	Known Differences
ABORT	Does not automatically set the command complete bit (bit 4) in the status byte. An additional DONE is required for that purpose.
ANNOT	Only frequency axis annotation is affected.
AT	AT DN/UP: Step size
CAL	The CAL commands do not automatically set the command complete bit (bit 4) in the status byte. An additional DONE command is required for that purpose.
CF	Default value, range, step size
CR	Default ratio Span/RBW
СТ	Formula for coupled sweep time
CV	Default ratio RBW/VBW
DEMOD	requires option R&S FSV-B3
DET	DET? returns SAMP instead of SMP on the R&S FSV.
	DET not automatically set the command complete bit (bit 4) in the status byte. An additional DONE is required for that purpose.

Command	Known Differences
ERR?	Deletes the error bit in the status register but always returns a '0' in response.
FA	Default value, range, step size
FB	Default value, range, step size
ID	Query of instrument type. The instrument type entered with "SETUP > General Setup > GPIB > ID String User" is returned.
M2	Default value, range, step size
M3	Default value, range, step size
MKACT	Only marker 1 is supported as the active marker.
MKBW	Default value
MKPT	Step size
MKPX	Step size
OL?	Storage of instrument settings: 80 characters are returned as information on the instrument settings. The contents of the 80 characters returned does not correspond to the original data contents of the 8566A/8568A family.
OL	Readout of instrument settings: The 80 characters read by means of OL? are accepted as information on the corresponding instrument settings. The contents of the 80 characters read does not correspond to the original data contents of the 8566A/8568A family.
RB	Default value, range, step size
RL	Default value, step size
RLPOS	Adapts the position of the reference level even if the tracking generator normalization is not active.
RQS	Supported bits: 1 (Units key pressed) 2 (End of Sweep) 3 (Device error) 4 (Command complete) 5 (Illegal command)

SRCNORM	Requires option R&S FSV-B9 or R&S FSV-B10
SRCPWR	Requires option R&S FSV-B9 or R&S FSV-B10
SP	Default value, range, step size
SS	Default value, range, step size
ST	Default value, range, step size

Remote Control – Commands

STB	The status bits are mapped as described with command RQS.
	Note : Bit 2 and 4 are always set in parallel if "Command Complete" or "End of Sweep" are recognized. The R&S FSV cannot distinguish between these conditions. Additionally these bits are not suitable for synchronization on the end of sweep in continuous sweep operation.
TA	Output of 1001 trace points of trace A in O1 or O3 format.
ТВ	Output of 1001 trace points of trace B in O1 or O3 format.
TH	Default value
VB	Range
VBR	Default value

4.2.5.5 Model-Dependent Default Settings

If the GPIB language is switched over to an 85xx model, the GPIB address is automatically switched over to 18 provided that the default address of the R&S FSV (20) is still set. If a different value is set, this value is maintained. Upon return to SCPI, this address remains unchanged.

The following table shows the default settings obtained after a change of the GPIB language and for the commands IP, KST and RESET:

Model	# of Trace Points	Start Freq.	Stop Freq.	Ref Level	Input Coupling
8566A/B	1001	2 GHz	22 GHz	0 dBm	AC
8568A/B	1001	0 Hz	1.5 GHz	0 dBm	AC
8560E	601	0 Hz	2.9 GHz	0 dBm	AC
8561E	601	0 Hz	6.5 GHz	0 dBm	AC
8562E	601	0 Hz	13.2 GHz	0 dBm	AC
8563E	601	0 Hz	26.5 GHz	0 dBm	AC
8564E	601	0 Hz	40 GHz	0 dBm	AC
8565E	601	0 Hz	50 GHz	0 dBm	AC
8594E	401	0 Hz	3 GHz	0 dBm	AC

Stop frequency

The stop frequency given in the table may be limited to the corresponding frequency range of the R&S FSV.

Command LF sets the stop frequency for 8566A/B to a maximum value of 2 GHz.

Test points (trace points)

The number of trace points is switched over only upon transition to the REMOTE state.

Remote Control - Commands

4.2.5.6 Data Output Formats

In the case of the SCPI and IEEE488.2 standards, the output formats for numerical data are flexible to a large extent. The output format for the HP units, by contrast, is accurately defined with respect to the number of digits. The memory areas for reading instrument data have therefore been adapted accordingly in the remote-control programs for instruments of this series.

Therefore, in response to a query, the R&S FSV returns data of the same structure as that used by the original instruments; this applies in particular to the number of characters returned.

Two formats are currently supported when trace data is output: Display Units (command O1) and physical values (command O2, O3 or TDF P). As to the "Display Units" format, the level data of the R&S FSV is converted to match the value range and the resolution of the 8566/8568 series. Upon transition to the **REMOTE** state, the R&S FSV is reconfigured such that the number of test points (trace points) corresponds to that of the 85xx families (1001 for 8566A/B and 8568A/B, 601 for 8560E to 8565E, 401 for 8594E).

4.2.5.7 Trace Data Output Formats

All formats are supported for trace data output: display units (command O1), display units in two byte binary data (command O2 or TDF B and MDS W), display units in one byte binary data (command O4 or TDF B and MDS B) and physical values (commands O3 or TDF P). With format "display units" the level data is converted into value range and resolution of the 8566/8568 models. On transition to REMOTE state the number of trace points are reconfigured in order to be conform to the selected instrument model (1001 for 8566A/B and 8568 A/B, 601 for 8560E to 8565E, 401 for 8594E).

4.2.5.8 Trace Data Input Formats

Trace data input is only supported for binary date (TDF B, TDF A, TDF I, MDS W, MDS B).

4.2.5.9 GPIB Status Reporting

The assignment of status bits by commands R1, R2, R3, R4, RQS is supported.

The STB command and the serial poll respond with an 8-bit value with the following assignment:

Bit enabled by RQS	Description
0	not used (value 0)
1	Units key pressed
2	End of Sweep
3	Device Error
4	Command Complete

Remote Control - Commands

Bit enabled by RQS	Description
5	Illegal Command
6	Service Request
7	not used (value 0)

Bits 0 and 7 are not used and always have the value 0.

Please note that the R&S FSV reports any key pressed on the front panel rather than only the unit keys if bit 1 was enabled.

Another difference is the behavior of bit 6 when using the STB? query. On the HP analyzers this bit monitors the state of the SRQ line on the bus. On the R&S FSV this is not possible. Therefore this bit is set, as soon as one of the bits 1 to 5 is set. It won't be reset by performing a serial poll.

4.2.6 Reference: Command Set of Emulated PSA Models

The R&S FSV analyzer family supports a subset of the GPIB commands of PSA89600 instruments.

Despite the differences in system architecture and device features, the supported commands have been implemented in a way to ensure a sufficiently high degree of correspondence with the original.

In many cases the selection of commands supported by the R&S FSV is sufficient to run an existing GPIB program without adaptation.

Supported 89600 commands
CAL?
CLS
ESE
ESR?
IDN?
IST?
OPC
OPT?
PCB
PRE
PSC
RST
SRE
STB?

Supported 89600 commands		
*TRG		
*TST?		
*WAI		
:CALibration:AUTO OFF ON ALERt		
:CALibration:TCORrections AUTO ON OFF		
:CONFigure:WAVeform		
:DIAGnostic:EABY ON OFF		
:DIAGnostic:LATCh:VALue <numeric></numeric>		
:DIAGnostic:LATCh:SELect <string></string>		
:DISPlay:ANNotation:TITLe:DATA <string></string>		
:DISPlay:ENABle OFF ON		
:DISPlay:WINDow:TRACe:Y:[SCALe]:PDIVision <numeric></numeric>		
:DISPlay:WINDow:TRACe:Y:[SCALe]:RLEVel <numeric></numeric>		
:DISPlay:WINDow:TRACe:Y:[SCALe]:RLEVel:OFFSet <numeric></numeric>		
:FORMat:BORDer NORMal SWAPped		
:FORMat[:DATA] ASCii REAL UINT MATLAB, <numeric></numeric>		
:INITiate:CONTinuous OFF ON		
:INITiate[:IMMediate]		
:INSTrument:CATalog?		
:INSTrument:NSELect <numeric></numeric>		
:MMEMory:CATalog? <dir_name></dir_name>		
:MMEMory:COPY <'file_name1'>,<'file_name2'>		
:MMEMory:DATA <'file_name'>, <definite_length_block></definite_length_block>		
:MMEMory:DELete <'file_name'>		
:MMEMory:LOAD:STATe 1,<'file_name'>		
:MMEMory:LOAD:TRACe 1,<'file_name'>		
:MMEMory:MDIRectory <'dir_name'>		
:MMEMory:MOVE <'file_name1'>,<'file_name2'>		
:MMEMory:STORe:STATe 1,<'file_name'>		
:MMEMory:STORe:TRACe <numeric>,<'file_name'></numeric>		
:READ:WAVform?		
[:SENSe]:FREQuency:CENTer <numeric></numeric>		
[:SENSe]:FREQuency:STARt <numeric></numeric>		

Supported 89600 commands		
[:SENSe]:FREQuency:STOP <numeric></numeric>		
[:SENSe]:FREQuency:SPAN <numeric></numeric>		
[:SENSe]:POWer:ATTenuation <numeric></numeric>		
[:SENSe]:ROSCillator:EXTernal:FREQuency <numeric></numeric>		
[:SENSe]:ROSCillator:OUTPut OFF ON		
[:SENSe]:ROSCillator:SOURce INTernal EXTernal EAUTo		
[:SENSe]:SPECtrum:TRIGger:SOURce EXTernal<1 2> IF IMMediate		
[:SENSe]:WAVeform:ADC:RANGe P6		
[:SENSe]:WAVeform:APER?		
[:SENSe]:WAVeform:AVERage:TACount < numeric>		
[:SENSe]:WAVeform:BWIDth:ACTive?		
[:SENSe]:WAVeform:BWIDth:TYPE FLAT GAUSsian		
[:SENSe]:WAVeform:IFGain <numeric></numeric>		
[:SENSe]:WAVeform:IFPath NARRow WIDE		
[:SENSe]:WAVeform:NCPTrace ON OFF		
[:SENSe]:WAVeform:PDIT ON OFF		
[:SENSe]:WAVeform:SRATe <numeric></numeric>		
[:SENSe]:WAVeform:SWEep:TIME <numeric></numeric>		
[:SENSe]:WAVeform:TRIGger:EOFFset?		
[:SENSe]:WAVeform:TRIGger:INTerpolation ON OFF		
[:SENSe]:WAVeform:TRIGger:SOURce EXTernal<1 2> IF IMMediate		
:STATus:QUEStionable:CONDition?		
:STATus:QUEStionable:ENABle <number></number>		
:STATus:QUEStionable:NTRansition <number></number>		
:STATus:QUEStionable:PTRansition <number></number>		
:STATus:QUEStionable[:EVENt]?		
:STATus:QUEStionable:CALibration:CONDition?		
:STATus:QUEStionable:CALibration:ENABle <number></number>		
:STATus:QUEStionable:CALibration:NTRansition <number></number>		
:STATus:QUEStionable:CALibration:PTRansition <number></number>		
:STATus:QUEStionable:CALibration[:EVENt]?		
:STATus:QUEStionable:FREQuency:CONDition?		
:STATus:QUEStionable:FREQuency:ENABle <number></number>		

Supported 89600 commands		
:STATus:QUEStionable:FREQuency:NTRansition <number></number>		
:STATus:QUEStionable:FREQuency:PTRansition <number></number>		
:STATus:QUEStionable:FREQuency[:EVENt]?		
:STATus:QUEStionable:INTegrity:CONDition?		
:STATus:QUEStionable:INTegrity:ENABle <number></number>		
:STATus:QUEStionable:INTegrity:NTRansition <number></number>		
:STATus:QUEStionable:INTegrity:PTRansition <number></number>		
:STATus:QUEStionable:INTegrity[:EVENt]?		
:STATus:OPERation:CONDition?		
:STATus:OPERation:ENABle <integer></integer>		
:STATus:OPERation:NTRansition <integer></integer>		
:STATus:OPERation:PTRansition <integer></integer>		
:STATus:OPERation[:EVENt]?		
:SYSTem:COMMunicate:GPIB[:SELF]:ADDRess <integer></integer>		
:SYSTem:DATE <year>,<month>,<day></day></month></year>		
:SYSTem:ERRor[:NEXT]?		
:SYSTem:KLOCK?		
:SYSTem:MESSage <string></string>		
:SYSTem:PRESet		
:SYSTem:TIME <hour>,<minute>,<second></second></minute></hour>		
:SYSTem:VERSion?		
:TRACe:COPY <src_trace>,<dest_trace></dest_trace></src_trace>		
:TRACe[:DATA] TRACE1 TRACE2 TRACE3 TRACE4 TRACE5 TRACE6, <definite_length_block> <comma_separated_ascii_data></comma_separated_ascii_data></definite_length_block>		
:TRACe:MODE WRITe MAXHold MINHold VIEW BLANk		
:TRIGger[:SEQuence]:DELay <numeric></numeric>		
:TRIGger[:SEQuence]:DELay:STATe OFF ON 0 1		
:TRIGger[:SEQuence]:EXTermal:DELay <numeric></numeric>		
:TRIGger[:SEQuence]:EXTermal:LEVel <numeric></numeric>		
:TRIGger[:SEQuence]:EXTermal:SLOPe POSitive NEGative		
:TRIGger[:SEQuence]:HOLDoff <numeric></numeric>		
:TRIGger[:SEQuence]:IF:DELay <numeric></numeric>		
:TRIGger[:SEQuence]:IF:LEVel <numeric></numeric>		
:TRIGger[:SEQuence]:IF:SLOPe POSitive NEGative		

Supported 89600 commands

:TRIGger[:SEQuence]:SLOPe POSitive|NEGative

:TRIGger[:SEQuence]:SOURce IMMediate|VIDeo|EXTernal<1|2>

:TRIGger[:SEQuence]:VIDeo:LEVel <numeric>

:TRIGger[:SEQuence]:VIDeo:LEVel:FREQuency <freq>

4.3 Remote Control – Programming Examples

In this chapter, more complex programming examples are given. In the R&S FSV Quick Start Guide, basic steps in remote control programming are provided.

The following programming examples have a hierarchical structure, i.e. subsequent examples are based on previous ones. It is thus possible to compile an operational program from the modules of the given examples very easily. VISUAL BASIC has been used as programming language. However, the programs can be translated into other languages.

In programming languages as C, C⁺⁺ or programs as MATLAB, NI Interactive Control, a backslash starts an escape sequence (e.g. "\n" is used to start a new line). In these programming languages and programs, two backslashes instead of one must be used in remote commands (for an example refer to the R&S FSV Quick Start Guide.)

4.3.1	Service Request	846
4.3.1.1	Initiate Service Request	846
4.3.1.2	Waiting for the Arrival of a Service Request	848
4.3.1.3	Waiting Without Blocking the Keyboard and Mouse	850
4.3.1.4	Service Request Routine	850
4.3.1.5	Reading Out the Output Buffer	851
4.3.1.6	Reading Error Messages	852
4.3.1.7	Evaluation of SCPI Status Registers	852
4.3.1.8	Evaluation of Event Status Register	853
4.3.2	Using Marker and Delta Marker	854
4.3.2.1	Shape Factor Measurement (using n dB down)	854
4.3.2.2	Measuring the Third Order Intercept Point	855
4.3.2.3	Measuring the AM Modulation Depth	856
4.3.3	Limit Lines and Limit Test	857
4.3.4	Measuring the Channel and Adjacent Channel Power	859
4.3.5	Occupied Bandwidth Measurement	862

4.3.6	Time Domain Power Measurement	863
4.3.7	Fast Power Measurement on Power Ramps	863
4.3.7.1	Power Measurement with Multi-Summary Marker	864
4.3.7.2	Multi-Burst Power Measurement	865
4.3.8	Fast Level Measurement Using Frequency Lists	867
4.3.9	Level Correction of Transducers	869
4.3.10	Measuring the Magnitude and Phase of a Signal	870
4.3.11	Reading and Writing Files	872
4.3.11.1	Reading a File from the Instrument	872
4.3.11.2	Creating a File on the Instrument	872
4.3.12	Spectrum Emission Mask Measurement	873
4.3.12.1	Using Predefined Standard Wibro	873
4.3.12.2	Defining 5 Ranges with all Parameters	874
4.3.13	Spurious Emissions Measurement	877
4.3.14	Averaging I/Q Data	880
4.3.15	Using IQ Gating	881
4.3.16	Usage of Four Spectrum Instances	886

4.3.1 Service Request

The service request routine requires an extended initialization of the instrument in which the relevant bits of the transition and enable registers are set. In addition the service request event must be enabled in the VISA session.

4.3.1.1 Initiate Service Request

```
REM ---- Example of initialization of the SRQ in the case
' of errors ------
PUBLIC SUB SetupSRQ()

CALL InstrWrite (analyzer, "*CLS") 'Reset status reporting system

CALL InstrWrite (analyzer, "*SRE 168") 'Enable service request for
'STAT:OPER, STAT:QUES and ESR
'register

CALL InstrWrite (analyzer, "*ESE 60") 'Set event enable bit for
'command, execution, device-
'dependent and query error

CALL InstrWrite (analyzer, "STAT:OPER:ENAB 32767")
'Set OPERation enable bit for
'all events

CALL InstrWrite (analyzer, "STAT:OPER:PTR 32767")
```

Remote Control - Programming Examples

```
'Set appropriate OPERation
'Ptransition bits
CALL InstrWrite (analyzer, "STAT:QUES:ENAB 32767")
'Set questionable enable bits
'for all events
CALL InstrWrite (analyzer, "STAT:QUES:PTR 32767")
'Set appropriate questionable
'Ptransition bits
CALL viEnableEvent (analyzer, VI EVENT SERVICE REQ, VI QUEUE, 0)
'Enable the event for service
'request
Status = viWaitOnEvent(analyzer, VI_EVENT_SERVICE_REQ, SRQWaitTimeout, VI_NULL,
VI NULL)
IF (status = VI SUCCESS) THEN CALL Srq
'If SRQ is recognized =>
'subroutine for evaluation
END SUB
Private mbSession As MessageBasedSession
Sub Main()
   Console.WriteLine("Example of initialization
               of the SRQ in the case of errors.")
   Dim SRQWaitTimeout = 4000 ' Timeout As Integer for WaitOnEvent
   'Opening session
   Try
       'FSV is alias, instead of use resource string.
               'For example on TCP use TCPIP0::192.168.1.2::inst0::INSTR
       mbSession = CType(ResourceManager.GetLocalManager().Open("FSV"),
                                    MessageBasedSession)
       mbSession.TerminationCharacterEnabled = True
       Try
           mbSession.Write("*CLS") 'Reset status reporting system
           mbSession.Write("*SRE 168") 'Enable service request for
           'STAT:OPER, STAT:QUES and ESR register
           mbSession.Write("*ESE 60") 'Set event enable bit for
           'command, execution, device-dependent and query error
           mbSession.Write("STAT:OPER:ENAB 32767")
           'Set OPERation enable bit for all events
           mbSession.Write("STAT:OPER:PTR 32767")
           'Set appropriate OPERation Ptransition bits
           mbSession.Write("STAT:QUES:ENAB 32767")
           'Set questionable enable bits for all events
           mbSession.Write("STAT:QUES:PTR 32767")
           'Set appropriate questionable Ptransition bits
           Console.WriteLine("Wait on event - Blocking")
           mbSession.EnableEvent(MessageBasedSessionEventType.ServiceRequest,
                                              EventMechanism.Queue)
           'Enable the event for service request
```

Remote Control - Programming Examples

```
' Your command plase use here
           ' mbSession.Write("Your command")
            ·-----
           Dim Status = mbSession.WaitOnEvent(
                              MessageBasedSessionEventType.ServiceRequest, SRQWaitTimeout)
           If (Status.EventType() = _
                              {\tt MessageBasedSessionEventType.ServiceRequest)} \ \ {\tt Then}
               Console.WriteLine("SRQ is recognized")
               'If SRQ is recognized => subroutine for evaluation
           End If
       Catch exp As Exception
           Console.WriteLine(exp.Message)
       End Try
   Catch exp As InvalidCastException
       Console.WriteLine("Resource selected must be a message-based session")
   Catch exp As Exception
       Console.WriteLine(exp.Message)
   End Try
   ' Close session
   mbSession.Dispose()
   ' Wait for end
   Console.WriteLine("Press any key to end")
   Console.ReadKey()
End Sub
```

4.3.1.2 Waiting for the Arrival of a Service Request

There are basically two methods of waiting for the arrival of a service request:

Blocking (user inputs not possible):

This method is appropriate if the waiting time until the event to be signaled by an SRQ is short (shorter than the selected timeout), if no response to user inputs is required during the waiting time, and if – as the main criterion – the event is absolutely certain to occur.

Reason:

From the time the viWaitOnEvent() function is called until the occurrence of the expected event, it does not allow the program to respond to mouse clicks or key entries during the waiting time. Moreover, it returns an error if the SRQ event does not occur within the predefined timeout period.

The method is, therefore, in many cases not suitable for waiting for measurement results, especially when using triggered measurements.

The following function calls are required:

Remote Control - Programming Examples

```
Status = viWaitOnEvent(analyzer, VI EVENT SERVICE REQ, SRQWaitTimeout, VI NULL,
VI NULL)
'Wait for service request user
'inputs are not possible during
'the waiting time!
IF (status = VI_SUCCESS) THEN CALL Srq
'If SRQ is recognized =>
'subroutine for evaluation
'----- Sweep in first Spectrum Tab and query marker -----
Dim Status = mbSession.WaitOnEvent( __
MessageBasedSessionEventType.ServiceRequest, SRQWaitTimeout)
'Wait for service request user inputs are not possible
'during the waiting time!
If (Status.EventType() = MessageBasedSessionEventType.ServiceRequest) Then
'If SRO is recognized => subroutine for evaluation
   Srg()
End If
```

Non-blocking (user inputs possible):

This method is recommended if the waiting time until the event to be signaled by an SRQ is long (longer than the selected timeout), and user inputs should be possible during the waiting time, or if the event is not certain to occur. This method is, therefore, the preferable choice for waiting for the end of measurements, i.e. the output of results, especially in the case of triggered measurements.

The method necessitates a waiting loop that checks the status of the SRQ line at regular intervals and returns control to the operating system during the time the expected event has not yet occurred. In this way, the system can respond to user inputs (mouse clicks, key entries) during the waiting time.

It is advisable to employ the Hold() auxiliary function, which returns control to the operating system for a selectable waiting time (see section Waiting Without Blocking the Keyboard and Mouse), so enabling user inputs during the waiting time.

```
result% = 0
For i = 1 To 10 'Abort after max. 10 loop
'iterations
Status = viWaitOnEvent(analyzer, VI_EVENT_SERVICE_REQ, VI_TMO_IMMEDIATE, VI_NULL,
    VI_NULL)
'Check event queue
If (status = VI_SUCCESS) Then
result% = 1
CALL Srq 'If SRQ is recognized =>
'subroutine for evaluation
Else
CALL Hold(20) 'Call hold function with
'20 ms 'waiting time. User inputs
'are possible.
Endif
```

Remote Control - Programming Examples

```
Next i
If result% = 0 Then
Debug.Print "Timeout Error; Program aborted"'Output error message
STOP 'Stop software
Endif
```

4.3.1.3 Waiting Without Blocking the Keyboard and Mouse

A frequent problem with remote control programs using Visual Basic is to insert waiting times without blocking the keyboard and the mouse.

If the program is to respond to user inputs also during a waiting time, control over the program events during this time must be returned to the operating system. In Visual Basic, this is done by calling the <code>DoEvents</code> function. This function causes keyboard-or mouse-triggered events to be executed by the associated elements. For example, it allows the operation of buttons and input fields while the user waits for an instrument setting to be completed.

The following programming example describes the <code>Hold()</code> function, which returns control to the operating system for the period of the waiting time selectable in milliseconds.

```
Rem The waiting function below expects the transfer of the desired
Rem waiting time in milliseconds. The keyboard and the mouse remain
Rem operative during the waiting period, thus allowing desired elements
Rem to be controlled
Public Sub Hold(delayTime As Single)
Start = Timer 'Save timer count on calling the
Do While Timer < Start + delayTime/1000 'Check timer count
DoEvents 'Return control to operating
'system to enable control of
'desired elements as long as
'timer has not elapsed
Loop
End Sub
```

The waiting procedure is activated simply by calling Hold (<Waiting time in milliseconds>).

4.3.1.4 Service Request Routine

A service request is processed in the service request routine.

The variables userN% and userM% must be pre-assigned usefully!

Remote Control - Programming Examples

```
REM ----- Service request routine -----
Public SUB Srq()
ON ERROR GOTO noDevice 'No user existing
CALL viReadSTB(analyzer, STB%) 'Serial poll, read status byte
IF STB% > 0 THEN 'This instrument has bits set in
'the STB
SRQFOUND% = 1
IF (STB% AND 16) > 0 THEN CALL Outputqueue
IF (STB% AND 4) > 0 THEN CALL ErrorQueueHandler
IF (STB% AND 8) > 0 THEN CALL Questionablestatus
IF (STB% AND 128) > 0 THEN CALL Operationstatus
IF (STB% AND 32) > 0 THEN CALL Esrread
END IF
noDevice:
END SUB 'End of SRQ routine
REM ----- Subroutine for evaluation Service Request Routine -----
Public Sub Srq()
   Try
       Dim mySTB As Short = mbSession.ReadStatusByte()
                             'Serial poll, read status byte
       Console.WriteLine("Reading Service Request Routine:" + mySTB.ToString())
       If mySTB > 0 Then 'This instrument has bits set in the STB
           If (mySTB And 16) > 0 Then Call Outputqueue()
           If (mySTB And 4) > 0 Then Call ErrorQueueHandler()
           If (mySTB And 8) > 0 Then Call Questionablestatus()
           If (mySTB And 128) > 0 Then Call Operationstatus()
           If (mySTB And 32) > 0 Then Call Esrread()
       End If
   Catch exp As Exception
       Console.WriteLine(exp.Message)
   End Try
End Sub 'End of SRQ routine
```

Reading out the status event registers, the output buffer and the error/event queue is effected in subroutines.

4.3.1.5 Reading Out the Output Buffer

Remote Control - Programming Examples

4.3.1.6 Reading Error Messages

```
REM ----- Subroutine for reading the error queue ------
Public SUB ErrorQueueHandler()
ERROR$ = SPACE$(100) 'Make space for error variable
CALL InstrWrite (analyzer, "SYSTEM:ERROR?")
CALL InstrRead(analyzer, ERROR$)
Debug.Print "Error Description:"; ERROR$
END SUB
REM ----- Subroutine for reading the error queue ------
Sub ErrorQueueHandler()
   Dim result As String
   Dim hasErr As Boolean = True
      mbSession.Write("SYST:ERR?")
      result = mbSession.ReadString()
      Dim parts As String() = result.Split(",")
      If parts(0) = 0 Then
          hasErr = False
          Console.WriteLine(result)
      Else
          Console.WriteLine(result)
      End If
   Loop While hasErr
End Sub
```

4.3.1.7 Evaluation of SCPI Status Registers

Remote Control - Programming Examples

```
Public SUB Operationstatus()
Oper$ = SPACE$(20) 'Preallocate blanks to text
'variable
CALL InstrWrite (analyzer, "STATus:OPERation:EVENt?")
CALL InstrRead(analyzer, Oper$)
Debug.Print "Operation Status:"; Oper$
END SUB
REM ----- Subroutine for evaluating Questionable Status Register ------
Public Sub Questionablestatus()
   Dim myQSR As String = Nothing
   Trv
       myQSR = mbSession.Query("STATus:QUEStionable:EVENt?") 'Read QSR
       Console.WriteLine("Questionable Status:" + myQSR)
   Catch exp As Exception
       Console.WriteLine(exp.Message)
   End Try
End Sub
REM ----- Subroutine for evaluating Operation Status Register ------
Public Sub Operationstatus()
   Dim myOSR As String = Nothing
   Try
       myOSR = mbSession.Query("STATus:OPERation:EVENt?") 'Read OSR
       Console.WriteLine("Operation Status:" + myOSR)
   Catch exp As Exception
       Console.WriteLine(exp.Message)
   End Try
End Sub
```

4.3.1.8 Evaluation of Event Status Register

```
REM ----- Subroutine for evaluating the Event Status Register ------
Public SUB Esrread()
Esr$ = SPACE$(20) 'Preallocate blanks to text
'variable
CALL InstrWrite (analyzer, "*ESR?") 'Read ESR
CALL InstrRead(analyzer, Esr$)
IF (VAL(Esr\$) AND 1) > 0 THEN Debug.Print "Operation complete"
IF (VAL(Esr$) AND 2) > 0 THEN Debug.Print "Request Control"
IF (VAL(Esr\$) AND 4) > 0
THEN Debug. Print "Query Error"
IF (VAL(Esr\$) AND 8) > 0
THEN Debug. Print "Device dependent error"
IF (VAL(Esr\$) AND 16) > 0
THEN Debug.Print "Execution Error; Program aborted"'Output error message
STOP 'Stop software
END IF
IF (VAL(Esr\$) AND 32) > 0
```

Remote Control - Programming Examples

```
THEN Debug.Print "Command Error; Program aborted"'Output error message
STOP 'Stop software
END IF
IF (VAL(Esr$) AND 64) > 0 THEN Debug.Print "User request"
IF (VAL(Esr$) AND 128) > 0 THEN Debug.Print "Power on"END SUB
REM ----- Subroutine for evaluating the Event Status Register ------
Public Sub Esrread()
   Try
       Dim myESR As Short = mbSession.Query("*ESR?") 'Read ESR
       If (myESR And 1) > 0 Then Console.WriteLine("Operation complete")
       If (myESR And 2) > 0 Then Console.WriteLine("Request Control")
       If (myESR And 4) > 0 Then Console.WriteLine("Query Error")
       If (myESR And 8) > 0 Then Console.WriteLine("Device dependent error")
       If (myESR And 16) > 0 Then
           Console.WriteLine("Execution Error; Program aborted") 'Output error message
           Stop 'Stop software
       End If
       If (myESR And 32) > 0 Then
           Console.WriteLine("Command Error; Program aborted") 'Output error message
           Stop 'Stop software
       End If
       If (myESR And 64) > 0 Then Console.WriteLine("User request")
       If (myESR And 128) > 0 Then Console.WriteLine("Power on")
   Catch exp As Exception
       Console.WriteLine(exp.Message)
   End Trv
End Sub
```

4.3.2 Using Marker and Delta Marker

4.3.2.1 Shape Factor Measurement (using n dB down)

The n-dB-down function of the R&S FSV is used twice to determine the shape factor of a filter (ratio of bandwidths at 60 dB and 3 dB below the filter maximum).

The following example is again based on a signal with a level of -30 dBm at 100 MHz. The shape factor is determined for the 30 kHz resolution bandwidth. The default setting of the R&S FSV is used for measurements (SetupInstrument).

Remote Control - Programming Examples

```
'Span
CALL InstrWrite (analyzer, "BAND: RES 30 kHz")
'Resolution bandwidth
CALL InstrWrite (analyzer, "INIT; *WAI") 'Perform sweep with sync
'----- Measure 60 dB value ------
CALL InstrWrite (analyzer, "CALC:MARK:PEXC 6 DB")
'Peak excursion
CALL InstrWrite (analyzer, "CALC:MARK:STAT ON")
'Marker1 on
CALL InstrWrite (analyzer, "CALC:MARK:TRAC 1")
'Assign marker1 to trace1
CALL InstrWrite (analyzer, "CALC:MARK:MAX") 'Set marker1 to 100 MHz
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:NDBD 45 dB")
'Read out bandwidth measured at
'45 dB
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:NDBD:RES?")
CALL InstrRead(analyzer, result$)
result60 = Val(result\$)
'---- Measure 3 dB down value----
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:NDBD 3 dB")
'Read out bandwidth measured at
'3 dB
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:NDBD:RES?")
CALL InstrRead(analyzer, result$)
result3 = Val(result\$)
'---- Read out shape factor----
Print "Shapefaktor 60 dB/3 dB:"; result60/result3
END SUB
```

4.3.2.2 Measuring the Third Order Intercept Point

The third order intercept point (TOI) is the (virtual) level of two adjacent useful signals at which the intermodulation products of third order have the same level as the useful signals

The intermodulation product at f_{S2} is obtained by mixing the first harmonic of the useful signal P_{N2} with signal P_{N1} , the intermodulation product at f_{S1} by mixing the first harmonic of the useful signal P_{N1} with signal P_{N2} .

$$f_{s1} = 2 \times f_{n1} - f_{n2} (1)$$

 $f_{s2} = 2 \times f_{n2} - f_{n1} (2)$

The following example is based on two adjacent signals with a level of -30 dBm at 100 MHz and 110 MHz. The intermodulation products lie at 90 MHz and 120 MHz according to the above formula. The frequency is set so that the examined mixture products are displayed in the diagram. Otherwise, the default setting of the R&S FSV is used for measurements (SetupInstrument).

Remote Control - Programming Examples

```
Public Sub TOI()
result$ = Space$(100)
'----- R&S FSV default setting -----
CALL SetupStatusReg 'Set status registers
CALL InstrWrite (analyzer, "*RST") 'Reset instrument
CALL InstrWrite (analyzer, "INIT:CONT OFF") 'Single sweep
CALL InstrWrite (analyzer, "SYST:DISP:UPD ON")
'ON: display on'OFF: off
'----- Set frequency ------
CALL InstrWrite (analyzer, "FREQ:STARt 85 MHz;STOP 125 MHz")
'----- Set level -------
CALL InstrWrite (analyzer, "DISP:WIND:TRAC:Y:RLEV -20 dBm")
'Reference level
CALL InstrWrite (analyzer, "INIT; *WAI") 'Perform sweep with sync
'----- TOI measurement
CALL InstrWrite (analyzer, "CALC:MARK:PEXC 6 DB")
'Peak excursion
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:TOI ON")
'Switch on TOI measurement
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:TOI:RES?")
'and read out results
CALL InstrRead(analyzer, result$)
'----- Read out result ------
Print "TOI [dBm]:"; result$
END SUB
```

4.3.2.3 Measuring the AM Modulation Depth

The example below is based on an AM-modulated signal at 100 MHz with the following characteristics:

Carrier signal level	-30 dBm
AF frequency	100 kHz
Modulation depth	50 %

The default setting of the analyzer for measurements can be used for the measurements described below (SetupInstrument).

Remote Control - Programming Examples

4.3.3 Limit Lines and Limit Test

The example below shows the definition and use of a new limit line 5 for trace 1 with the following characteristics:

- Upper limit line
- Absolute x-axis in the frequency range
- 7 reference values:
 - 120 MHz/-70 dB.
 - 126 MHz/-40 dB,
 - 127 MHz/-40 dB,
 - 128 MHz/-10 dB,
 - 129 MHz/-40 dB,
 - 130 MHz/-40 dB,
 - 136 MHz/-70 dB
- Relative y-axis with unit dB
- Absolute threshold at –75 dBm
- No margin

The signal of the integrated calibration source (128 MHz, -30 dBm) is used to check the limit test.

Remote Control - Programming Examples

```
'---- Definition of limit lines -----
CALL InstrWrite (analyzer, "CALC:LIM5:NAME 'TEST1'")
'Define name
CALL InstrWrite (analyzer, "CALC:LIM5:COMM 'Upper limit'")
'Define comment
CALL InstrWrite (analyzer, "CALC:LIM5:TRAC 1")
'Assign trace
CALL InstrWrite (analyzer, "CALC:LIM5:CONT:DOM FREQ")
'Define x-axis range
CALL InstrWrite (analyzer, "CALC:LIM5:CONT:MODE ABS")
'Define x-axis scaling
CALL InstrWrite (analyzer, "CALC:LIM5:UNIT DB")
'Define v-axis unit
CALL InstrWrite (analyzer, "CALC:LIM5:UPP:MODE REL")
'Define y-axis scaling
'----- Definition of data points and threshold -----
xlimit$ = "CALC:LIM5:CONT 120 MHz,126 MHz,127 MHz,128 MHz,129 MHz,130 MHz,136 MHz"
CALL InstrWrite (analyzer, xlimit$) 'Set values for x-axis
CALL InstrWrite (analyzer, "CALC:LIM5:UPP -70,-40,-40,-20,-40,-40,-70")
'Set values for y-axis
CALL InstrWrite (analyzer, "CALC:LIM5:UPP:THR -75 DBM")
'Set y threshold (only
'possible for relative
'y-axis)
'---- Definition of margin or x/y offset-----
'A margin or an x/y offset can be defined here.
'----- Activate and evaluate the limit line ------
CALL InstrWrite (analyzer, "CALC:LIM5:UPP:STAT ON")
'Activate line 5
CALL InstrWrite (analyzer, "CALC:LIM5:STAT ON")
'Activate limit check
CALL InstrWrite (analyzer, "INIT; *WAI") 'Perform sweep with sync
CALL InstrWrite (analyzer, "CALC:LIM5:FAIL?")
'Query result of limit check
CALL InstrRead(analyzer, result$) 'Result: 1 (= FAIL)
'---- Read out result -----
Print "Limit Result Line 5: "; result$
'---- Evaluate limit line by means of status register -----
CALL InstrWrite (analyzer, "*CLS") 'Reset status register
'---- Measure -----
CALL InstrWrite (analyzer, "INIT; *OPC") 'Perform sweep with sync
CALL viEnableEvent(analyzer, VI EVENT SERVICE REQ, VI QUEUE, 0)
Status = viWaitOnEvent(analyzer, VI EVENT SERVICE REQ, SRQWaitTimeout, VI NULL, VI NULL)
IF (status = VI SUCCESS) THEN CALL Srq 'If SRQ is recognized =>
'subroutine for evaluation
'----- Read out result ------
IF (status% = 1) THEN
CALL InstrWrite (analyzer, "STAT:QUES:LIM1:COND?")
'Read out STAT:QUES:LIMit
'register
```

Remote Control - Programming Examples

4.3.4 Measuring the Channel and Adjacent Channel Power

In the following example, the channel and adjacent channel power is first measured on a signal with a level of 0 dBm at 800 MHz to IS95. Then the channel and adjacent channel power is measured on a GSM signal at 935.2 MHz with fast ACP measurement (FAST ACP).

In addition, the limit test is activated.

```
Public Sub ACP()
result$ = Space$(100)
'----- R&S FSV default setting -----
CALL SetupStatusReg 'Set status register
CALL InstrWrite (analyzer, "*RST") 'Reset instrument
CALL InstrWrite (analyzer, "INIT:CONT OFF") 'Single sweep
CALL InstrWrite (analyzer, "SYST:DISP:UPD ON")
'ON: display on
'OFF: off
'----- Set frequency ------
CALL InstrWrite (analyzer, "FREQ:CENT 800 MHz")
'Set frequency
'----- Set level -----
CALL InstrWrite (analyzer, "DISP:WIND:TRAC:Y:RLEV 10 dBm")
'Reference level
'---- Example 1: Configure CP/ACP for CDMA-----
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:POW:SEL ACP")
'ACP measurement on
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:POW:PRES F8CDMA")
'Select CDMA800 FWD
CALL InstrWrite (analyzer, "SENS:POW:ACH:ACP 2")
'Select 2 adjacent channels
CALL InstrWrite (analyzer, "SENS:POW:ACH:PRES ACP")
'Optimize settings
CALL InstrWrite (analyzer, "SENS:POW:ACH:PRES:RLEV")
'Optimize reference level
CALL InstrWrite (analyzer, "SENS:POW:ACH:MODE ABS")
'Absolute measurement
CALL InstrWrite (analyzer, "SENS:POW:HSP ON")
'Fast ACP measurement
'----- Perform measurement and query results -----
CALL InstrWrite (analyzer, "INIT; *WAI") 'Perform sweep with sync
```

Remote Control - Programming Examples

```
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:POW:RES? ACP")
 'Query result CALL InstrRead(analyzer, result$)
'----- Read out result -----
Print "Result (CP, ACP low, ACP up, Alt low, Alt up): "Print result$
'----- Example 2: Configure CP/ACP manually for GSM------
result$ = Space$(100)
CALL InstrWrite (analyzer, "FREQ:CENT 935.2 MHz")
'Set frequency
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:POW:SEL ACP")
'ACP measurement on
CALL InstrWrite (analyzer, "SENS:POW:ACH:ACP 1")
'1 adjacent channel
CALL InstrWrite (analyzer, "SENS:POW:ACH:BAND 200 KHZ")
'Channel bandw. 200 kHz
CALL InstrWrite (analyzer, "SENS:POW:ACH:BAND:ACH 200 KHZ")
'Adjacent channel band-
'width 200 kHz
CALL InstrWrite (analyzer, "SENS:POW:ACH:SPAC 200 KHZ")
'Channel spacing 200 kHz
CALL InstrWrite (analyzer, "SENS:POW:ACH:PRES ACP")
'Optimize settings
CALL InstrWrite (analyzer, "SENS:POW:ACH:PRES:RLEV")
'Optimize reference level
CALL InstrWrite (analyzer, "SENS:POW:ACH:MODE ABS")
'Absolute measurement
'----- Start measurement and query result -----
CALL InstrWrite (analyzer, "INIT; *WAI") 'Perform sweep with sync
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:POW:RES? ACP")
'Ouerv result
CALL InstrRead(analyzer, result$)
'----- Read out result ------
Print "Result (CP, ACP low, ACP up): "Print result$
'----- Active limit check ------
result$ = Space$(100)
CALL InstrWrite (analyzer, "CALC:LIM:ACP:ACH 30 DB, 30 DB")
'Set relative limit
CALL InstrWrite (analyzer, "CALC:LIM:ACP:ACH:ABS -35 DBM,-35 DBM")
'Set absolute limit
CALL InstrWrite (analyzer, "CALC:LIM:ACP:ACH:STAT ON")
'Rel. limit check on
CALL InstrWrite (analyzer, "CALC:LIM:ACP:ACH:ABS:STAT ON")
'Abs. limit check on
CALL InstrWrite (analyzer, "CALC:LIM:ACP ON")
'Limit check on
'----- Start measurement and query result ------
CALL InstrWrite (analyzer, "INIT; *WAI") 'Perform sweep with sync
CALL InstrWrite (analyzer, "CALC:LIM:ACP:ACH:RES?")
'Query result of limit check
CALL InstrRead(analyzer, result$)
'----- Read out result -----
```

Remote Control – Programming Examples

Example of channel/adjacent-channel power measurement

POW:ACH:ACP 3

Sets the number of adjacent/alternate channels to 3.

POW:ACH:BAND 30 KHZ

Sets the bandwidth of the transmission channel to 30 kHz.

POW: ACH: BAND: ACH 40 KHZ

Sets the bandwidth of each adjacent channel to 40 kHz.

POW: ACH: BAND: ALT1 50 KHZ

Sets the bandwidth of each alternate channel to 50 kHz.

POW: ACH: BAND: ALT2 60 KHZ

Sets the bandwidth of alternate channel 2 to 60 kHz.

POW:ACH:SPAC 30 KHZ

Sets the spacing between the transmission channel and the adjacent channel to 30 kHz, the spacing between the transmission channel and alternate channel 1 to 60 kHz, and the spacing between the transmission channel and alternate channel 2 to 90 kHz.

POW:ACH:SPAC:ALT1 100 KHZ

Sets the spacing between the alternate adjacent channels and the TX channel. For details refer to [SENSe:]POWer:ACHannel:SPACing:ALTernate<channel> on page 697.

POW:ACH:SPAC:ALT2 140 KHZ

Sets the spacing between the transmission channel and alternate channel 2 to 140 kHz.

POW:ACH:MODE ABS

Switches on absolute power measurement.

CALC:MARK:FUNC:POW:SEL ACP

Switches on the adjacent-channel power measurement.

INIT: CONT OFF

Switches over to single sweep mode.

INIT; *WAI

Starts a sweep and waits for the end of the sweep.

CALC: MARK: FUNC: POW: RES? ACP

Queries the result of adjacent-channel power measurement.

POW: ACH: REF: AUTO ONCE

Remote Control - Programming Examples

Defines the measured channel power as the reference value for relative power measurements.

If the channel power only is to be measured, all commands relating to adjacent/alternate channel bandwidth and channel spacings are omitted. The number of adjacent/alternate channels is set to 0 with [SENSe:]POWer:ACHannel:ACPairs on page 690.

4.3.5 Occupied Bandwidth Measurement

In the following example, the bandwidth is to be found in which 95 % of the power of a GSM signal is contained. Signal frequency is 935.2 MHz; channel bandwidth is 200 kHz.

```
Public Sub OBW()
result$ = Space$(100)
'----- R&S FSV default setting ------
CALL SetupStatusReg 'Set status register
CALL InstrWrite (analyzer, "*RST") 'Reset instrument
CALL InstrWrite (analyzer, "INIT:CONT OFF") 'Single sweep
CALL InstrWrite (analyzer, "SYST:DISP:UPD ON")
'ON: display on
'OFF: off
'----- Configure R&S FSV for OBW for GSM-----
CALL InstrWrite (analyzer, "FREQ:CENT 935.2 MHz")
'Set frequency
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:POW:SEL OBW")
'OBW measurement on
CALL InstrWrite (analyzer, "SENS:POW:ACH:BAND 200 KHZ")
'Channel bandw. 200 kHz
CALL InstrWrite (analyzer, "SENS:POW:BWID 95PCT")
'Percentage of power
CALL InstrWrite (analyzer, "SENS:POW:ACH:PRES OBW")
'Set frequency and optimize reference level
CALL InstrWrite (analyzer, "SENS:POW:ACH:PRES:RLEV")
CALL InstrWrite (analyzer, "SENS:POW:NCOR OFF")
'Noise correction
'OFF: switch off
'ON: switch on
'----- Perform measurement and query results -----
CALL InstrWrite (analyzer, "INIT; *WAI") 'Perform sweep with sync
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:POW:RES? OBW")
'Ouerv result
CALL InstrRead(analyzer, result$)
Print result$
END SUB
```

Remote Control - Programming Examples

4.3.6 Time Domain Power Measurement

In the following example, the mean carrier power of a signal with 300 kHz bandwidth at 100 MHz is to be determined. In addition, the peak power, the rms value and the standard deviation are measured. To do this, the time-domain-power measurement functions are used.

```
Public Sub TimeDomainPower()
result$ = Space$(100)
'----- R&S FSV default setting -----
CALL SetupStatusReg 'Set status register
CALL InstrWrite (analyzer, "*RST") 'Reset instrument
CALL InstrWrite (analyzer, "INIT:CONT OFF") 'Single sweep
CALL InstrWrite (analyzer, "SYST:DISP:UPD ON")
'ON: display on
'OFF: off
'----- Configure R&S FSV for time domain power measurement ------
CALL InstrWrite (analyzer, "FREQ:CENT 100 MHz; SPAN 0Hz")
'Set frequency
CALL InstrWrite (analyzer, "BAND:RES 300 kHz")
'Resolution bandwidth
CALL InstrWrite (analyzer, "SWE:TIME 200US") 'Sweep time
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:SUMM:PPE ON")
'Peak measurement on
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:SUMM:MEAN ON")
'Mean measurement on
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:SUMM:RMS ON")
'RMS measurement on
CALL InstrWrite (analyzer, "CALC:MARK:FUNC:SUMM:SDEV ON")
'Standard deviation on
'----- Perform measurement and query results
CALL InstrWrite (analyzer, "INIT; *WAI") 'Perform sweep with sync
'Query results:
query$ = "CALC:MARK:FUNC:SUMM:PPE:RES?;" 'Peak measurement
query$ = query$ + ":CALC:MARK:FUNC:SUMM:MEAN:RES?;"'Mean measurement
query$ = query$ + ":CALC:MARK:FUNC:SUMM:RMS:RES?;"'RMS measurement
query$ = query$ + ":CALC:MARK:FUNC:SUMM:SDEV:RES?"'Standard deviation
CALL InstrWrite (analyzer, query$)
CALL InstrRead(analyzer, result$)
Print result$
```

4.3.7 Fast Power Measurement on Power Ramps

A frequent task in mobile radio tests is measurement of a DUT at various power control levels at the highest possible speed. The R&S FSV offers two test functions for this task, which can be used depending on the signal characteristics.

Remote Control - Programming Examples

In the following, the two methods are presented by means of two examples.

4.3.7.1 Power Measurement with Multi-Summary Marker

The multi-summary marker function is suitable for measuring the power of a sequence of pulses with the following characteristics:

- The pulses occur at identical time intervals, which is typical of GSM transmission in slots, for example.
- The level of the first signal is reliably above threshold.
- The subsequent pulses may have any levels.
- The function uses the first pulse as a trigger signal. The power of the subsequent
 pulses is determined exclusively via the timing pattern selected for the pulse
 sequence. The function is, therefore, suitable for adjustments where the DUT output
 power varies considerably and is not reliably above the trigger threshold.
- The measurement accuracy is determined by the ratio of pulse duration to total measurement time; this should not be below 1:50.
- The function always uses TRACE 1.

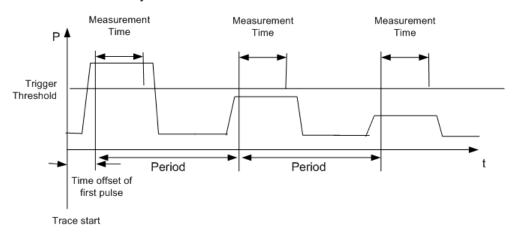


Fig. 4-5: Block diagram illustrating signal processing in analyzer

In the example below, a GSM pulse sequence of 8 pulses is measured with an offset of $50 \mu s$ of the first pulse, $450 \mu s$ measurement time/pulse and $576.9 \mu s$ pulse period.

Remote Control - Programming Examples

```
'Frequency setting
CALL InstrWrite (analyzer, "DISP:WIND:TRAC:Y:RLEV 10 dBm")
'Set reference level to 10 dB
CALL InstrWrite (analyzer, "INP:ATT 30 dB") 'Set input attenuation to 30 dB
CALL InstrWrite (analyzer, "BAND: RES 1 MHz; VID 3 MHz")
'Bandwidth setting
CALL InstrWrite (analyzer, "DET RMS") 'Select RMS detector
CALL InstrWrite (analyzer, "TRIG: SOUR VID") 'Trigger source: video
CALL InstrWrite (analyzer, "TRIG:LEV:VID 50 PCT")
'Trigger threshold: 50 %
CALL InstrWrite (analyzer, "SWE:TIME 50ms") 'Sweep time \geq 1 frame
'----- Perform measurement and query results -----
CALL InstrWrite (analyzer, "INIT; *WAI") 'Perform sweep with sync
'Query results:
cmd$ = "CALC:MARK:FUNC:MSUM?"cmd$ = cmd$ + "50US," 'Offset of first pulse
cmd$ = cmd$ + "450US," 'Measurement time
cmd$ = cmd$ + "576.9US," 'Pulse period
cmd$ = cmd$ + "8" 'Number of bursts
CALL InstrWrite (analyzer, cmd$)
CALL InstrRead(analyzer, result$) 'Read results
Print result$
END SUB
```

4.3.7.2 Multi-Burst Power Measurement

The multi-burst power measurement function is suitable for measuring the power of a sequence of pulses with the following characteristics:

- The pulses occur at variable time intervals.
- The levels of all pulses of the sequence are reliably above the trigger threshold, or an external trigger signal is used.
- The function requires one trigger event per pulse. This means that if the video trigger or the IF power trigger is used, the levels of all pulses must be above the trigger threshold.
- The function is, therefore, particularly suitable for re-measuring DUTs already adjusted and whose output power is within the specified range. The measurement is optimized for minimum overhead relative to the actual measurement time.

Remote Control - Programming Examples

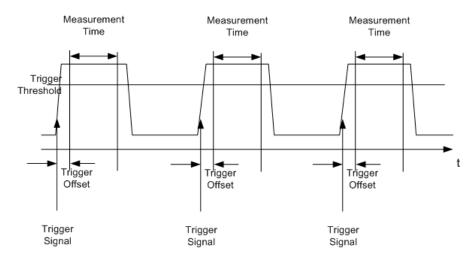


Fig. 4-6: Block diagram illustrating signal processing in analyzer

Either the root-mean-square power or the peak power is measured, depending on whether the RMS detector or the PEAK detector is selected. The function always uses TRACE 1.

The following parameters are to be set for this measurement:

- Analyzer frequency
- Resolution bandwidth
- Measurement time per single pulse
- Trigger source
- Trigger threshold
- Trigger offset
- Type of power measurement (PEAK, MEAN)
- Number of pulses to be measured

During the measurement, each pulse is mapped into a pixel of the screen, i.e. any change of the trace can be detected only at the left-hand edge of the screen. Maximum measurement speed is as usual achieved with the display switched off.

In the example below, a GSM pulse sequence of 8 pulses is measured with 5 μ s trigger offset, 434 μ s measurement time/pulse, video trigger with 50 % trigger threshold, and peak detection:

Remote Control - Programming Examples

4.3.8 Fast Level Measurement Using Frequency Lists

A typical task for the R&S FSV is power measurement at a number of frequency points, e.g. at multiples of the fundamental (harmonics measurement), or at frequencies defined by a mobile radio standard (e.g. spectrum due to transients at \pm 200 kHz, \pm 400 kHz, etc about the carrier frequency of a GSM signal). In many cases, different level and/or bandwidth settings are required for the different frequency points to match the channel spacing and meet the requirements of dynamic range.

Especially for this application, the R&S FSV offers a number of remote-control functions (commands available in SENSe:LIST subsystem) that allow level measurement based on a frequency list with different instrument settings assigned to different frequencies. Not only the frequency list can be programmed, but also the measurement types (PEAK, RMS, AVG) to be performed simultaneously can be selected.

The example below describes a harmonics measurement on a dual-band amplifier. The harmonics level in general decreases as the frequency increases. To boost measurement sensitivity, therefore, the reference level is lowered by 10 dB from the third harmonic.

The fol	lowina	settings	are	used:

Reference level:	10.00 dBm up to first harmonic, 0 dBm from 2nd harmonic
RF attenuation:	20 dB
Electronic attenuation:	0 dB (OFF)
Filter type:	NORMal
RBW:	1 MHz
VBW:	3 MHz
Measurement time:	300 µs
Trigger delay:	100 μs
Trigger:	video, 45 %

Remote Control - Programming Examples

Frequency	Туре
935.2 MHz	GSM 900 fundamental
1805.2 MHz	GSM 1800 fundamental
1870.4 MHz	GSM 900 2 nd harmonic
2805.6 MHz	GSM 900 3 rd harmonic
3610.4 MHz	GSM 1800 2 nd harmonic
3740.8 MHz	GSM 900 4 th harmonic
5815.6 MHz	GSM 1800 3 rd Harmonic

The frequencies are selected in ascending order to minimize system-inherent waiting times resulting from frequency changes.

At each frequency point the peak power and the rms power are measured. The peak power and the rms power values are stored alternately in the results memory.

```
Public Sub FrequencyList()
result$ = Space$(500)
'---- R&S FSV default setting -----
CALL SetupStatusReg 'Configure status register
CALL InstrWrite (analyzer, "*RST") 'Reset instrument
CALL InstrWrite (analyzer, "INIT:CONT OFF") 'Single sweep mode
CALL InstrWrite (analyzer, "SYST:DISP:UPD OFF") 'Display off
'-----Configure R&S FSV for power measurement based on frequency list -
CALL InstrWrite (analyzer, "TRIG:LEV:IFP -20 dBm")
'Set IF power trigger level
CALL InstrWrite (analyzer, "LIST: POWer: SET ON, ON, OFF, IFP, POS, 100us, 0")
'----- Perform measurement and query results -----
cmd$ = "LIST: POWer?"cmd$ = cmd$ + "935.2 MHZ, 10 dBm, 20 dB,OFF,NORM,1 MHz,3 MHz,
300 us, 0, "
cmd\$ = cmd\$ + "1805.2 MHZ, 10 dBm, 20 dB, OFF, NORM, 1 MHz, 3 MHz, 300 us, 0, "
cmd$ = cmd$ + "1870.4 MHZ, 10 dBm, 20 dB,OFF,NORM,1 MHz,3 MHz,300 us, 0, "
cmd\$ = cmd\$ + "2805.6 MHZ, 0 dBm, 20 dB,OFF,NORM,1 MHZ,3 MHZ,300 us, 0, "
cmd\$ = cmd\$ + "3610.4 MHz, 10 dBm, 20 dB, OFF, NORM, 1 MHz, 3 MHz, 300 us, 0, "
cmd$ = cmd$ + "3740.8 MHz, 0 dBm, 20 dB, OFF, NORM, 1 MHz, 3 MHz, 300 us, 0, "
cmd$ = cmd$ + "5815.6 MHz, 0 dBm, 20 dB, OFF, NORM, 1 MHz, 3 MHz, 300 us, 0"
CALL InstrWrite (analyzer, cmd$)
CALL InstrRead(analyzer, result$)
Print result$
REM *************************
```

Remote Control - Programming Examples

4.3.9 Level Correction of Transducers

In more complex test systems, the frequency response of the test setup must be taken into account in all power measurements to avoid any measurement errors being introduced from sources other than the DUT.

The R&S FSV offers the possibility of defining a frequency-dependent attenuation correction factor (transducer factor).

In the example below, a factor with the following characteristics is defined:

Name:	Transtest
Unit:	dB
Scaling:	lin
Comment:	simulated cable correction
Frequency	Level
10 MHz	0 dB
100 MHz	3 dB
1 GHz	7 dB
3 GHz	10 dB

The factor is defined and can be activated as required.

```
Public Sub TransducerFactor()
'----- Define transducer factor -----
CALL InstrWrite (analyzer, "CORR:TRAN:SEL 'TRANSTEST'")
'Define "Transtest"'transducer factor
CALL InstrWrite (analyzer, "CORR:TRAN:UNIT 'DB'")
'Unit 'dB'
CALL InstrWrite (analyzer, "CORR:TRAN:SCAL LIN")
'Linear frequency-axis
CALL InstrWrite (analyzer, "CORR:TRAN:COMM 'Simulated cable correction'")
cmd$ = "CORR:TRAN:DATA" 'Enter frequency and level
cmd$ = cmd$ + "10 MHz, 0," 'values. Level values without
cmd$ = cmd$ + "100 MHz, 3," 'unit!
cmd\$ = cmd\$ + "1GHz, 7,"cmd\$ = cmd\$ + "3GHz, 10"
CALL InstrWrite (analyzer,cmd$) 'Enter frequency and level values
'----- Activate transducer -----
CALL InstrWrite (analyzer, "CORR:TRAN:STAT ON")
'Activate transducer factor
END SUB
```

Remote Control - Programming Examples

4.3.10 Measuring the Magnitude and Phase of a Signal

Due to the R&S FSV's internal architecture, it is capable of measuring and outputting the magnitude and phase of a signal in addition to its power values. This opens up a variety of possibilities for more in-depth analysis (FFT, demodulation, etc).

I/Q data is stored in memory areas each containing 512 k words. Hardware triggering controls the memory.

The following example shows the steps necessary to collect data at a predefined sampling rate and read it from the I/Q memory.

- 1. Data is output in the form of voltage values referred to the analyzer input. Data can be read in binary or ASCII format.
 - In binary format, the length information carried in the message header is evaluated and used for calculating the x-axis values.
 - In ASCII format, only a list of voltage values is output.
- 2. Binary data is read in three steps:
- 3. The number of digits carrying the length information is read.
- 4. The length information itself is read.
- The trace data is read.

This procedure is necessary with programming languages like Visual Basic which support only structures of identical data types (arrays), whereas the binary data format uses different data types in the header and the data section.

The arrays for measured data are dimensioned in such a way that they can accommodate the I/Q data of the R&S FSV (2 × 512 k).

```
Public Sub ReadIOData()
'----- Create variables ------
Dim IData(131072) As Single 'Buffer for floating-point
'I data (= 512*1024 bytes)
Dim QData(131072) As Single 'Buffer for floating-point
'Q data (= 512*1024 bytes)
'Note:
'Visual Basic cannot read in
'data volumes larger than
'512 k words!
Dim digits As Byte 'No. of digits as length
Dim IQBytes As Long 'Length of trace data in bytes
Dim IQValues As Long 'No. of meas. values in buffer
Dim retCount As Integer 'Return count from read
asciiResult$ = Space$(6553600) 'Buffer for ASCII I/Q data
'(= 25*2*1024 bytes)
result$ = Space$(100) 'Buffer for simple results
```

```
'----- Default setting ------
CALL SetupInstrument 'Default setting
CALL InstrWrite (analyzer, "TRAC:IQ:STAT ON")
'Activate I/O data
'acquisition mode; must be
'done before TRAC: IQ: SET !
'Select number of test points
'(= 512 * 1024 - 512) at
'RBW 10 MHz, 'sample rate 32 MHz,
'trigger free run, pos. trigger
'edge and 0 s trigger delay.
CALL InstrWrite (analyzer, "TRAC:IQ:SET NORM,10 MHz,32 MHz,IMM,POS,0,130560")
'----- Read-out in binary format-----
CALL InstrWrite (analyzer, "FORMAT REAL, 32")
'Set binary format
CALL InstrWrite (analyzer, "TRAC:IQ:DATA?")
'Measure + read out I/Q data
CALL viRead(analyzer, result$, 2, retCount)
'Read and store length for
digits = Val(Mid$(result$, 2, 1)) 'number of digits
result$ = Space$(100) 'Re-initialize buffer
CALL viRead(analyzer, result$, digits, retCount)
'Read and store length
IQBytes = Val(Left$(result$, digits))
IQBytes = IQBytes/2 'Divide no. per buffer in half
CALL viRead(analyzer, IData(0), IQBytes, retCount)
'Read I data in buffer
CALL viRead(analyzer, QData(0), IQBytes, retCount)
'Read Q data in buffer
CALL viRead(analyzer, result$, 1, retCount)
'Read in end character <NL>
'----- Output of binary data as frequency/level pair ------
IQValues = IQBytes/4 'Single Precision = 4 Bytes
For i = 0 To IQValues - 1
Print "I-Value["; i; "] = "; IData(i)
Print "Q-Value["; i; "] = "; QData(i)
Next i
'----- Read-out in ASCII format -----
CALL InstrWrite (analyzer, "FORMAT ASCII") 'Set ASCII format
CALL InstrWrite (analyzer, "TRAC:IQ:DATA?")
'Re-measure and read out
'I/Q data
CALL InstrRead(analyzer, asciiResult$)
CALL InstrWrite (analyzer, "TRAC:IQ:STAT OFF")
'Stop I/Q data aquisition
'mode if no further
'measurements are to be
'done
```

Remote Control - Programming Examples

4.3.11 Reading and Writing Files

4.3.11.1 Reading a File from the Instrument

In the following example, the <code>TEST1.R&S FSV.DFL</code> file stored under <code>C: \R S\Instr\user</code> is read from the instrument and stored in the controller.

```
Public Sub ReadFile()
'---- Generate variables -----
Dim digits As Byte 'Number of digits of
'length information
Dim fileBytes As Long 'Length of file with trace data
'in bytes
result$ = Space$(100) 'Buffer for simple results
'----- Default setting of status register ------
CALL SetupStatusReg 'Configure status register
'----- Read out file ------
CALL InstrWrite (analyzer, "MMEM:DATA? 'C:\R S\Instr\user\TEST1.R&S FSV.DFL'")
'Select file
CALL ilrd(analyzer, result$, 2) 'Read and store number of
digits = Val(Mid$(result$, 2, 1)) 'digits of length information
CALL ilrd(analyzer, result$, digits) 'Read and store length
fileBytes = Val(Left$(result$, digits)) 'information
FileBuffer$ = Space$(fileBytes) 'Buffer for file
CALL ilrd(analyzer, FileBuffer, fileBytes)
'Read file into buffer
CALL ilrd(analyzer, result$, 1) 'Read terminator <NL>
'----- Store file to controller -----
Open "TEST1.R&S FSV.DFL" For Output As #1
Print #1, FileBuffer; '; to avoid linefeed at
'end of file
Close #1
END SUB
```

4.3.11.2 Creating a File on the Instrument

In the following example, the TEST1.R&S FSV.DFL file available on the controller is stored in the instrument under C:

Remote Control - Programming Examples

```
'----- Generate variables -----
FileBuffer$ = Space$(100000) 'Buffer for file
Dim digits As Long 'Number of digits of
'length information
Dim fileBytes As Long 'Length of file in bytes
fileSize$ = Space$(100) 'Length of file as a string
result$ = Space$(100) 'Buffer for simple results
'----- Default setting of status register -----
CALL SetupStatusReg 'Configure status register
'----- Prepare the definite length block data -----
fileBytes = FileLen("H:\work\vb\TEST1.R&S FSV.DFL")
'Determine length of file
fileSize$ = Str$(fileBytes)
digits = Len(fileSize$) - 1 'Determine number of digits of
fileSize$ = Right$(fileSize$, digits) 'length information
FileBuffer$ = "#" + Right$(Str$(digits), 1) + fileSize$
'Store length information in
'file buffer
'----- Read file from controller -----
Open "H:\work\vb\TEST1.R&S FSV.DFL" For Binary As #1
FileBuffer$ = FileBuffer$ + Left$(Input(fileBytes, #1), fileBytes)
'----- Write file ------
CALL InstrWrite (analyzer, "SYST:COMM:GPIB:RTER EOI") 'Set receive
'terminator on the
'instrument
CALL InstrWrite (analyzer, "MMEM:DATA
'DUPLICAT.R&S FSV.DFL', " + FileBuffer$)
'Select file
END SUB
```

4.3.12 Spectrum Emission Mask Measurement

You can configure Spectrum Emission Mask measurements via XML files provided for different standards or by defining ranges and parameters. For both ways an example is given.

4.3.12.1 Using Predefined Standard Wibro

In the following example, the Spectrum Emission Mask measurement is configured using a predefined standard XML file.

Remote Control - Programming Examples

```
Rem After preset 3 ranges are available where the middle one is
Rem the reference range for calculating the TX power
CALL InstrWrite (analyzer, ":SENSe1:FREQuency:CENTer 2.2 GHz")
'Center frequency 2.2 GHz
CALL InstrWrite (analyzer, ":SENSe1:DETector1 RMS")
'Set RMS detector
'----- Setting up the gated trigger ------
CALL InstrWrite (analyzer, ":SENSe1:SWEep:EGATe ON")
'Switch on the external gate mode
CALL InstrWrite (analyzer, ":SENSe1:SWEep:EGATe:SOURce EXTernal")
'Set enternal gate source
CALL InstrWrite (analyzer, ":SENSe1:SWEep:EGATe:HOLDoff 0s")
'Set delay time to 0 s
CALL InstrWrite (analyzer, ":SENSe1:SWEep:EGATe:LENGth 200 US")
'Set time interval
'----- Setting the standard -----
CALL InstrWrite (analyzer, "SENSel:ESPectrum:PRESet:STANdard
'WIBRO\DL\PowerClass 29 40.xml'")
'Set WiBro standard
'----- Measuring ------
CALL InstrWrite (analyzer, "INIT; *WAI") 'Perform sweep, wait for sweep
'----- Reading out results -----
CALL InstrWrite (analyzer, ":TRACel:DATA? LIST")
'Query list results
CALL InstrWrite (analyzer, ":CALCulate:LIMit:FAIL?")
'Query result of limit check
CALL InstrRead(analyzer, result$)
```

4.3.12.2 Defining 5 Ranges with all Parameters

In the following example, the Spectrum Emission Mask measurement is configured by defining ranges and parameters.

```
Rem If a free run trigger is not appropriate a gated trigger can
Rem the be set up (just comment in the following lines).
Rem CALL InstrWrite (analyzer, ":SENSe1:SWEep:EGATe ON")
Rem Switch on the external gate mode
Rem CALL InstrWrite (analyzer, ":SENSe1:SWEep:EGATe:SOURce EXTernal")
Rem Set enternal gate source
Rem CALL InstrWrite (analyzer, ":SENSe1:SWEep:EGATe:HOLDoff 0s")
Rem Set delay time to 0 s
Rem CALL InstrWrite (analyzer, ":SENSe1:SWEep:EGATe:LENGth 200 US")
Rem Set time interval
'----- Setting the span ------
CALL InstrWrite (analyzer, ":SENSe1:FREQuency:SPAN 8 MHZ")
'Set the span to 8 MHz
'----- Inserting new ranges ------
Rem Enlarge number of ranges to 5 by adding one at the end
Rem and one at the beginnig. This ensures that the reference range
Rem remains in the middle
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe2:INSert AFTer")
'Insert a range after range 2
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe1:INSert BEFore")
'Insert a range before range 1
'----- Defining the limit check for all ranges -----
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe:LIMit:STATe AND")
'Set check for absolute and 'relative limit
'----- Defining the reference range settings -----
Rem The bandwith of the reference range limits the minimum span
Rem of the reference range definition later in the script.
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RTYPe CPOWer")
'Set power reference type
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:BWID 2 MHZ")
'Set bandwidth
'----- Defining the settings of range 1 -----
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe1:FREQuency:STARt -4 MHz")
'Set the start frequency
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe1:FREQuency:STOP -2 MHz")
'Set the stop frequency
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe1:BANDwidth:RESolution 1 MHZ")
'Set the resolution bandwidth
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe1:FILTer:TYPE CFILter")
'Set the channel filters
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe1:BANDwidth:VIDeo 3 MHZ")
'Set the video bandwidth to 3 MHz
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe1:SWEep:TIME 20 ms")
'Set the sweep time to 20 ms
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe1:RLEVel 5 DBM")
'Set the reference level to 5 dBm
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe1:INPut:ATTenuation 20 DB")
'Set the attenuation to 20 dB
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe1:LIMit:ABSolute:STARt -50")
'Set an absolute limit of -50 dBm
```

```
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe1:LIMit:ABSolute:STOP -50")
'Set an absolute limit of -50 dBm
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe1:LIMit:RELative:STARt -70")
'Set a relative limit of -70 dBc
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe1:LIMit:RELative:STOP -60")
'Set a relative limit of -60 dBc
'---- Defining the settings of range 2 -----
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe2:FREQuency:STARt -2 MHz")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe2:FREQuency:STOP -1 MHz")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe2:BANDwidth:RESolution
100 kHz")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe2:FILTer:TYPE NORM")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe2:BANDwidth:VIDeo 300 kHZ")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe2:SWEep:TIME 50 ms")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe2:RLEVel 10 DBM")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe2:INPut:ATTenuation 30 DB")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe2:LIMit:ABSolute:STARt
-40")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe2:LIMit:RELative:STARt
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe2:LIMit:ABSolute:STOP -40")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe2:LIMit:RELative:STOP -40")
'----- Defining the settings of range 3 -----
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe3:FREQuency:STARt -1 MHz")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe3:FREQuency:STOP 1 MHz")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe3:BANDwidth:RESolution
30 kHZ")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe3:FILTer:TYPE NORM")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe3:BANDwidth:VIDeo 100 kHZ")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe3:SWEep:TIME 5 ms")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe3:RLEVel 20 DBM")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe3:INPut:ATTenuation 30 DB")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe3:LIMit:ABSolute:STARt 200")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe3:LIMit:ABSolute:STOP 200")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe3:LIMit:RELative:STARt 200")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe3:LIMit:RELative:STOP 200")
'---- Defining the settings of range 4 -----
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe4:FREQuency:STARt 1 MHz")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe4:FREQuency:STOP 2 MHz")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe4:BANDwidth:RESolution
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe4:FILTer:TYPE NORM")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe4:BANDwidth:VIDeo 300 kHZ")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe4:SWEep:TIME 50 ms")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe4:RLEVel 10 DBM")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe4:INPut:ATTenuation 30 DB")
CALL InstrWrite (analyzer, ":SENSel:ESPectrum:RANGe4:LIMit:ABSolute:STARt
-40")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe4:LIMit:ABSolute:STOP -40")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe4:LIMit:RELative:STARt
```

Remote Control - Programming Examples

```
-40")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe4:LIMit:RELative:STOP -60")
'----- Defining the settings of range 5 -----
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe5:FREQuency:STARt 2 MHz")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe5:FREQuency:STOP 4 MHz")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe5:BANDwidth:RESolution 1 MHZ")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe5:FILTer:TYPE CFILter")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe5:BANDwidth:VIDeo 3 MHZ")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe5:SWEep:TIME 20 ms")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe5:RLEVel 5 DBM")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe5:INPut:ATTenuation 20 DB")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe5:LIMit:ABSolute:STARt
-50")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe5:LIMit:ABSolute:STOP -50")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe5:LIMit:RELative:STARt -60")
CALL InstrWrite (analyzer, ":SENSe1:ESPectrum:RANGe5:LIMit:RELative:STOP -70")
'---- Measuring -----
CALL InstrWrite (analyzer, "INIT; *WAI") 'Perform sweep, wait for sweep
'----- Reading out results ------
CALL InstrWrite (analyzer, ":TRACe1:DATA? LIST")
'Ouery list results
CALL InstrWrite (analyzer, ":CALCulate:LIMit:FAIL?")
'Query result of limit check
CALL InstrRead(analyzer, result$)
```

4.3.13 Spurious Emissions Measurement

In the following example, the Spurious Emissions measurement is configured by defining ranges and parameters.

```
'----- General settings of the instrument ------
CALL InstrWrite (analyzer, "*RST") 'Reset instrument
Rem After preset 4 ranges are available. Range settings can be questioned
Rem independent from the set measurement mode.
'----- Deleting all ranges -----
Rem Delete all ranges to prepare for setting up a new measurement
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe4:DELete")
'Delete range 4
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe3:DELete")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe2:DELete")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:DELete")
'----- Defining the start frequency for all ranges ------
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:FREQuency:STARt 1000000")
Rem Setting the start frequency of range 1 will create the ranges and
Rem every other range value will be set to the default value.
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe2:FREQuency:STARt 2000000")
```

```
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe3:FREQuency:STARt 3000000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe4:FREQuency:STARt 4000000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe5:FREQuency:STARt 5000000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe:COUNT?")
'Queries the number of defined
'ranges
'---- Querying the parameters of range 1 -----
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:FREQuency:STARt?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:FREQuency:STOP?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:FILTer:TYPE?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:BANDwidth:RESolution?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:BANDwidth:VIDeo?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:SWEep:TIME:AUTO?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:DETector?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:RLEVe1?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:INPut:ATTenuation:AUTO?")
CALL InstrWrite (analyzer, "SENSel:LIST:RANGel:INPut:GAIN:STATe?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:BREak?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:TRANsducer?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:SWEep:TIME?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:INPut:ATTenuation?")
CALL InstrWrite (analyzer, "SENSel:LIST:RANGel:POINts?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:LIMit:STARt?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:LIMit:STOP?")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:LIMit:STATe?")
'----- Changing into the Spurious Emissions measurement mode
CALL InstrWrite (analyzer, ":SENSe1:SWEEP:MODE LIST")
Rem In continuous sweep mode, editing the ranges is not allowed.
Rem You have to stop the measurement first.
Rem In single sweep mode, you can edit the ranges at the end of the sweep.
'----- Single sweep version ------
CALL InstrWrite (analyzer, "INIT:CONT OFF") 'Switch to single sweep
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:FREQuency:STARt 500000")
'Change the start frequency
CALL InstrWrite (analyzer, "INIT; *WAI") 'Perform sweep, wait for sweep
'----- Continuous sweep version -----
CALL InstrWrite (analyzer, "INIT:CONT ON") 'Switch to continuous sweep
CALL InstrWrite (analyzer, "ABORt") 'Stop the measurement
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:FREQuency:STARt 500000")
'Change the start frequency
CALL InstrWrite (analyzer, ":INITiatel:SPURious") 'Restart the measurement
'---- Defining the range settings in single sweep mode -----
CALL InstrWrite (analyzer, "INIT:CONT OFF") 'Switch to single sweep
CALL InstrWrite (analyzer, "INIT; *WAI") 'Perform sweep, wait for sweep
'end
Rem Edit one range at a time. Make sure to edit the ranges in a correct
Rem order to prevent limit violations. Ranges cannot overlap.
Rem The best way is to start with range 1.
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:FREQuency:STARt 500000")
```

```
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:FREQuency:STOP 550000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:FILTer:TYPE NORM")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:BANDwidth:RESolution 3000000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:BANDwidth:VIDeo 10000000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:SWEep:TIME:AUTO ON")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:DETector RMS")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:RLEVel -10")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:INPut:ATTenuation:AUTO ON")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:POINts 8001")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:INPut:GAIN:STATe OFF")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:BREak OFF")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:LIMit:STARt -20")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:LIMit:STOP -20")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:LIMit:STATE ON")
Rem Proceed with range 2.
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe2:FREQuency:STARt 1000000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe2:FREQuency:STOP 200000000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe2:FILTer:TYPE CFILter")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe2:BANDwidth:RESolution 5000000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe2:DETector POS")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe2:RLEVel -20")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe2:INPut:ATTenuation 0")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe2:POINts 32001")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe2:INPut:GAIN:STATe ON")
Rem Proceed with range 3.
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe3:FREQuency:STARt 250000000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe3:FREQuency:STOP 1000000000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe3:FILTer:TYPE RRC")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe3:POINts 32001")
Rem Proceed with range 4.
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe4:FREQuency:STARt 1200000000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe4:FREQuency:STOP 4000000000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe4:FILTer:TYPE PULSe")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe4:POINts 251")
Rem Proceed with range 5.
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe5:FREQuency:STARt 5000000000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe5:FREQuency:STOP 6000000000")
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe5:POINts 7001")
'----- Defining the limit check for all ranges ------
CALL InstrWrite (analyzer, "SENSe1:LIST:RANGe1:LIMit:STATe ON")
'Activate the limit check
'----- Setting the span to include all ranges -----
CALL InstrWrite (analyzer, ":SENSe1:FREQuency:STARt 500000")
CALL InstrWrite (analyzer, ":SENSel:FREQuency:STOP 6000000000")
'----- Measuring ------
CALL InstrWrite (analyzer, "INIT; *WAI") 'Perform sweep, wait for sweep
'end
'----- Reading out results ------
CALL InstrWrite (analyzer, ":TRACe1:DATA? LIST")
'Query list results
```

Remote Control - Programming Examples

4.3.14 Averaging I/Q Data

The R&S FSV has averaging capability also for I/Q measurements, i.e. I/Q data can be averaged over several test runs. This is subject to the following conditions:

- An external trigger signal must be available for data measurement, and the trigger signal must be phase-locked to the signal measured.
- The same reference-frequency signal must be used for the DUT and the R&S FSV.
- Internal I/Q data averaging is supported up to 512 k I/Q samples.

If all of the above conditions are fulfilled, no phase shift will occur between consecutive test runs. Phase shift may falsify the measured average so that in extreme cases a value of 0 is obtained.

The default setting of the instrument for data measurement without averaging has to be changed as follows:

Remote Control – Programming Examples

4.3.15 Using IQ Gating

IQ gating refers to recording IQ samples in certain time intervals – the gate areas. There are different modes to define the gate areas:

- Edge triggered recording
- Level triggered recording

For more information, see "IQ Gating" in the "Remote Commands" chapter under "Trace:IQ" subsystem.

Measurement example: Level mode

With IQ gating in level mode, the area in which the gate signal is active is recorded. In this example, the gate signal is generated by the IFP trigger. The figure 4-7 shows the signal (triggered externally) in IQ mode. The following sample program records the signal in level mode with an external trigger.

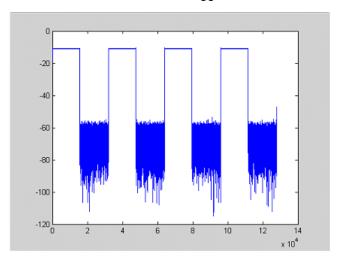


Fig. 4-7: Signal to be recorded in IQ mode

Used values

sample rate: 32 MHz

number of IQ samples: 128000

trigger mode: IFP

Program

```
:TRACe1:IQ ON

Trace:iq:set NORM,0,32000000,IFP,POS,0,128000
:TRIGger1:SEQuence:LEVel:IFPower -20
:TRACe1:IQ:EGATe ON
:TRACe1:IQ:EGATe:TYPE LEVel
```

Remote Control – Programming Examples

Result

In figure 4-8, the recorded signal using IQ gating in level mode is displayed. Edges are only visible around the IFP trigger point, otherwise only the signal level is recorded.

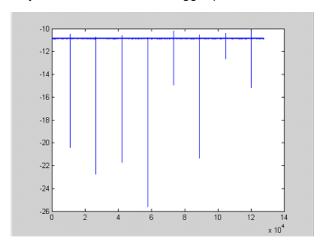


Fig. 4-8: Recorded signal using IQ gating in level mode

Measurement example: Edge mode

In edge mode, the gate area is defined by:

- delay (pretrigger samples)
- length
- number of periods
- gap between the periods

The gate starting point can be defined using an IFP or external trigger.

The figure 4-9 shows the signal to be recorded in IQ mode.

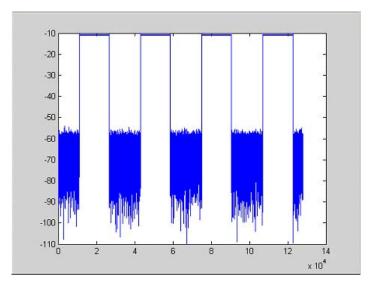


Fig. 4-9: Signal to be recorded in IQ mode

Remote Control – Programming Examples

Example 1: Signal only

The following sample program records the signal in edge mode and displays only the signal, without gaps and noise.

Used values

sample rate: 32 MHz

number of IQ samples: 128000

delay = 11020 samples length =15500 samples

trigger mode: EXT

Program

:TRACe1:IQ ON

Trace:iq:set NORM, 0, 32000000, EXT, POS, 11020, 128000

:TRACe1:IQ:EGATe ON

:TRACe1:IQ:EGATe:TYPE EDGE

:TRACe1:IQ:EGATe:LENGth 15500

Result

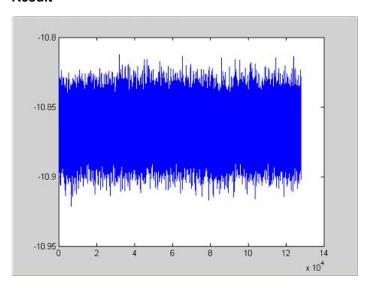


Fig. 4-10: Result: signal only (no gaps, no noise)

Example 2: Noise only

The following sample program records the signal in edge mode and displays only the noise.

Remote Control – Programming Examples

Used values

sample rate: 32 MHz

number of IQ samples: 128000

delay = 0 samples

length =9000 samples

trigger mode: EXT

Program

:TRACe1:IQ ON

Trace:iq:set NORM, 0, 32000000, EXT, POS, 0, 128000

:TRACe1:IQ:EGATe ON

:TRACe1:IQ:EGATe:TYPE EDGE

:TRACe1:IQ:EGATe:LENGth 9000

Result

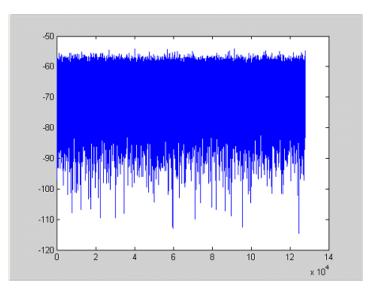


Fig. 4-11: Result: noise only

Measurement example: Periodic signal intervals in edge mode

The gate area can also be defined by a number of gate periods and the distance between two periods (gap). In this example, a power ramp is recorded, triggered by the IFP on the highest edge (see figure 4-12). As a result, only the levels of the individual ramp areas of the first 3 periods are displayed (see figure 4-13).

Remote Control – Programming Examples

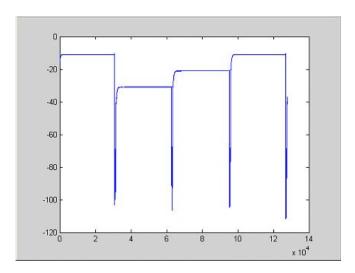


Fig. 4-12: Periodic signal recording in edge mode

Used values:

sample rate: 3,2 MHz

number of IQ samples: 228000

trigger mode: IFP

length: 28800

number of periods: 3 gap: 3800 samples

Program

```
:TRACe1:IQ ON

trace:iq:set NORM,0,3200000,IFP,POS,0,228000

:TRIGger1:SEQuence:LEVe1:IFPower -20

:TRACe1:IQ:EGATe ON

:TRACe1:IQ:EGATe:TYPE EDGE

:TRACe1:IQ:EGATe:LENGth 28800

:TRACe1:IQ:EGATe:NOF 3

:TRACe1:IQ:EGATe:GAP 3800
```

Remote Control - Programming Examples

Result

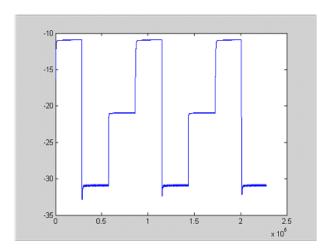


Fig. 4-13: Result: periodic power ramp levels

4.3.16 Usage of Four Spectrum Instances

As of R&S FSV firmware version 1.50, you can open up to four tabs for spectrum mode with the softkey "New Spectrum" in the "MODE" menu. The following remote example shows how to set up four tabs with four different measurements on a WCDMA signal.

```
Public Sub 4SpectrumTabs()
result$ = Space$(100)
'----- R&S FSV default setting -----
CALL SetupStatusReg
                                'Set status registers
CALL InstrWrite(analyzer, "*RST")
                                      'Reset instrument
CALL InstrWrite(analyzer,"INIT:CONT OFF")
                                          'Single sweep
'---- Setup the first Spectrum tab (Spectrum Overview Measurement) ----
CALL InstrWrite(analyzer, "INIT:CONT OFF")
                                          'Single sweep
CALL InstrWrite(analyzer, "DISP:WIND:TRAC:Y:SCAL:RLEV 10 dBm") 'Reference level
                                                         'Span
CALL InstrWrite(analyzer, "FREQ:STARt 100MHz;STOP 6 GHz")
'----- Setup the Spectrum 2 Tab (ACLR measurement) ------
CALL InstrWrite(analyzer, "INST: CRE SAN, 'Spectrum 2'")
                                                      'Create Tab 2
'--- After creation the tab is in standard preset setup ---
CALL InstrWrite(analyzer, "INIT: CONT OFF")
                                          'Single sweep
CALL InstrWrite(analyzer, "DISP:WIND:TRAC:Y:SCAL:RLEV 10 dBm") 'Reference level
CALL InstrWrite(analyzer, "FREQ:CENT 2.1175GHz")
                                                    'different CF
CALL InstrWrite(analyzer, "CALC:MARK:FUNC:POW:SEL ACP")
                                                       'select ACLR meas
CALL InstrWrite(analyzer, "CALC:MARK:FUNC:POW:PRES FW3Gppcdma")
    'select WCDMA BTS standard
'---- Setup the Spectrum 3 Tab (OBW measurement) -----
CALL InstrWrite(analyzer, "INST: CRE SAN, 'Spectrum 3'") 'Create Tab 3
CALL InstrWrite(analyzer, "INIT:CONT OFF") 'Single sweep
```

```
CALL InstrWrite (analyzer, "DISP:WIND:TRAC:Y:SCAL:RLEV 10 dBm") 'Reference level
CALL InstrWrite(analyzer, "FREQ:CENT 2.1175GHz")
                                              'different CF
CALL InstrWrite(analyzer, "CALC:MARK:FUNC:POW:SEL OBW")
                                                  'select OBW meas
CALL InstrWrite (analyzer, "CALC: MARK: FUNC: POW: PRES FW3Gppcdma")
    ' select WCDMA BTS standard
'---- Setup the Spectrum 4 Tab (CCDF measurement) -----
CALL InstrWrite(analyzer, "INST: CRE SAN, 'Spectrum 4'") 'Create Tab 4
CALL InstrWrite(analyzer,"INIT:CONT OFF") 'Single sweep
CALL InstrWrite (analyzer, "DISP:WIND:TRAC:Y:SCAL:RLEV 10 dBm") 'Reference level
CALL InstrWrite(analyzer, "FREQ:CENT 2.1175GHz")
                                               'different CF
CALL InstrWrite(analyzer, " CALC:STAT:CCDF ON")
                                              'select CCDF meas
'----- Sweep in first Spectrum Tab and query marker ------
CALL InstrWrite(analyzer,"INST:SEL SAN")
                                         'Select Tab 1
CALL InstrWrite(analyzer, "INIT; *WAI")
                                      'Perform sweep with sync
CALL InstrWrite(analyzer, "CALC:MARK1:MAX")
                                           'Marker to peak
CALL InstrWrite(analyzer, "CALC:MARK1:X?")
                                          'Query Marker x value
CALL InstrRead(analyzer, result$)
Print "Spectrum 1 Marker x [Hz]: ";result$
                                       'Query Marker y value
CALL InstrWrite(analyzer, "CALC:MARK1:Y?")
CALL InstrRead(analyzer,result$)
Print "Spectrum 1 Marker y [dBm]: "; result$
'----- Sweep in Spectrum 2 Tab and query ACLR results ------
CALL InstrWrite(analyzer," INST:SEL 'Spectrum 2'") 'Select Tab 2
CALL InstrWrite(analyzer, "CALC: MARK: FUNC: POW: RES? ACP") 'Query ACLR results
CALL InstrRead(analyzer, result$)
Print "Spectrum 2 ACRL results : "; result$
'---- Sweep in Spectrum 3 Tab and query OBW results -----
CALL InstrWrite(analyzer," INST:SEL 'Spectrum 3'") 'Select Tab 3
CALL InstrWrite(analyzer, "INIT; *WAI")
                                  'Perform sweep with sync
CALL InstrWrite(analyzer, "CALC:MARK:FUNC:POW:RES? OBW")'Query OBW results
CALL InstrRead(analyzer, result$)
Print "Spectrum 3 OBW results : "; result$
'----- Sweep in Spectrum 4 Tab and query CCDF results ------
CALL InstrWrite(analyzer," INST:SEL 'Spectrum 4'") 'Select Tab 4
CALL InstrWrite(analyzer, "CALC:STAT:RES1? ALL")'Query CCDF results
CALL InstrRead(analyzer,result$)
Print "Spectrum 4 CCDF results : ";result$
'----- Now the sweep part can be redone without the need of -----
'---- doing the setup of all 4 measurements again.
END SUB
```

R&S® FSV Maintenance

Storing and Packing

5 Maintenance

The following chapter contains information on the maintenance of the R&S FSV. The instrument does not need a periodic maintenance. What is necessary is essentially the cleaning of the instrument. However, it is recommended to check the rated data from time to time.

Follow the instructions in the service manual and the safety instructions when exchanging modules or ordering spares. The order no. for spare parts is included in the service manual. The service manual includes further information particularly on troubleshooting, repair, exchange of modules (including battery exchange, adjustment of the OCXO oscillator) and alignment.

The address of our support center and a list of all Rohde & Schwarz service centers can be found at the beginning of this manual.

5.1 Storing and Packing

The storage temperature range of the instrument is given in the data sheet. If the instrument is to be stored for a longer period of time, it must be protected against dust.

Repack the instrument as it was originally packed when transporting or shipping. The two protective foam plastic parts prevent the control elements and connectors from being damaged. The antistatic packing foil avoids any undesired electrostatic charging to occur.

If you do not use the original packaging, provide for sufficient padding to prevent the instrument from slipping inside the package. Wrap antistatic packing foil around the instrument to protect it from electrostatic charging.

5.2 List of Available Power Cables

Table 5-1: List of power cables available

Stock No.	Earthed-contact connector	Preferably used in
DS 006.7013.00	BS1363: 1967' complying with IEC 83: 1975 standard B2	Great Britain
DS 006.7020.00	Type 12 complying with SEV-regulation 1011.1059, standard sheet S 24 507	Switzerland
DS 006.7036.00	Type 498/13 complying with US-regulation UL 498, or with IEC 83	USA/Canada
DS 006.7107.00	Type SAA3 10 A, 250 V, complying with AS C112-1964 Ap.	Australia

R&S® FSV Maintenance

List of Available Power Cables

Stock No.	Earthed-contact connector	Preferably used in
DS 0025.2365.00	DIN 49 441, 10 A, 250 V, angular	Europe (except Switzerland)
DS 0099.1456.00	DIN 49 441, 10 A, 250 V, straight	

R&S® FSV Error Messages

6 Error Messages

Error messages are entered in the error/event queue of the status reporting system in the remote control mode and can be queried with the command SYSTem: ERROr?. The answer format of R&S FSV to the command is as follows:

```
<error code>, "<error text with queue query>;
<remote control command concerned>"
```

The indication of the remote control command with prefixed semicolon is optional.

Example:

The command "TEST: COMMAND" generates the following answer to the query SYS-Tem:ERRor?

```
-113, "Undefined header; TEST: COMMAND"
```

There are two types of error messages:

- Error messages defined by SCPI are marked by negative error codes. These messages are defined and described in the SCPI standard and not listet here.
- Device-specific error messages use positive error codes. These messages are listed below.

The right-hand column in the following tables contains the error text in bold which is entered in the error/event queue and can be read out by means of query SYSTem: ERRor?. A short explanation of the error cause is given. The left-hand column contains the associated error code.

Additionally, option-specific warnings and error messages displayed in the status bar are explained.

Table 6-1: Device-specific error messages

Error code	Error text in the case of queue poll Error explanation
1052	Frontend LO is Unlocked
	This message is displayed when the phase regulation of the local oscillator fails in the RF front-end.
1060	Trigger-Block Gate Delay Error- gate length < Gate Delay
	This message is displayed when the gate signal length is not sufficient for the pull-in delay with a predefined gate delay.
1064	Tracking LO is Unlocked
	This message is displayed when the phase regulation of the local oscillator fails on the tracking generator module.
2028	Hardcopy not possible during measurement sequence
	This message is displayed when a printout is started during scan sequences that cannot be interrupted. Such sequences are for example: Recording the system error correction data (alignment) Instrument self test
	In such cases synchronization to the end of the scan sequence should be performed prior to starting the printout.

R&S® FSV Error Messages

Error code	Error text in the case of queue poll Error explanation
2033	Printer Not Available This message is displayed when the selected printer is not included in the list of available output devices. A possible cause is that the required printer driver is missing or incorrectly installed.
2034	CPU Temperature is too high This message is displayed when the temperature of the processor exceeds 70 °C.

List of Commands

*CAL?	470
*CLS	470
*ESE	470
*ESR?	470
*IDN?	470
*IST?	471
*OPC	471
*OPT?	471
*PCB	472
*PRE	472
*PSC	472
*RST	472
*SRE	473
*STB?	473
*TRG	473
*TST?	473
*WAI	473
ABORt	474
CALCulate <n>:DELTamarker<m>:AOFF</m></n>	476
CALCulate <n>:DELTamarker<m>:FUNCtion:BPOWer:MODE</m></n>	477
CALCulate <n>:DELTamarker<m>:FUNCtion:BPOWer:RESult?</m></n>	477
CALCulate <n>:DELTamarker<m>:FUNCtion:BPOWer:SPAN</m></n>	477
CALCulate <n>:DELTamarker<m>:FUNCtion:BPOWer[:STATe]</m></n>	478
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:MAXimum[:PEAK]</m></n>	479
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:X</m></n>	479
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y</m></n>	479
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y:OFFSet</m></n>	480
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed[:STATe]</m></n>	478
CALCulate <n>:DELTamarker<m>:FUNCtion:PNOise:AUTO</m></n>	481
CALCulate <n>:DELTamarker<m>:FUNCtion:PNOise:RESult?</m></n>	481
CALCulate <n>:DELTamarker<m>:FUNCtion:PNOise[:STATe]</m></n>	480
CALCulate <n>:DELTamarker<m>:LINK</m></n>	482
CALCulate <n>:DELTamarker<m>:MAXimum:LEFT</m></n>	483
CALCulate <n>:DELTamarker<m>:MAXimum:NEXT</m></n>	483
CALCulate <n>:DELTamarker<m>:MAXimum:RIGHt</m></n>	483
CALCulate <n>:DELTamarker<m>:MAXimum[:PEAK]</m></n>	482
CALCulate <n>:DELTamarker<m>:MINimum:LEFT</m></n>	484
CALCulate <n>:DELTamarker<m>:MINimum:NEXT</m></n>	485
CALCulate <n>:DELTamarker<m>:MINimum:RIGHt</m></n>	485
CALCulate <n>:DELTamarker<m>:MINimum[:PEAK]</m></n>	484
CALCulate <n>:DELTamarker<m>:MODE</m></n>	482
CALCulate <n>:DELTamarker<m>:MREF</m></n>	485
CALCulate <n>:DELTamarker<m>:SGRam:FRAMe</m></n>	488
CALCulate <n>:DELTamarker<m>:SGRam:SARea</m></n>	488
CAI Culate <n>:DEI Tamarker<m>:SGRam:XY:MAXimum[:PEAK]</m></n>	489

CALCulate <n>:DELTamarker<m>:SGRam:XY:MINimum[:PEAK]</m></n>	489
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum:ABOVe</m></n>	
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum:BELow</m></n>	490
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum:NEXT</m></n>	491
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum[:PEAK]</m></n>	491
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum:ABOVe</m></n>	
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum:BELow</m></n>	492
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum:NEXT</m></n>	492
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum[:PEAK]</m></n>	493
CALCulate <n>:DELTamarker<m>:TRACe</m></n>	486
CALCulate <n>:DELTamarker<m>:X</m></n>	486
CALCulate <n>:DELTamarker<m>:X:RELative</m></n>	487
CALCulate <n>:DELTamarker<m>:Y?</m></n>	487
CALCulate <n>:DELTamarker<m>[:STATe]</m></n>	476
CALCulate <n>:DLINe<k></k></n>	493
CALCulate <n>:DLINe<k>:STATe</k></n>	494
CALCulate <n>:ESPectrum:PSEarch :PEAKsearch:AUTO</n>	494
CALCulate <n>:ESPectrum:PSEarch :PEAKsearch:MARGin</n>	495
CALCulate <n>:ESPectrum:PSEarch :PEAKsearch:PSHow</n>	
CALCulate <n>:ESPectrum:PSEarch :PEAKsearch:[IMMediate]</n>	
CALCulate <n>:FLINe<k></k></n>	
CALCulate <n>:FLINe<k>:STATe</k></n>	496
CALCulate <n>:FORMat</n>	598
CALCulate <n>:LIMit<k>:ACPower:ACHannel:ABSolute</k></n>	502
CALCulate <n>:LIMit<k>:ACPower:ACHannel:ABSolute:STATe</k></n>	503
CALCulate <n>:LIMit<k>:ACPower:ACHannel:RESult</k></n>	504
CALCulate <n>:LIMit<k>:ACPower:ACHannel[:RELative]</k></n>	501
CALCulate <n>:LIMit<k>:ACPower:ACHannel[:RELative]:STATe</k></n>	502
CALCulate <n>:LIMit<k>:ACPower:ALTernate<channel>:ABSolute</channel></k></n>	506
CALCulate <n>:LIMit<k>:ACPower:ALTernate<channel>:ABSolute:STATe</channel></k></n>	507
CALCulate <n>:LIMit<k>:ACPower:ALTernate<channel>:RESult?</channel></k></n>	507
CALCulate <n>:LIMit<k>:ACPower:ALTernate<channel>[:RELative]:STATe</channel></k></n>	505
CALCulate <n>:LIMit<k>:ACPower:ALTernate<channel>[:RELative]</channel></k></n>	504
CALCulate <n>:LIMit<k>:ACPower[:STATe]</k></n>	501
CALCulate <n>:LIMit<k>:ACTive?</k></n>	496
CALCulate <n>:LIMit<k>:CLEar[:IMMediate]</k></n>	497
CALCulate <n>:LIMit<k>:COMMent</k></n>	497
CALCulate <n>:LIMit<k>:CONTrol:DOMain</k></n>	509
CALCulate <n>:LIMit<k>:CONTrol:MODE</k></n>	509
CALCulate <n>:LIMit<k>:CONTrol:OFFSet</k></n>	510
CALCulate <n>:LIMit<k>:CONTrol:SHIFt</k></n>	510
CALCulate <n>:LIMit<k>:CONTrol:SPACing</k></n>	511
CALCulate <n>:LIMit<k>:CONTrol[:DATA]</k></n>	
CALCulate <n>:LIMit<k>:COPY</k></n>	
CALCulate <n>:LIMit<k>:DELete</k></n>	
CALCulate <n>:LIMit<k>:ESPectrum:LIMits</k></n>	511
CALCulate <n>:LIMit<k>:ESPectrum:MODE</k></n>	
CALCulate <n>:LIMit<k>:ESPectrum:PCLass<class>:COUNt</class></k></n>	513

CALCulate <n>:LIMit<k>:ESPectrum:PCLass<class>:LIMit[:STATe]</class></k></n>	513
CALCulate <n>:LIMit<k>:ESPectrum:PCLass<class>:MAXimum</class></k></n>	514
CALCulate <n>:LIMit<k>:ESPectrum:PCLass<class>:MINimum</class></k></n>	514
CALCulate <n>:LIMit<k>:ESPectrum:PCLass<class>[:EXCLusive]</class></k></n>	512
CALCulate <n>:LIMit<k>:ESPectrum:RESTore</k></n>	514
CALCulate <n>:LIMit<k>:ESPectrum:VALue</k></n>	515
CALCulate <n>:LIMit<k>:FAIL?</k></n>	498
CALCulate <n>:LIMit<k>:LOWer:MARGin</k></n>	516
CALCulate <n>:LIMit<k>:LOWer:MODE</k></n>	516
CALCulate <n>:LIMit<k>:LOWer:OFFSet</k></n>	517
CALCulate <n>:LIMit<k>:LOWer:SHIFt</k></n>	517
CALCulate <n>:LIMit<k>:LOWer:SPACing</k></n>	518
CALCulate <n>:LIMit<k>:LOWer:STATe</k></n>	518
CALCulate <n>:LIMit<k>:LOWer:THReshold</k></n>	518
CALCulate <n>:LIMit<k>:LOWer[:DATA]</k></n>	515
CALCulate <n>:LIMit<k>:NAME</k></n>	499
CALCulate <n>:LIMit<k>:STATe</k></n>	499
CALCulate <n>:LIMit<k>:TRACe</k></n>	500
CALCulate <n>:LIMit<k>:UNIT</k></n>	500
CALCulate <n>:LIMit<k>:UPPer:MARGin</k></n>	519
CALCulate <n>:LIMit<k>:UPPer:MODE</k></n>	520
CALCulate <n>:LIMit<k>:UPPer:OFFSet</k></n>	520
CALCulate <n>:LIMit<k>:UPPer:SHIFt</k></n>	520
CALCulate <n>:LIMit<k>:UPPer:SPACing</k></n>	521
CALCulate <n>:LIMit<k>:UPPer:STATe</k></n>	521
CALCulate <n>:LIMit<k>:UPPer:THReshold</k></n>	522
CALCulate <n>:LIMit<k>:UPPer[:DATA]</k></n>	519
CALCulate <n>:MARKer<m>:AOFF</m></n>	523
CALCulate <n>:MARKer<m>:COUNt</m></n>	523
CALCulate <n>:MARKer<m>:COUNt:FREQuency?</m></n>	
CALCulate <n>:MARKer<m>:COUNt:RESolution</m></n>	524
CALCulate <n>:MARKer<m>:FUNCtion:BPOWer:MODE</m></n>	536
CALCulate <n>:MARKer<m>:FUNCtion:BPOWer:RESult?</m></n>	536
CALCulate <n>:MARKer<m>:FUNCtion:BPOWer:SPAN</m></n>	537
CALCulate <n>:MARKer<m>:FUNCtion:BPOWer[:STATe]</m></n>	537
CALCulate <n>:MARKer<m>:FUNCtion:CENTer</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:CSTep</m></n>	538
CALCulate <n>:MARKer<m>:FUNCtion:DEModulation:CONTinuous</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:DEModulation:HOLDoff</m></n>	539
CALCulate <n>:MARKer<m>:FUNCtion:DEModulation:SELect</m></n>	539
CALCulate <n>:MARKer<m>:FUNCtion:DEModulation[:STATe]</m></n>	539
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:ANN:LAB:STAT</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:COUNt?</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:LIST:SIZE</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:SEAR:AUTO</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:SORT</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:STAT</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:X</m></n>	
• • • • • • • • • • • • • • • • • • • •	

CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:Y?</m></n>	543
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks[:IMMediate]</m></n>	540
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:BANDwidth:AUTO</m></n>	552
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:DISTortion?</m></n>	552
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:LIST?</m></n>	553
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:NHARmonics.</m></n>	554
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:PRESet</m></n>	554
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics[:STATe]</m></n>	555
CALCulate <n>:MARKer<m>:FUNCtion:MDEPth:RESult?</m></n>	544
CALCulate <n>:MARKer<m>:FUNCtion:MDEPth:SEARchsignal ONCE</m></n>	545
CALCulate <n>:MARKer<m>:FUNCtion:MDEPth[:STATe]</m></n>	545
CALCulate <n>:MARKer<m>:FUNCtion:MSUMmary?</m></n>	571
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown</m></n>	546
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:FREQuency?</m></n>	546
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:QFACtor</m></n>	547
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:RESult?</m></n>	547
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:STATe</m></n>	548
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:TIME?</m></n>	548
CALCulate <n>:MARKer<m>:FUNCtion:NOISe:RESult</m></n>	549
CALCulate <n>:MARKer<m>:FUNCtion:NOISe[:STATe]</m></n>	549
CALCulate <n>:MARKer<m>:FUNCtion:POWer:MODE</m></n>	555
CALCulate <n>:MARKer<m>:FUNCtion:POWer:PRESet</m></n>	556
CALCulate <n>:MARKer<m>:FUNCtion:POWer:RESult:PHZ</m></n>	559
CALCulate <n>:MARKer<m>:FUNCtion:POWer:RESult?</m></n>	557
CALCulate <n>:MARKer<m>:FUNCtion:POWer:SELect</m></n>	560
CALCulate <n>:MARKer<m>:FUNCtion:POWer:STANdard:CATalog?</m></n>	561
CALCulate <n>:MARKer<m>:FUNCtion:POWer:STANdard:DELete</m></n>	562
CALCulate <n>:MARKer<m>:FUNCtion:POWer:STANdard:SAVE</m></n>	562
CALCulate <n>:MARKer<m>:FUNCtion:POWer[:STATe]</m></n>	561
CALCulate <n>:MARKer<m>:FUNCtion:REFerence</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:STRack:BANDwidth BWIDth</m></n>	569
CALCulate <n>:MARKer<m>:FUNCtion:STRack:THReshold</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:STRack:TRACe</m></n>	569
CALCulate <n>:MARKer<m>:FUNCtion:STRack[:STATe]</m></n>	570
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:AOFF</m></n>	572
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:AVERage</m></n>	572
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:MEAN:AVERage:RESult?</m></n>	573
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:MEAN:PHOLd:RESult?</m></n>	574
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:MEAN:RESult?</m></n>	574
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:MEAN[:STATe]</m></n>	575
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:MODE</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:PHOLd</m></n>	575
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:PPEak:AVERage:RESult?</m></n>	576
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:PPEak:PHOLd:RESult?</m></n>	576
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:PPEak:RESult?</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:PPEak[:STATe]</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:REFerence:AUTO ONCE</m></n>	
CAL Culates no MARKers mo FLINCtion SLIMMany PMS AVERage PESult?	

CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:RMS:PHOLd:RESult?</m></n>	579
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:RMS:RESult?</m></n>	579
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:RMS[:STATe]</m></n>	580
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:SDEViation:AVERage:RESult?</m></n>	580
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:SDEViation:PHOLd:RESult?</m></n>	581
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:SDEViation:RESult?</m></n>	581
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:SDEViation[:STATe]</m></n>	582
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary[:STATe]</m></n>	582
CALCulate <n>:MARKer<m>:FUNCtion:TOI:RESult?</m></n>	550
CALCulate <n>:MARKer<m>:FUNCtion:TOI:SEARchsignal ONCE</m></n>	551
CALCulate <n>:MARKer<m>:FUNCtion:TOI[:STATe]</m></n>	551
CALCulate <n>:MARKer<m>:FUNCtion:ZOOM</m></n>	551
CALCulate <n>:MARKer<m>:LINK</m></n>	525
CALCulate <n>:MARKer<m>:LOEXclude</m></n>	525
CALCulate <n>:MARKer<m>:MAXimum:AUTO</m></n>	526
CALCulate <n>:MARKer<m>:MAXimum:LEFT</m></n>	527
CALCulate <n>:MARKer<m>:MAXimum:NEXT</m></n>	527
CALCulate <n>:MARKer<m>:MAXimum:RIGHt</m></n>	527
CALCulate <n>:MARKer<m>:MAXimum[:PEAK]</m></n>	526
CALCulate <n>:MARKer<m>:MINimum:AUTO</m></n>	528
CALCulate <n>:MARKer<m>:MINimum:LEFT</m></n>	529
CALCulate <n>:MARKer<m>:MINimum:NEXT</m></n>	529
CALCulate <n>:MARKer<m>:MINimum:RIGHt</m></n>	530
CALCulate <n>:MARKer<m>:MINimum[:PEAK]</m></n>	528
CALCulate <n>:MARKer<m>:PEXCursion</m></n>	530
CALCulate <n>:MARKer<m>:SEARch</m></n>	531
CALCulate <n>:MARKer<m>:SGRam:FRAMe</m></n>	562
CALCulate <n>:MARKer<m>:SGRam:SARea</m></n>	563
CALCulate <n>:MARKer<m>:SGRam:XY:MAXimum[:PEAK]</m></n>	563
CALCulate <n>:MARKer<m>:SGRam:XY:MINimum[:PEAK]</m></n>	564
CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum:ABOVe</m></n>	
CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum:BELow</m></n>	565
CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum:NEXT</m></n>	565
CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum[:PEAK]</m></n>	565
CALCulate <n>:MARKer<m>:SGRam:Y:MINimum:ABOVe</m></n>	566
CALCulate <n>:MARKer<m>:SGRam:Y:MINimum:BELow</m></n>	566
CALCulate <n>:MARKer<m>:SGRam:Y:MINimum:NEXT</m></n>	567
CALCulate <n>:MARKer<m>:SGRam:Y:MINimum[:PEAK]</m></n>	567
CALCulate <n>:MARKer<m>:TRACe</m></n>	531
CALCulate <n>:MARKer<m>:X</m></n>	532
CALCulate <n>:MARKer<m>:X:SLIMits:LEFT</m></n>	532
CALCulate <n>:MARKer<m>:X:SLIMits:RIGHT</m></n>	533
CALCulate <n>:MARKer<m>:X:SLIMits:ZOOM</m></n>	533
CALCulate <n>:MARKer<m>:X:SLIMits[:STATe]</m></n>	532
CALCulate <n>:MARKer<m>:X:SSIZe</m></n>	
CALCulate <n>:MARKer<m>:Y:PERCent</m></n>	535
CALCulate <n>:MARKer<m>:Y?</m></n>	534
CAI Culateans:MARKerams[:STATe]	523

CALCulate <n>:MATH:MODE</n>	584
CALCulate <n>:MATH:POSition</n>	583
CALCulate <n>:MATH:STATe</n>	584
CALCulate <n>:MATH[:EXPression][:DEFine]</n>	583
CALCulate <n>:PEAKsearch PSEarch:AUTO</n>	586
CALCulate <n>:PEAKsearch PSEarch:MARGin</n>	586
CALCulate <n>:PEAKsearch PSEarch:PSHow</n>	587
CALCulate <n>:PEAKsearch PSEarch:SUBRanges</n>	587
CALCulate <n>:PEAKsearch PSEarch[:IMMediate]</n>	586
CALCulate <n>:PMETer:RELative:STATe</n>	585
CALCulate <n>:PMETer:RELative[:MAGNitude]</n>	584
CALCulate <n>:PMETer:RELative[:MAGNitude]:AUTO ONCE</n>	585
CALCulate <n>:SGRam:CLEar[:IMMediate]</n>	587
CALCulate <n>:SGRam:COLor</n>	588
CALCulate <n>:SGRam:CONT</n>	588
CALCulate <n>:SGRam:FRAMe:COUNt</n>	589
CALCulate <n>:SGRam:FRAMe:SELect</n>	589
CALCulate <n>:SGRam:HDEPth</n>	589
CALCulate <n>:SGRam:TSTamp:DATA?</n>	590
CALCulate <n>:SGRam:TSTamp[:STATe]</n>	590
CALCulate <n>:SGRam[:STATe]</n>	590
CALCulate <n>:STATistics:APD[:STATe]</n>	591
CALCulate <n>:STATistics:CCDF:X<trace></trace></n>	592
CALCulate <n>:STATistics:CCDF[:STATe]</n>	592
CALCulate <n>:STATistics:NSAMples</n>	592
CALCulate <n>:STATistics:PRESet</n>	593
CALCulate <n>:STATistics:RESult<trace></trace></n>	593
CALCulate <n>:STATistics:SCALe:AUTO ONCE</n>	594
CALCulate <n>:STATistics:SCALe:X:RANGe</n>	594
CALCulate <n>:STATistics:SCALe:X:RLEVel</n>	595
CALCulate <n>:STATistics:SCALe:Y:LOWer</n>	595
CALCulate <n>:STATistics:SCALe:Y:UNIT</n>	595
CALCulate <n>:STATistics:SCALe:Y:UPPer</n>	596
CALCulate <n>:THReshold</n>	596
CALCulate <n>:THReshold:STATe</n>	596
CALCulate <n>:TLINe<line></line></n>	597
CALCulate <n>:TLINe<line>:STATe</line></n>	597
CALCulate <n>:UNIT:POWer</n>	597
CALibration:ABORt	758
CALibration:PMETer:ZERO:AUTO ONCE	598
CALibration:RESult?	758
CALibration:STATe	759
CALibration[:ALL]?	758
DIAGnostic <n>:SERVice:BIOSinfo?</n>	759
DIAGnostic <n>:SERVice:HWINfo?</n>	760
DIAGnostic <n>:SERVice:INPut:PULSed:CFRequency</n>	760
DIAGnostic <n>:SERVice:INPut:PULSed:MCFRequency</n>	761
DIA Choetics no SERVice (INDutf-SEL act)	761

DIAGnostic <n>:SERVice:NSOurce</n>	761
DIAGnostic <n>:SERVice:SFUNction</n>	762
DIAGnostic <n>:SERVice:SFUNction:LASTresult?</n>	762
DIAGnostic <n>:SERVice:SFUNction:RESults:DELete</n>	762
DIAGnostic <n>:SERVice:SFUNction:RESults:SAVE</n>	762
DIAGnostic <n>:SERVice:STESt:RESult?</n>	763
DIAGnostic <n>:SERVice:TEMPerature:FRONt?</n>	763
DIAGnostic <n>:SERVice:VERSinfo?</n>	763
DISPlay:ANNotation:FREQuency	765
DISPlay:CMAP <item>:DEFault</item>	765
DISPlay:CMAP <item>:HSL</item>	765
DISPlay:CMAP <item>:PDEFined</item>	766
DISPlay:LOGO	766
DISPlay:MTABle	599
DISPlay:PSAVe:HOLDoff	767
DISPlay:PSAVe[:STATe]	767
DISPlay:SKEYs[:STATe]	767
DISPlay:TBAR[STATe]	767
DISPlay:THEMe:CATalog?	767
DISPlay:THEMe:SELect	768
DISPlay:TOUChscreen:STATe	768
DISPlay:WINDow:SGRam:COLor:DEFault	607
DISPlay:WINDow:SGRam:COLor:LOWer	607
DISPlay:WINDow:SGRam:COLor:SHAPe	607
DISPlay:WINDow:SGRam:COLor:UPPer	607
DISPlay:WINDow:SGRam:COLor[:STYLe]	608
DISPlay[:WINDow <n>]:SSELect</n>	
DISPlay[:WINDow <n>]:TEXT:STATe</n>	768
DISPlay[:WINDow <n>]:TEXT[:DATA]</n>	768
DISPlay[:WINDow <n>]:TIME</n>	769
DISPlay[:WINDow <n>]:TIME:FORMat</n>	769
DISPlay[:WINDow <n>]:TRACe<t>:MODE</t></n>	601
DISPlay[:WINDow <n>]:TRACe<t>:MODE:HCONtinuous</t></n>	602
DISPlay[:WINDow <n>]:TRACe<t>:X:SPACing</t></n>	602
DISPlay[:WINDow <n>]:TRACe<t>:Y:SPACing</t></n>	603
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]</t></n>	603
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:MODE</t></n>	604
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RLEVel</t></n>	604
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet</t></n>	604
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RPOSition</t></n>	605
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RVALue</t></n>	605
DISPlay[:WINDow <n>]:TRACe<t>[:STATe]</t></n>	
DISPlay[:WINDow <n>]:ZOOM:AREA</n>	605
DISPlay[:WINDow <n>]:ZOOM:STATe</n>	
DISPlay[:WINDow <n>][:SUBWindow<m>]:SIZE</m></n>	
FETCh <n>:PMETer?</n>	
FORMat:DEXPort:DSEParator	
EOPMati-DATA1	771

HCOPy:ABORt	772
HCOPy:CMAP <item>:DEFault</item>	772
HCOPy:CMAP <item>:HSL</item>	772
HCOPy:CMAP <item>:PDEFined</item>	773
HCOPy:DESTination<1 2>	773
HCOPy:DEVice:COLor	774
HCOPy:DEVice:LANGuage<1 2>	774
HCOPy:ITEM:ALL	776
HCOPy:ITEM:WINDow:TABLe:STATe	776
HCOPy:ITEM:WINDow:TEXT	776
HCOPy:PAGE:ORIentation<1 2>	776
HCOPy:TDSTamp:STATe<1 2>	777
HCOPy[:IMMediate<1 2>]	775
HCOPy[:IMMediate<1 2>]:NEXT	775
INITiate <n>:CONMeas</n>	610
INITiate <n>:CONTinuous</n>	610
INITiate <n>:DISPlay</n>	611
INITiate <n>:ESPectrum</n>	611
INITiate <n>:SPURious</n>	611
INITiate <n>[:IMMediate]</n>	609
INPut:ATTenuation	612
INPut:ATTenuation:AUTO	613
INPut:COUPling	613
INPut:DIQ:CDEVice	613
INPut:DIQ:RANGe:COUPling	614
INPut:DIQ:RANGe[:UPPer]	615
INPut:DIQ:RANGe[:UPPer]:UNIT	615
INPut:DIQ:SRATe	615
INPut:EATT	616
INPut:EATT:AUTO	616
INPut:EATT:STATe	616
INPut:GAIN:STATe	617
INPut:IMPedance	617
INPut:SELect	617
INPut:UPORt:STATe	618
INPut:UPORt?	618
INSTrument:CREate[:NEW]	620
INSTrument:DELete	620
INSTrument:NSELect	621
INSTrument[:SELect]	618
MMEMory:CATalog:LONG?	779
MMEMory:CATalog?	
MMEMory:CDIRectory	780
MMEMory:CLEar:ALL	
MMEMory:CLEar:STATe 1,	
MMEMory:COMMent	
MMEMory:COPY	
MMEMory/DATA	781

MMEMory:DELete	782
MMEMory:LOAD:AUTO	782
MMEMory:LOAD:IQ:STATe	622
MMEMory:LOAD:STATe	783
MMEMory:MDIRectory	783
MMEMory:MOVE	784
MMEMory:MSIS	784
MMEMory:NAME	784
MMEMory:NETWork:DISConnect	785
MMEMory:NETWork:MAP	785
MMEMory:NETWork:UNUSeddrives?	785
MMEMory:NETWork:USEDdrives?	786
MMEMory:RDIRectory	786
MMEMory:SELect[:ITEM]:ALL	786
MMEMory:SELect[:ITEM]:DEFault	786
MMEMory:SELect[:ITEM]:HWSettings	786
MMEMory:SELect[:ITEM]:LINes:ALL	787
MMEMory:SELect[:ITEM]:NONE	787
MMEMory:SELect[:ITEM]:SGRam	787
MMEMory:SELect[:ITEM]:TRACe[:ACTive]	788
MMEMory:SELect[:ITEM]:TRANsducer:ALL	788
MMEMory:STORe:IQ:COMM	623
MMEMory:STORe:IQ:STATe	622
MMEMory:STORe:SGRam	623
MMEMory:STORe <n>:LIST</n>	623
MMEMory:STORe <n>:PEAK</n>	623
MMEMory:STORe <n>:SPURious</n>	624
MMEMory:STORe <n>:STATe</n>	788
MMEMory:STORe <n>:STATe:NEXT</n>	788
MMEMory:STORe <n>:TRACe</n>	624
MMEMory: USER < Softkey>	789
OUTPut:DIQ	625
OUTPut:DIQ:CDEVice	625
OUTPut:IF[:SOURce]	789
OUTPut:TRIGger	790
OUTPut:UPORt	626
OUTPut:UPORt:STATe	627
OUTPut[:STATe]	626
PROBe:ID:PARTnumber?	627
PROBe:ID:SRNumber?	627
PROBe:SETup:MODE	628
PROBe:SETup:NAME?	628
PROBe:SETup:STATe?	628
PROBe[:STATe]	628
READ <n>:PMETer?</n>	629
SOURce:EXTernal<1 2>:ROSCillator: EXTernal:FREQuency	794
SOURce <n>:AM:STATe</n>	708
SOUPCOCOSOMOSTATO	708

SOURce <n>:EXTernal<generator>:FREQuency:OFFSet<m></m></generator></n>	711
SOURce <n>:EXTernal<generator>:FREQuency:SWEep[:STATe]</generator></n>	712
SOURce <n>:EXTernal<generator>:FREQuency[:FACTor]:DENominator</generator></n>	710
SOURce <n>:EXTernal<generator>:FREQuency[:FACTor]:NUMerator</generator></n>	710
SOURce <n>:EXTernal<generator>:POWer[:LEVel]</generator></n>	712
SOURce <n>:EXTernal<generator>:ROSCillator[:SOURce]</generator></n>	713
SOURce <n>:EXTernal<generator>:ROSCillator[:SOURce]</generator></n>	796
SOURce <n>:EXTernal<generator>[:STATe]</generator></n>	708
SOURce <n>:EXTernal<m>:FREQuency</m></n>	709
SOURce <n>:EXTernal<m>:FREQuency:COUPling[:STATe]</m></n>	709
SOURce <n>:FM:DEViation</n>	713
SOURce <n>:FM:STATe</n>	714
SOURce <n>:FREQuency:OFFSet</n>	714
SOURce <n>:POWer:MODE</n>	715
SOURce <n>:POWer:STARt</n>	716
SOURce <n>:POWer:STOP</n>	716
SOURce <n>:POWer[:LEVel][:IMMediate]:OFFSet</n>	715
SOURce <n>:POWer[:LEVel][:IMMediate][:AMPLitude]</n>	715
SOURce <n>:TEMPerature:APRobe</n>	795
STATus:OPERation:CONDition	797
STATus:OPERation:ENABle	797
STATus:OPERation:NTRansition	797
STATus:OPERation:PTRansition	797
STATus:OPERation[:EVENt]	796
STATus:PRESet	798
STATus:QUEStionable:ACPLimit:CONDition?	718
STATus:QUEStionable:ACPLimit:ENABle	718
STATus:QUEStionable:ACPLimit:NTRansition	718
STATus:QUEStionable:ACPLimit:PTRansition	718
STATus:QUEStionable:ACPLimit[:EVENt]?	717
STATus:QUEStionable:CONDition	798
STATus:QUEStionable:DIQ:CONDition?	719
STATus:QUEStionable:DIQ:ENABle	719
STATus:QUEStionable:DIQ:NTRansition	719
STATus:QUEStionable:DIQ:PTRansition	719
STATus:QUEStionable:DIQ[:EVENt]?	719
STATus:QUEStionable:ENABle	798
STATus:QUEStionable:FREQuency:CONDition?	720
STATus:QUEStionable:FREQuency:ENABle	720
STATus:QUEStionable:FREQuency:NTRansition	720
STATus:QUEStionable:FREQuency:PTRansition	721
STATus:QUEStionable:FREQuency[:EVENt]?	720
STATus:QUEStionable:LIMit <m> [:EVENt]?</m>	721
STATus:QUEStionable:LIMit <m>:CONDition?</m>	721
STATus:QUEStionable:LIMit <m>:ENABle</m>	722
STATus:QUEStionable:LIMit <m>:NTRansition</m>	722
STATus:QUEStionable:LIMit <m>:PTRansition</m>	722
STATus:QUEStionable:LMARgin <m>:CONDition?</m>	723

STATus:QUEStionable:LMARgin <m>:ENABle</m>	723
STATus:QUEStionable:LMARgin <m>:NTRansition</m>	724
STATus:QUEStionable:LMARgin <m>:PTRansition</m>	724
STATus:QUEStionable:LMARgin <m>[:EVENt]?</m>	723
STATus:QUEStionable:NTRansition	799
STATus:QUEStionable:POWer:CONDition?	725
STATus:QUEStionable:POWer:ENABle	725
STATus:QUEStionable:POWer:NTRansition	725
STATus:QUEStionable:POWer:PTRansition	725
STATus:QUEStionable:POWer[:EVENt]?	724
STATus:QUEStionable:PTRansition	799
STATus:QUEStionable:SYNC:CONDition?	460
STATus:QUEStionable:SYNC:CONDition?	726
STATus:QUEStionable:SYNC:ENABle	460
STATus:QUEStionable:SYNC:ENABle	726
STATus:QUEStionable:SYNC:NTRansition	460
STATus:QUEStionable:SYNC:NTRansition	726
STATus:QUEStionable:SYNC:PTRansition	460
STATus:QUEStionable:SYNC:PTRansition	727
STATus:QUEStionable:SYNC[:EVENt]?	461
STATus:QUEStionable:SYNC[:EVENt]?	726
STATus:QUEStionable[:EVENt]?	798
STATus:QUEue[:NEXT?]?	799
SYSTem:APPLication:SRECovery[:STATe]	800
SYSTem:CLOGging	801
SYSTem:COMMunicate:GPIB:RDEVice:COMMand	727
SYSTem:COMMunicate:GPIB:RDEVice:GENerator <generator>:ADDRess</generator>	728
SYSTem:COMMunicate:GPIB[:SELF]:ADDRess	801
SYSTem:COMMunicate:GPIB[:SELF]:RTERminator	801
SYSTem:COMMunicate:PRINter:ENUMerate:FIRSt?	801
SYSTem:COMMunicate:PRINter:ENUMerate[:NEXT]?	802
SYSTem:COMMunicate:PRINter:SELect <1 2>	802
SYSTem:COMMunicate:RDEVice:GENerator <generator>:INTerface</generator>	728
SYSTem:COMMunicate:RDEVice:GENerator <generator>:LINK</generator>	728
SYSTem:COMMunicate:RDEVice:GENerator <generator>:TYPE</generator>	729
SYSTem:COMMunicate:RDEVice:PMETer:CONFigure:AUTO[:STATe]	730
SYSTem:COMMunicate:RDEVice:PMETer:COUNt?	731
SYSTem:COMMunicate:RDEVice:PMETer:DEFine	729
SYSTem:COMMunicate:TCPip:CONTrol?	802
SYSTem:COMMunicate:TCPip:RDEVice:GENerator <generator>:ADDRess</generator>	731
SYSTem:COMPatible	803
SYSTem:DATE	803
SYSTem:DEVice:ID?/SYSTem:DID?	803
SYSTem:DISPlay:FPANel	803
SYSTem:DISPlay:UPDate	803
SYSTem:ERRor:CLEar:ALL	804
SYSTem:ERRor:LIST?	804
SYSTem:ERRorf:NEXTI?	804

SYSTem:FIRMware:UPDate	804
SYSTem:FORMat:IDENt	805
SYSTem:HPCoupling	805
SYSTem:IDENtify:FACTory	805
SYSTem:IDENtify[:STRing]	806
SYSTem:IFGain:MODE	806
SYSTem:KLOCk	806
SYSTem:LANGuage	807
SYSTem:LXI:INFo?	807
SYSTem:LXI:LANReset	807
SYSTem:LXI:MDEScription	808
SYSTem:LXI:PASSword	808
SYSTem:PASSword:RESet	808
SYSTem:PASSword[:CENable]	808
SYSTem:PRESet	808
SYSTem:REVision:FACTory	809
SYSTem:REVision[:STRing]	809
SYSTem:RSW	809
SYSTem:SHUTdown	810
SYSTem:SPEaker:VOLume	731
SYSTem:TIME	810
SYSTem:TIME:TSTamp?	731
SYSTem:VERSion?	810
TRACe <n>:COPY</n>	732
TRACe <n>:IQ:AVERage:COUNt</n>	737
TRACe <n>:IQ:AVERage[:STATe]</n>	738
TRACe <n>:IQ:BWIDth</n>	738
TRACe <n>:IQ:DATA</n>	739
TRACe <n>:IQ:DATA:FORMat</n>	739
TRACe <n>:IQ:DATA:MEMory?</n>	741
TRACe <n>:IQ:DIQFilter</n>	742
TRACe <n>:IQ:EGATe</n>	743
TRACe <n>:IQ:EGATe:GAP</n>	743
TRACe <n>:IQ:EGATe:LENGth</n>	743
TRACe <n>:IQ:EGATe:NOFgateperiods</n>	744
TRACe <n>:IQ:EGATe:TYPE</n>	744
TRACe <n>:IQ:EVAL</n>	744
TRACe <n>:IQ:RLENgth</n>	745
TRACe <n>:IQ:SET</n>	746
TRACe <n>:IQ:SRATe</n>	747
TRACe <n>:IQ:TPISample?</n>	748
TRACe <n>:IQ[:STATe]</n>	737
TRACe <n>[:DATA]</n>	
TRACe <n>[:DATA]:MEMory?</n>	735
TRACe <n>[:DATA]:X?</n>	
TRACe <n>[:DATA]?</n>	
TRIGger <n>[:SEQuence]:BBPower:HOLDoff</n>	
TRIGger <n>[:SEQuence]:HOLDoff[:TIME]</n>	

TRIGger <n>[:SEQuence]:IFPower:HOLDoff</n>	750
TRIGger <n>[:SEQuence]:IFPower:HYSTeresis</n>	751
TRIGger <n>[:SEQuence]:LEVel:BBPower</n>	751
TRIGger <n>[:SEQuence]:LEVel:IFPower</n>	752
TRIGger <n>[:SEQuence]:LEVel:RFPower</n>	752
TRIGger <n>[:SEQuence]:LEVel:VIDeo</n>	752
TRIGger <n>[:SEQuence]:LEVel[:EXTernal]</n>	751
TRIGger <n>[:SEQuence]:SLOPe</n>	752
TRIGger <n>[:SEQuence]:SOURce</n>	753
TRIGger <n>[:SEQuence]:TIME:RINTerval</n>	754
UNIT:THD	755
UNIT <n>:PMETer:POWer</n>	755
UNIT <n>:PMETer:POWer:RATio</n>	755
UNIT <n>:POWer</n>	754
[SENSe:]ADJust:ALL	630
[SENSe:]ADJust:CONFiguration:HYSTeresis:LOWer	631
[SENSe:]ADJust:CONFiguration:HYSTeresis:UPPer	631
[SENSe:]ADJust:CONFigure:LEVel:DURation	630
[SENSe:]ADJust:CONFigure:LEVel:DURation:MODE	631
[SENSe:]ADJust:CONFigure:TRIG	632
[SENSe:]ADJust:FREQuency	630
[SENSe:]ADJust:LEVel	630
[SENSe:]AVERage <n>:COUNt</n>	633
[SENSe:]AVERage <n>:TYPE</n>	633
[SENSe:]AVERage <n>[:STATe<trace>]</trace></n>	632
[SENSe:]BANDwidth BWIDth:VIDeo	636
[SENSe:]BANDwidth BWIDth:VIDeo:AUTO	636
[SENSe:]BANDwidth BWIDth:VIDeo:RATio	637
[SENSe:]BANDwidth BWIDth:VIDeo:TYPE	637
[SENSe:]BANDwidth BWIDth[:RESolution]	634
[SENSe:]BANDwidth BWIDth[:RESolution]:AUTO	634
[SENSe:]BANDwidth BWIDth[:RESolution]:FFT	635
[SENSe:]BANDwidth BWIDth[:RESolution]:RATio	635
[SENSe:]BANDwidth BWIDth[:RESolution]:TYPE	636
[SENSe:]CORRection:COLLect[:ACQuire]	638
[SENSe:]CORRection:CVL:BAND	638
[SENSe:]CORRection:CVL:BIAS	641
[SENSe:]CORRection:CVL:CATalog?	639
[SENSe:]CORRection:CVL:CLEar	642
[SENSe:]CORRection:CVL:COMMent	641
[SENSe:]CORRection:CVL:DATA	641
[SENSe:]CORRection:CVL:HARMonic	640
[SENSe:]CORRection:CVL:MIXer	639
[SENSe:]CORRection:CVL:PORTs	640
[SENSe:]CORRection:CVL:SELect	639
[SENSe:]CORRection:CVL:SNUMber	640
[SENSe:]CORRection:EGAin:INPut[:MAGNitude]	642
ISENSe:ICORRection:METHod	642

[SENSe:]CORRection:RECall	643
[SENSe:]CORRection:TRANsducer:ADJust:RLEVel[:STATe]	791
[SENSe:]CORRection:TRANsducer:COMMent	791
[SENSe:]CORRection:TRANsducer:DATA	791
[SENSe:]CORRection:TRANsducer:DELete	792
[SENSe:]CORRection:TRANsducer:GENerator	643
[SENSe:]CORRection:TRANsducer:SCALing	792
[SENSe:]CORRection:TRANsducer:SELect	792
[SENSe:]CORRection:TRANsducer:UNIT	793
[SENSe:]CORRection:TRANsducer:VIEW	793
[SENSe:]CORRection:TRANsducer[:STATe]	793
[SENSe:]CORRection[:STATe]	643
[SENSe:]DEMod:SQUelch:LEVel	644
[SENSe:]DEMod:SQUelch[:STATe]	644
[SENSe:]ESPectrum:BWID	645
[SENSe:]ESPectrum:FILTer[:RRC]:ALPHa	646
[SENSe:]ESPectrum:FILTer[:RRC][:STATe]	645
[SENSe:]ESPectrum:HighSPeed	646
[SENSe:]ESPectrum:PRESet:RESTore	647
[SENSe:]ESPectrum:PRESet:STORe	647
[SENSe:]ESPectrum:PRESet[:STANdard]	647
[SENSe:]ESPectrum:RANGe <range>:BANDwidth:VIDeo</range>	648
[SENSe:]ESPectrum:RANGe <range>:BANDwidth[:RESolution]</range>	647
[SENSe:]ESPectrum:RANGe <range>:COUNt</range>	648
[SENSe:]ESPectrum:RANGe <range>:DELete</range>	648
[SENSe:]ESPectrum:RANGe <range>:FILTer:TYPE</range>	649
[SENSe:]ESPectrum:RANGe <range>:INPut:ATTenuation</range>	650
[SENSe:]ESPectrum:RANGe <range>:INPut:ATTenuation:AUTO</range>	650
[SENSe:]ESPectrum:RANGe <range>:INPut:GAIN:STATe</range>	651
[SENSe:]ESPectrum:RANGe <range>:INSert</range>	651
[SENSe:]ESPectrum:RANGe <range>:LIMit<source/>:ABSolute:STARt</range>	651
[SENSe:]ESPectrum:RANGe <range>:LIMit<source/>:ABSolute:STOP</range>	652
[SENSe:]ESPectrum:RANGe <range>:LIMit<source/>:RELative:STARt</range>	652
[SENSe:]ESPectrum:RANGe <range>:LIMit<source/>:RELative:STOP</range>	652
[SENSe:]ESPectrum:RANGe <range>:LIMit<source/>:STATe</range>	653
[SENSe:]ESPectrum:RANGe <range>:RLEVel</range>	653
[SENSe:]ESPectrum:RANGe <range>:SWEep:TIME</range>	654
[SENSe:]ESPectrum:RANGe <range>:SWEep:TIME:AUTO</range>	654
[SENSe:]ESPectrum:RANGe <range>:TRANsducer</range>	654
[SENSe:]ESPectrum:RANGe <range>[:FREQuency]:STARt</range>	649
[SENSe:]ESPectrum:RANGe <range>[:FREQuency]:STOP</range>	650
[SENSe:]ESPectrum:RRANge	655
[SENSe:]ESPectrum:RTYPe	655
[SENSe:]FREQuency:CENTer	655
[SENSe:]FREQuency:CENTer:STEP	
[SENSe:]FREQuency:CENTer:STEP:AUTO	656
[SENSe:]FREQuency:CENTer:STEP:LINK	656
ISENSA: IEDEOugnov: CENTar: STED: LINK: FACTor	657

[SENSe:]FREQuency:MODE	657
[SENSe:]FREQuency:OFFSet	657
[SENSe:]FREQuency:SPAN	658
[SENSe:]FREQuency:SPAN:FULL	658
[SENSe:]FREQuency:STARt	658
[SENSe:]FREQuency:STOP	658
[SENSe:]LIST:POWer:RESult?	659
[SENSe:]LIST:POWer:SET	663
[SENSe:]LIST:POWer:STATe	664
[SENSe:]LIST:POWer[:SEQuence]	660
[SENSe:]LIST:RANGe <range>:BANDwidth:VIDeo</range>	665
[SENSe:]LIST:RANGe <range>:BANDwidth[:RESolution]</range>	664
[SENSe:]LIST:RANGe <range>:BREak</range>	665
[SENSe:]LIST:RANGe <range>:COUNt</range>	665
[SENSe:]LIST:RANGe <range>:DELete</range>	666
[SENSe:]LIST:RANGe <range>:DETector</range>	666
[SENSe:]LIST:RANGe <range>:FILTer:TYPE</range>	667
[SENSe:]LIST:RANGe <range>:INPut:ATTenuation</range>	668
[SENSe:]LIST:RANGe <range>:INPut:ATTenuation:AUTO</range>	668
[SENSe:]LIST:RANGe <range>:INPut:GAIN:STATe</range>	669
[SENSe:]LIST:RANGe <range>:LIMit:STARt</range>	669
[SENSe:]LIST:RANGe <range>:LIMit:STATe</range>	669
[SENSe:]LIST:RANGe <range>:LIMit:STOP</range>	669
[SENSe:]LIST:RANGe <range>:POINts</range>	670
[SENSe:]LIST:RANGe <range>:RLEVel</range>	670
[SENSe:]LIST:RANGe <range>:SWEep:TIME</range>	670
[SENSe:]LIST:RANGe <range>:SWEep:TIME:AUTO</range>	671
[SENSe:]LIST:RANGe <range>:TRANsducer</range>	671
[SENSe:]LIST:RANGe <range>[:FREQuency]:STARt</range>	666
[SENSe:]LIST:RANGe <range>[:FREQuency]:STOP</range>	667
[SENSe:]MIXer:BIAS:HIGH	672
[SENSe:]MIXer:BIAS:LOW	673
[SENSe:]MIXer:FREQuency:HANDover	673
[SENSe:]MIXer:FREQuency:STARt?	674
[SENSe:]MIXer:FREQuency:STOP?	674
[SENSe:]MIXer:HARMonic:BAND	674
[SENSe:]MIXer:HARMonic:BAND:PRESet	674
[SENSe:]MIXer:HARMonic:HIGH:STATe	675
[SENSe:]MIXer:HARMonic:HIGH[:VALue]	675
[SENSe:]MIXer:HARMonic:TYPE	675
[SENSe:]MIXer:HARMonic[:LOW]	675
[SENSe:]MIXer:LOPower	676
[SENSe:]MIXer:LOSS:HIGH	676
[SENSe:]MIXer:LOSS:TABLe:HIGH	676
[SENSe:]MIXer:LOSS:TABLe[:LOW]	676
[SENSe:]MIXer:LOSS[:LOW]	677
[SENSe:]MIXer:PORTs	677
[SENSe:]MIXer:RFOVerrange[:STATe]	673

[SENSe:]MIXer:SIGNal	677
[SENSe:]MIXer:THReshold	678
[SENSe:]MIXer[:STATe]	672
[SENSe:]MPOWer:FTYPe	679
[SENSe:]MPOWer:RESult:MIN?	680
[SENSe:]MPOWer:RESult[:LIST]?	679
[SENSe:]MPOWer[:SEQuence]	680
[SENSe:]PMETer:DCYCle:STATe	683
[SENSe:]PMETer:DCYCle:VALue	683
[SENSe:]PMETer:FREQuency	684
[SENSe:]PMETer:FREQuency:LINK	684
[SENSe:]PMETer:MTIMe	685
[SENSe:]PMETer:MTIMe:AVERage:COUNt	685
[SENSe:]PMETer:MTIMe:AVERage[:STATe]	685
[SENSe:]PMETer:ROFFset[:STATe]	686
[SENSe:]PMETer:TRIGger:DTIMe	687
[SENSe:]PMETer:TRIGger:HOLDoff	687
[SENSe:]PMETer:TRIGger:HYSTeresis	687
[SENSe:]PMETer:TRIGger:LEVel	688
[SENSe:]PMETer:TRIGger:SLOPe	
[SENSe:]PMETer:TRIGger[:STATe]	686
[SENSe:]PMETer:UPDate[:STATe]	
[SENSe:]PMETer[:STATe]	
[SENSe:]POWer:ACHannel:ACPairs	
[SENSe:]POWer:ACHannel:BANDwidth BWIDth:ACHannel	
[SENSe:]POWer:ACHannel:BANDwidth BWIDth:ALTernate <channel></channel>	
[SENSe:]POWer:ACHannel:BANDwidth BWIDth[:CHANnel <channel>]</channel>	
[SENSe:]POWer:ACHannel:FILTer:ALPHa:ACHannel	
[SENSe:]POWer:ACHannel:FILTer:ALPHa:ALTernate <channel></channel>	
[SENSe:]POWer:ACHannel:FILTer:ALPHa:CHANnel <channel></channel>	
[SENSe:]POWer:ACHannel:FILTer:ALPHa[:ALL]	
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ACHannel	
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALL	
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALTernate <channel></channel>	
[SENSe:]POWer:ACHannel:FILTer[:STATe]:CHANnel <channel></channel>	
[SENSe:]POWer:ACHannel:MODE	
[SENSe:]POWer:ACHannel:NAME:ACHannel	
[SENSe:]POWer:ACHannel:NAME:ALTernate <channel></channel>	
[SENSe:]POWer:ACHannel:NAME:CHANnel <channel></channel>	
[SENSe:]POWer:ACHannel:PRESet	
[SENSe:]POWer:ACHannel:PRESet:RLEVel	
[SENSe:]POWer:ACHannel:REFerence:AUTO ONCE	
[SENSe:]POWer:ACHannel:REFerence:TXCHannel:AUTO	
[SENSe:]POWer:ACHannel:REFerence:TXCHannel:MANual	
[SENSe:]POWer:ACHannel:SPACing:ALTernate <channel></channel>	
[SENSe:]POWer:ACHannel:SPACing:CHANnel <channel></channel>	
[SENSe:]POWer:ACHannel:SPACing[:ACHannel]	
ISENSe:]POWer:ACHannel:TXCHannel:COUNt.	
IULINUU.II UNVULAUIBIIIELIAUIBIIIELUUUNI	<i>U T</i> /

[SENSe:]POWer:BANDwidth BWIDth	698
[SENSe:]POWer:HSPeed	698
[SENSe:]POWer:NCORrection	698
[SENSe:]POWer:TRACe	699
[SENSe:]ROSCillator:EXTernal:FREQuency	794
[SENSe:]ROSCillator:SOURce	794
[SENSe:]ROSCillator:SOURce:EAUTo?	795
[SENSe:]SWEep:COUNt	699
[SENSe:]SWEep:COUNt:CURRent?	700
[SENSe:]SWEep:EGATe	700
[SENSe:]SWEep:EGATe:HOLDoff	701
[SENSe:]SWEep:EGATe:LENGth	701
[SENSe:]SWEep:EGATe:POLarity	701
[SENSe:]SWEep:EGATe:SOURce	701
[SENSe:]SWEep:EGATe:TRACe <k>: PERiod</k>	703
[SENSe:]SWEep:EGATe:TRACe <k>: STOP<range></range></k>	703
[SENSe:]SWEep:EGATe:TRACe <k>:COMMent</k>	702
[SENSe:]SWEep:EGATe:TRACe <k>:STARt<range></range></k>	702
[SENSe:]SWEep:EGATe:TRACe <k>[:STATe<range>]</range></k>	702
[SENSe:]SWEep:EGATe:TYPE	703
[SENSe:]SWEep:MODE	704
[SENSe:]SWEep:POINts	704
[SENSe:]SWEep:TIME	705
[SENSe:]SWEep:TIME:AUTO	705
[SENSe:]SWEep:TYPE	705
[SENSe:]SWEep:TYPE:USED?	706
[SENSe:][WINDow:]DETector <trace>[:FUNCtion]</trace>	706
[SENSe:][WINDow:]DETector <trace>[:FUNCtion]:AUTO</trace>	707

Index

Symbols		attenuat
4EV DO DTC	200	(opti
1xEV-DO BTS mode (K84)		Attenuat
3G FDD BTS mode (K72)		(opti
*OPC		Auto
*OPC?		Man
*RST		Opti
*WAI	446	Audio de
		volu
A		Auto adj
		trigg
ACLR		Auto ID
absolute limit	202	Exte
adjacent channel name (remote control)	693	Exte
alternate channel name (remote control)	694	Soft
Channel Bandwidth		Auto ID
channel name (remote control)		Exte
channel names		Soft
Channel Spacing		
limit check		Auto lev
Limit Checking		Hyst
number of channels		Auto Lev
		Base
reference		Auto Pe
relative limit		AUTO S
Weighting Filter		Average
ACLR User Standard		Average
Delete		averagir
Load	205	cont
Save	205	sing
Acquisition time		swe
Statistics	257	
Statistics	201	
ACT	201	В
		В
ACT		B Band
ACT Statistics	257	_
ACT Statistics Active probes Activating	257 299	Band
ACT Statistics Active probes	257 299 304	Band Con
ACT Statistics Active probes Activating Configuring	257 299 304 303	Band Con Exte
ACT Statistics Active probes Activating Configuring Connecting State	257 299 304 303 304	Band Con Exte Exte Band Po
ACT Statistics Active probes Activating Configuring Connecting State Using	257 299 304 303 304	Band Con Exte Exte Band Po
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment	257 299 304 303 304 302	Band Con Exte Exte Band Po
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results	257 299 304 303 304 302	Band Con Exte Exte Band Po reme softk Bandwic
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen	257 299 304 303 304 302 50 51	Band Con Exte Exte Band Po reme softk Bandwic
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation	257 299 304 303 304 302 50 51 163	Band Con Exte Exte Band Po reme softk Bandwic Exte Max
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation 3	257 299 304 303 304 302 50 51 163 .40, 359	Band Con Exte Exte Band Po reme softl Bandwic Exte Max Men
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation depth	257 299 304 303 304 302 50 51 163 163 359 280	Band Con Exte Exte Band Po reme softh Bandwic Exte Max Men Occ
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation depth Depth	257 299 304 303 304 302 50 51 163 163 359 280	Band Con Exte Exte Band Po reme softl Bandwic Exte Max Men Occ Res
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation depth Depth AM Modulation depth	257 299 304 303 304 302 50 51 163 163 185	Band Con Exte Exte Band Po remo softl Bandwic Exte Max Men Occ Res
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation Depth Depth AM Modulation depth Measurement	257 299 304 303 304 302 50 51 163 163 359 280 185 280	Band Con Exte Exte Band Po reme softle Bandwic Exte Max Men Occ Res Vide Basebar
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation depth Depth AM Modulation depth Measurement Results Results	257 299 304 303 304 302 50 51 163 163 359 280 185 280	Band Con Exte Exte Band Po reme softle Bandwic Exte Max Men Occ Res Vide Basebar Trige
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation AM modulation Depth AM Modulation depth Measurement Results Amplitude	257 299 304 303 304 302 50 51 163 163 280 185 280 280 280	Band Con Exte Exte Band Po reme softle Bandwic Exte Max Men Occ Res Vide Basebar Trige Bias
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation AM modulation Depth AM Modulation depth Measurement Results Amplitude electronic attenuation	257 299 304 303 304 302 50 51 163 163 280 185 280 280 280 103	Band Con Exte Exte Band Po reme softle Bandwic Exte Max Men Occ Ress Vide Basebar Trige Bias Con
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation depth Depth AM Modulation depth Measurement Results Amplitude electronic attenuation Menu	257 299 304 303 304 302 50 51 163 163 280 185 280 280 280 280 280 280 280	Band Con Exte Exte Band Po reme softle Bandwic Exte Max Men Occ Res Vide Basebar Trige Bias
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation AM modulation Depth AM Modulation depth Measurement Results Amplitude electronic attenuation	257 299 304 303 304 302 50 51 163 163 280 185 280 280 280 280 280 280 280	Band Con Exte Exte Band Po reme softle Bandwic Exte Max Men Occ Ress Vide Basebar Trige Bias Con
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation AM modulation depth Depth AM Modulation depth Measurement Results Amplitude electronic attenuation Menu option B25 Amplitude	257 299 304 303 304 302 50 51 163 163 280 185 280 185 280 103 96 103 96 103 256	Band Con Exte Exte Band Po rem softl Bandwic Exte Max Men Occ Res Vide Basebar Trige Bias Con Exte
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation depth Depth AM Modulation depth Measurement Results Amplitude electronic attenuation Menu option B25	257 299 304 303 304 302 50 51 163 163 280 185 280 185 280 103 96 103 96 103 256	Band Con Exte Exte Band Po rem softh Bandwic Exte Max Men Occ Res Vide Basebar Trige Bias Con Exte exte
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation AM modulation depth Depth AM Modulation depth Measurement Results Amplitude electronic attenuation Menu option B25 Amplitude	257 299 304 303 304 302 50 51 163 163 280 185 280 103 280 103 96 103 96 103 96 103	Band Con Exte Exte Band Po rem softh Bandwic Exte Max Men Occ Res Vide Basebar Trig Bias Con Exte exte Bias Sel
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation AM modulation depth Depth AM Modulation depth Measurement Results Amplitude electronic attenuation Menu option B25 Amplitude distribution AMPT key	257 299 304 303 304 302 50 51 163 163 280 185 280 103 280 103 96 103 96 103 96 103	Band Con Exte Exte Band Po rem softl Bandwic Exte Max Men Occ Rese Vide Basebar Trigg Bias Con Exte exte Bias Set Con
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation depth Depth AM Modulation depth Measurement Results Amplitude electronic attenuation Menu option B25 Amplitude distribution AMPT key Analog Demodulation mode (K7) Analysis	257 299 304 303 304 50 51 163 163 280 185 280 103 96 103 96 307	Band Con Exte Exte Band Po rem softl Bandwic Exte Max Men Occ Rese Vide Basebar Trigg Bias Con Exte exte Bias Set Con Soft
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation AM modulation depth Depth AM Modulation depth Measurement Results Amplitude electronic attenuation Menu option B25 Amplitude distribution AMPT key Analog Demodulation mode (K7)	257 299 304 303 304 302 50 51 163 163 280 185 280 103 280 103 96 103 96 307 334	Band Con Exte Exte Band Po reme softle Bandwice Exte Max Men Occ Rese Vide Basebar Trige Bias Con Exte exte Bias Set Con Soft Blank tra Bluetoot
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation depth Depth AM Modulation depth Measurement Results Amplitude electronic attenuation Menu option B25 Amplitude distribution AMPT key Analog Demodulation mode (K7) Analysis Bandwidth, definition	257 299 304 303 304 302 50 51 163 163 280 185 280 103 280 103 96 103 96 307 334	Band Con Exte Exte Band Po reme softle Bandwice Max Men Occ Rese Vide Basebar Trige Bias Con Exte exte Bias Sed Con Soft Blank tra Bluetoot Boolean
ACT Statistics Active probes Activating Configuring Connecting State Using Alignment Results Touch screen AM demodulation AM modulation depth Depth AM Modulation depth Measurement Results Amplitude electronic attenuation Menu option B25 Amplitude distribution AMPT key Analog Demodulation mode (K7) Analysis Bandwidth, definition Annotation	257 299 304 303 304 302 50 51 163 163 280 185 280 185 280 103 96 103 96 307 334 59	Band Con Exte Exte Band Po reme softle Bandwice Exte Max Men Occ Rese Vide Basebar Trige Bias Con Exte exte Bias Set Con Soft Blank tra Bluetoot

attenuation	
(option B25)	101
Attenuation	
(option B25)	100
Automatic	100
Manual 100,	612
Option B25	
Audio demodulation	
volume (remote control)	731
Auto adjustment	
triggered measurement	632
Auto ID	002
External Mixer (B21, remote control)	677
External Mixer (B21)	38/
Softkey	206
Auto ID Threshold	390
External Mixer (B21, remote control)	670
Softkey	391
Auto level	
Hysteresis	106
Auto Level	
Baseband Digital	315
Auto Peak detector	
AUTO SET key	104
Average detector	137
Average trace mode 125,	135
averaging	
continuous sweep	135
single sweep	
sweep count	
·	
В	
Band	
Conversion Loss Table (B21)	392
External Mixer (B21, remote control)	
External Mixer (B21)	389
Band Power	
remote control 478,	537
softkey 166,	
Bandwidth	
Extension options	336
Maximum usable	
Menu	
Occupied	1()}
	212
Resolution 109,	212 146
Resolution	212 146
Resolution	212 146 109
Resolution 109, Video	212 146 109
Resolution 109, Video	212 146 109 325
Resolution 109, Video	212 146 109 325 392
Resolution 109, Video	212 146 109 325 392 673
Resolution 109, Video 109, Baseband power 141, Trigger mode 141, Bias Conversion Loss Table (B21) External Mixer (B21, remote control) 672, external mixers (B21)	212 146 109 325 392 673
Resolution 109, Video	212 146 109 325 392 673 381
Resolution	212 146 109 325 392 673 381 395
Resolution 109, Video 141, Baseband power 141, Trigger mode 141, Bias Conversion Loss Table (B21) External Mixer (B21, remote control) 672, external mixers (B21) 81as Settings Conversion Loss Table (B21) 50ftkey	212 146 109 325 392 673 381 395 395
Resolution 109, Video 141, Baseband power 141, Trigger mode 141, Bias Conversion Loss Table (B21) External Mixer (B21, remote control) 672, external mixers (B21) 81as Settings Conversion Loss Table (B21) 50ftkey Blank trace mode 125,	212 146 109 325 392 673 381 395 395 135
Resolution 109, Video 109, Baseband power 141, Trigger mode 141, Bias Conversion Loss Table (B21) External Mixer (B21, remote control) 672, external mixers (B21) 8 Bias Settings Conversion Loss Table (B21) Softkey 8 Blank trace mode 125, Bluetooth mode (K8)	212 146 109 325 392 673 381 395 395 135 307
Resolution 109, Video 109, Baseband power 141, Trigger mode 141, Bias Conversion Loss Table (B21) External Mixer (B21, remote control) 672, external mixers (B21) 8 Bias Settings Conversion Loss Table (B21) Softkey 8 Blank trace mode 125, Bluetooth mode (K8) 8 Boolean parameters 109,	212 146 109 325 392 673 381 395 395 135 307 442
Resolution 109, Video 109, Baseband power 141, Trigger mode 141, Bias Conversion Loss Table (B21) External Mixer (B21, remote control) 672, external mixers (B21) 8 Bias Settings Conversion Loss Table (B21) Softkey 8 Blank trace mode 125, Bluetooth mode (K8)	21 14 10 32 39 67 38 39 13 30 44

C		CommandS	
		Programming examples	84
calibration		Command sequence	
reflection measurement		recommendation	
tracking generator		remote	47
transmission measurement	338, 353	Common commands	
Calibration		Syntax	
remote	470	CONDition	45
Case-sensitivity		Connector	
SCPI		OCXO	
CDMA2000 BTS mode (K82)		Continuous sweep	11
CDMA2000 MS mode (K83)	309	Continuous Value Update	
Center frequency		Softkey	408
Step size	90	Controller	428
channel		Conversion Loss	
bandwidth	198, 214	External Mixer (B21, remote control)	
number	197	Conversion Loss tables	
spacing	199	Available (remote control)	
Channel		Band (remote control)	
Bandwidth	211	Bias (remote control)	
Channel Power		Configuring (B21)	39
Configuring	191	Deleting (remote control)	642
Fast ACLR	187	External Mixer (B21, remote control)	670
Measurement Repeatability	187	External Mixer (B21)	39
Measurements	185	External mixers (B21)	38
Methods	186	Harmonic order (remote control)	
Performing	191	mixer type (remote control)	
Results		Selecting (remote control)	
Characters		Correction	
Special	468	inherent noise	102 20
Clear status		coupling	102, 200
remote	470	default settings	11'
Clear Write trace mode		Coupling	110
CNT (marker functions)		Resolution bandwidth	100
Colon			
		Sweep time	·
Color curve	420	Video bandwidth	
Color mapping	400	create folder	
Color curve		D	
Color range	·	ט	
Color scheme		Data acquisition	
Color Mapping		Errors	450
Color printout	61		43
Color scheme	100	Data Acquisition Softkey	21/
Spectrogram	423	Date	
Color settings			
Default		DCL	
Color Setup dialog box		DEF	
Comma		Default color settings	
Commands		default scalings of x- and y-axis	264, 270
Colon	443	Default values	
Comma		remote	
Command line structure	443	definition of transducer factors	869
Common	429	delay	
Description	467	gate signal	
Double dagger	443	Delta markers	150
GBIP, addressed	435	Density	
GBIP, universal	435	remote control	477, 536, 53
Instrument control		softkey	16 ⁻
Overlapping		detector	
Question mark		overview	13
Quotation mark		Detector	
SCPI confirmed		Auto Peak	12
Sequential		Autoselect	
Syntax elements		Average	
Tracking		CISPR Average	
White space		Negative Peak	
vville space	44 3	Positive Peak	
		I COMPO I CON	12

Quasi Peak	127	Event status enable register		
RMS	127	remote		470
RMS Average	128	Event Status Enable register (ESE)		453
Sample	127	Event status register		
Device ID	62	remote		470
Device-specific commands		Event Status Register (ESR)		
diagram header		EX-IQ-BOX		
tracking generator	360	DiglConf		
			301, 313,	314
Diagram title	59	Export		000
DiglConf		I/Q data (remote)		
Softkey	301, 315, 374	export format	138,	423
Digital Baseband Info		Exporting		
Remote control	625	I/Q data (remote)		623
Digital Baseband Interface (B17)		External Mixer (B21)		379
Status registers	459	activating (remote control)		
Digital IQ		Band	•	
Digital IQ data		band settings		
device	200 313 372	Band settings	·	
	299, 313, 372	<u> </u>		
Digital IQ Info	040	Bias current		
Remote control		configuration		
Softkey	302, 319, 373	Conversion Loss		
Digital Output		Conversion Loss Tables	382, 391,	394
Enabling	301, 319, 373	General information		380
Softkey		Handover frequency		388
Display	, ,	Harmonic Order		
Date	59	Harmonic Type		
maximized		Measurement example		
Power-save mode		Preset Band		
split		Range		
Time	59	remote control	637,	671
Display Config		RF Overrange		389
Softkey	317	RF Start		388
Display lines	289. 290	RF Stop		388
display range	,	softkey		
level 97, 98, 262, 263, 2	68 260 321 322	Softkey		
Display range	00, 200, 021, 022	Type	· ·	
. , ,	00	**		309
Frequency	90	External Mixer Config		00-
display settings		Softkey		
Softkey Bar State (remote control)	767	external noise source		298
Double dagger	443	external trigger	140,	324
DOWN	441			
Dynamic range		F		
Intermodulation-free	277			
Measuring		Fast ACLR		187
weasumg	202	FFT Filter Mode		
E		Auto	107 112	120
_				
Falls I have I have all also be as	000 000	Narrow		
Edit Limit Line dialog box	293, 296	softkey	107, 112,	120
Electronic attenuator		file		
option B25	103	copying		73
setting	103	deleting		73
Electronic input attenuation		renaming		. 73
FSV-B25	616	File Manager dialog box		
ENABle		Filter		–
Enable registers		Digital I/Q (remote control)		7/12
	470	· , , , , , , , , , , , , , , , , , , ,		172
remote	472	Filter bandwidth		040
error messages		Baseband Digital		
device-specific	890	Digital I/Q (remote control)		738
Error messages	890	Filters		
Error queues		Baseband Digital		316
recommendations	465	I/Q data		
Errors		Overview		
Data acquisition	450	Selecting		
		_		
ESE (Event Status Enable register)		Types		114
ESR (Event Status Register)		Filter types		
EVENt	450	5-Pole		
		EMI (6dB)		114

Normal (3dB)	114	GPIB Language	81 ²
RRC	114	GSM/EDGE Analyzer mode (K10)	
Firmware		GTL	
Version	62		
fixed reference		Н	
FM demodulation		••	
FM modulation		Handover frequency	
FM Stereo mode (K7S)	·	External Mixer (B21, remote control)	673
	307	External Mixer (B21)	
folder	70	Hardware Information dialog box	
renaming		Harmonic Distortion	02
FREQ key	89	Measurement	201
frequency			
line	291	Results	282
offset	92	Harmonic order	
start	91	Conversion Loss Table (B21)	
stop	92	External Mixer (B21)	389
Frequency		Harmonics	
Axis	89	External Mixer (B21, remote control)	675
Center		Measurement	185, 284
Display		Harmonic Type	
Lines		External Mixer (B21, remote control)	675
		External Mixer (B21)	
tracking generator	349	HOME key	
Frequency Denominator	0.40	HP emulation	
tracking generator	349		010
Frequency Max.		Hysteresis	400
tracking generator		Lower (Auto level)	
Frequency menu	89	Upper (Auto level)	106
Frequency Min.			
tracking generator	347, 352	l	
Frequency Numerator			
tracking generator	349	I/Q Analyzer	
Frequency Offset		Softkey	313
tracking generator	347 349	I/Q Analyzer mode	307
FRQ		I/Q data	
tracking generator	360	Export (remote control)	622, 623
Full Scale Level	300	Import (remote control)	
	614 615	Maximum bandwidth	334
Digital I/Q Interface (remote control)		Sample rate	334
Digital IQ	300, 313, 372	trigger point in sample (TPIS)	
Full screen level		I/Q data acquisition	
External Mixer (B21)		I/Q Gating	
FXD (marker functions)	157	edge triggered	7/0
G		level triggered	
		I/Q modulation	341, 358
gate		I/Q-Vector	
delay	146	I/Q Analyzer	317
length	146	Identification	
ranges	271	remote	470
Gate		ID String User	811
External/internal	145	IEC/IEEE bus	
MODE <mode></mode>		Command description	467
	145	IECWIN	
gated statistics	074	IFC	
configuration		IFOVL	
configuration example			252 260
example	273	tracking generator	352, 360
gated trigger	271	IF power	
generator type		Trigger mode	141, 325
tracking generator	351	Impedance	
GET	435	Input	102
GPIB		Importing	
Address	435	I/Q data (remote)	622
Characteristics		INF	
interface messages		Inherent noise	
•		correction	102 204
Remote control interface		initial configuration	
tracking generator	351		
GPIB bus control	_	Input/Output menu	291
remote	472		

Index

Input sample rate		VISA	430
Digital IQ	299, 313, 372	VXI protocol	431
Input sample rate (ISR)		level	
Definition	334	axis	99. 322
Instrument messages		display range 97, 98, 262, 263,	
Interface functions		3 , 1, 1, 1,	322
RSIB	431	range 97, 98, 262, 263, 268,	269 321 322
Interface messages		trigger	
Interfaces		Level	140
GPIB	422	Reference	07 220
			•
intermodulation product		Softkey	313
Interrupt		Level Unit	0.45
IP address	430	Digital I/Q Interface (remote control)	
IQ data		Digital IQ	300, 314, 372
remote control	736	limit	
IQ Export		ACLR measurement	202
Softkey	72	Limit	
IQ Import		Evaluation range	255
Softkey	72	limit check	
IST	449	ACLR measurement	201
IST flag	452	limit line	
remote		scaling	
		shift	
K		span setting	
		. •	234
key		Limit lines	200
AMPT	96	Copying	
		Deleting	
AUTO SET		Editing	
BW		New	287
DISPLAY		Offset	
ESC		Spurious Emissions	245
LINES	286	Time Domain Power measurement	254
MEAS		line	
MEAS CONFIG	285	frequency	291
MKR	151	limit	
MKR->	172	threshold	
MKR FUNC	158, 159	time	
MODE (remote control)		Lines	201
PEAK SEARCH	· ·	display	200
PRESET			
PRINT	*	Frequency (Frequency Line 1, 2)	
RUN CONT		Menu	
		Time (Time Line 1, 2)	
RUN SINGLE		LINES key	
SAVE/RCL		LLO	435
SETUP		local menu	81
SPAN		LO exclude	176
SWEEP	117	Logo	59
TRACE	122	LO level	
TRIG	139	External Mixer (B21, remote control)	676
USER	84	LO Level	
Key		Softkey	395
FREQ	89	Lower-case (commands)	
HOME		` ,	
MKR		Lower Level Hysteresis	100
MODE		Softkey	
	303, 300	LTE mode (K100/K101/K104/K105)	310
Keywords	407	LVDS connector	
see Mnemonics	437	B17	378
-		LVL	
L		tracking generator	360
labels		M	
tracking generator	360		
LAN		Magnitude	
Interface	430	I/Q Analyzer	317
IP address	430	maintenance	
Remote control interface	428	Malfunctions	200
RSIB protocol		reacting	465
•			

Index

manual operation	81	Displaying main menus	
changing to	81	FM Stereo (K7S)	
marker		GSM/EDGE Analyzer (K10)	
center frequency to	173	I/Q Analyzer	307
peak		LTE (K100/K101/K104/K105)	
reference level to		Noise Figure (K30)	
search limit		Phase Noise (K40)	
Marker		Power Sensor (K9)	
Zoom	155	Spectrogram (K14)	
Marker Function menu		Spectrum	
Marker menu	151	TDS BTS	
Marker Number		TDS UE	
softkey	166, 333	Vector Signal Analysis (K70)	308
Marker Peak List		WiMAX/WiBro (K92/92)	309
Activating/Deactivating	165, 331	WLAN (K91)	309
Configuring		menu	
Number display	·	Auto Set	104
Number of entries		Input/Output	
	·	·	
Markers		Marker	
Field		Marker Function	
Set to trace	,	Marker To	
Signal track	93	Phase Noise	
Marker Search Area		Power Sensor (K9)	401, 407
Softkey	178	Print	82
Marker Search Type		SAVE/RCL	68
Softkey	177	Span	
Marker To menu		Sweep	
Marker Wizard	172	Trace	
	450		
softkey		Trigger	·
MAX		User	85
Max Hold trace mode	124, 134	Menu	
maximum search	173	Amplitude	96
maximum value	255	Bandwidth	108
Max Peak Count		Frequency	89
softkey	165 331	Lines	
MC-ACLR		Meas	
Mean power (GSM burst)		Setup	
MEAS CONFIG key		· · · · · · · · · · · · · · · · · · ·	
•		Messages	400
MEAS key	182	Commands	
Meas Time		Instrument	
Baseband Digital	316	Instrument responses	
measurement		Interface	429
functions	150	MIN	441
parameters	86	Min Hold trace mode	125, 135
reflection	354	minimum search	174
transmission		Mixer settings	
measurement accuracy		Conversion Loss Table (B21)	302
	353		
tracking generator	352	Mixer Type	000 077
measurement example		External Mixer (B21)	
amplitude distribution		MKR-> key	
harmonics	11	MKR FUNC key	158, 159
high-sensitivity harmonics	284	MKR key	150, 151
intermodulation	274	Mnemonics	437
modulated signals		Optional	
noise		MOD (marker functions)	
signals in the vicinity of noise		mode	
•		trigger	140 224
spectra of complex signals			140, 324
test setup		Mode	
Measurement menu	183	see also Measurement modes	
Measurement modes		MODE key	305, 306
1xEV-DO BTS (K84)	309	Modulation	
3G FDD BTS (K72)	308	Depth	185, 280
Analog Demodulation (K7)		Modulation depth	·
Bluetooth (K8)		Modulation index	
CDMA2000 BTS (K82)		More Traces	
, ,		softkey	100
CDMA2000 MS (K83)	305	SUILNEY	128
Changing	305		

Multi-carrier			Р		
ACLR					
multi-carrier ACLR measurement		186	packing Parallel poll register enable		
N			remote		472
			Parameters		
NAN		441	Block data		44
n dB down			Boolean		44
marker function			SCPI		440
Negative Peak detector		137	Special numeric values		44
Next Mode X			String		44
Softkey		176	Text		44
Next Mode Y			Units		44
Softkey		177	path		. 6
NINF		441	Peak List On/Off		
NOI (marker functions)		157	softkey	165	33
noise			PEAKSEARCH		
correction	102	205	Peak search		• • •
source, external			Area (spectrograms)		179
Noise Figure mode (K30)			Mode		
NOR		000			
tracking generator	352	360	Mode (spectrograms)		
			Type (spectrograms)		
normalization			PEAK SEARCH key		158
tracking generator			Persistence spectrum		
NTRansition		450	color curve		
Numeric values			Color mapping		418
Special		441	Ph. Noise Auto Peak Search		
			remote control		48
0			Phase Noise mode (K40)		308
			PHN (marker functions)		15
OBW			polarity		
Multi-carrier signal		212	external trigger		32
Search limits		212	external trigger/gate		
Occupied bandwidth		212	trigger edge		
OCXO			Ports	140,	52
Internal reference		46	External Mixer (B21, remote control)		67
offset					
frequency		92	User		
gate signal			Positive Peak detector		13
reference level			power		
Offset		020	bandwidth percentage		21
Limit line		280	Power		
			Mean		
Trigger	144	320	remote control 477,	536,	53
Online help		•	Remote control		47
Working with		8	softkey		16
Operation complete			power cables		88
remote		471	Power Classes		
Option identification			SEM		22!
remote		471	Power Max.		
Options			tracking generator	348	35
Additional Interfaces (B5)		400	power measurement		
Bandwidth extension			·		
FSV-B25	100	616	trace		
Installed			zero span		25.
Power Sensor (K9)			Power measurement		
RF Preamplifier (B22)			Occupied bandwidth		21:
_ ` ` ` /	99	313	Power Min.		
Output		224	tracking generator	348,	35
Sample rate, definition			Power Offset		
Output buffer		449	tracking generator	347,	349
Overlapping			Power Sensor	,	
preventing		446	assignment		40
Overlapping commands		445	configuration		
overload			Configuration		
tracking generator		352	Continuous Value Update		
Overwrite mode			Continuous Value Update (remote control)		
OVLD					
tracking generator	352	360	Dropout		→ 1.

Duty Cycle	410	roading files	070
Duty Cycle		reading files	
Duty Cycle (remote control, K9)		Spectrum Emission Mask measureme	
External Power Trigger		Spurious Emissions measurement	877
External Trigger Level	412	time domain power measurement	863
Frequency	410	transducers	869
Frequency Coupling		writing files	
Frequency Coupling (remote control, K9)		Programming examples	
		0 0 1	0.40
Frequency Manual (remote control, K9)		Service request	840
Holdoff		Protocol	
Hysteresis	412	RSIB	431
Meas Time / Average	410	VXI	431
Meas Time/Average (remote control, K9)		PSA emulation	841
menu (K9)		PTRansition	
• ,		F I Ransilion	430
Number of Readings		•	
Number of Readings (remote control, K9)	685	Q	
Reference from measurement	411		
Reference Value	411	Queries	429, 444
Ref Level Offset		Status	463
Selecting		Question mark	443 444
•		Quotation mark	,
Slope		Quotation mark	
Trigger (remote control) 68	6, 687, 688	В	
Trigger Level (remote control)	688	R	
Trigger mode			
Unit / Scale		R&S DiglConf	364
		R&S Digital I/Q Interface (B17)	301, 302, 319, 361,
Use Ref Lev Offset (remote control, K9)			373, 613, 625
Zeroing	409	Applications	
Power Sensor (K9)			
menu	407	Description	
results	402	settings (remote control)	
Power Sensor Assignment		R&S EX-IQ-BOX	378
softkey	408	R&S Support	
	400	softkey	301. 314. 374
Power Sensor Config		Ready for trigger	
softkey	408		452
Power Sensors		Status register	453
Configuring	405	Real/Imag (I/Q)	
Connecting		I/Q Analyzer	317
Power Sensors (K9)		Realtime mode	
		color curve	420
Power Sensor Support (K9)	306	Color mapping	
oower sweep		•	
tracking generator	341	Recall dialog box	70, 74
Power Trigger		Recalling	
Parameters	405	Settings	74
PPC		Recommendations	
		remote control programming	464
PPE		Record Length	
PPE register	452	Baseband Digital	247
PPU			31 <i>1</i>
Preamplifier (B22)	99, 315	reference	
preset instrument		fixed	161
PRESET key	87	level to marker level	174
		tracking generator	
ore-trigger	144, 328	value (channel power)	
print		, , ,	207
screen	82	Reference	40
Printers and Faxes window	84	External	
PRINT key		Internal	46
Print menu		Reference frequency	
	02	OCXO (option B4)	46
Probes		Ultra high precision (option B14)	
Activating	299		
Active	302	reference level	
Configuration (Softkey)		channel power	
programming examples		offset	101, 323
	000	to marker level	174
averaging I/Q data		Reference level	
channel power measurement		Reference Level	01, 020
I/Q data	870		0.15
level measurement	867	Baseband Digital	
limit lines and limit test	857	Digital IQ	300, 314, 372
occupied bandwidth measurement			
•			
power ramp measurement	ისპ		

fequency	reference point			SAVE/RCL menu	6
level		161,	162	Save dialog box	69, 74
Itime	level	161,	162		
Itime	peak search	161,	162	Results	74
Calibration 353 level axis 102 261 2	time	161,	162		
Calibration 353 Evel axis 102, remote 102, remote 103, remote 104, remot	reflection measurement		354	scaling	
Registers 449 x and y-axis (signal statistic) 261, 261, 261, 261, 261, 261, 261, 261,	calibration		353	•	102. 32
remote centrol changing to 81 Remote control changing to 81 Remote control Basics 427 GPIB address 428 Interfaces 428 Interfaces 428 Programming examples 446 Stopping 436 Stopping 437 Repetition interval Time trigger 144, 328 reset values remote — 472 Reset values remote — 472 Resolution bandwidth 109, 146 Result Frequency Start tracking generator 347, 350 REV Sting Factory Softkey 56 REV Sting Sex Softkey 56 REV Sting Geatory Softkey 56 REF Input Active probes 302 RF Overrange External Mixer (B21, remote control) 673 External Mixer (B21, remote control) 431 RIMS detector 137 RIMS value 255 RSIB interface functions 431 RUN SINGLE key 305 RX Settings softkey 300, 314, 374 Sample rate 261, 267 Sample rate 262, 343, 372 Maximum 344 Sample Rate 10Q Analyzer 316 Samples Statistics 57 Crofformity information 477 Parameters 35, 574 Version 472 SCPI Confirmed commands 50 SCPI Confirmed commands 48 ScPI Parameters 48 SDC 48 SCPI Conformed commands 48 Peak 428 Parameters 48 SDC 48 SCPI Conformed commands 49 Peak 428 Page A 48 Page A 4					
remote control changing to 81 Parameters Syntax Syn	•				
Changing to					46
Syntax			81		
Basics 427 Version GPIB address 435 SCPI confirmed commands Interfaces 428 SDC Protocols 428 SDC Protocols 428 SDC Protocols 428 search Starting 436 peak Stopping 437 Search Repetition interval 155 Search Time trigger 144, 328 Feast Search rest Switch on or off 155 Search Resulture 472 Search Settings Result Frequency Stort 472 Search Settings tracking generator 347, 351 Search Settings Softkey 56 Self test Screen Color Set dialog box Self Stop 56 Self test SEV String User 56 Self test Softkey 56 Resultis Fr Protyprange 32 Revenults were generated and severated and			01		
SPIB address			127		
Interfaces					
Programming examples					
Protocols 428					43
Starting					47
Stopping					
Repetition interval Time trigger 144, 328 Search Sandwidth Search limits Search					
Time trigger	•		437	S .	1/4
reset switch on or off					
Switch on or off 125	Time trigger	144,	328	Bandwidth	9
Reset values 172					
Resolution bandwidth	switch on or off		125	OBW	21:
Resolution bandwidth 109, 146 Search Settings Result Frequency Start tracking generator 347, 350 Select Limit Line dialog box Result Frequency Stop tracking generator 347, 351 Select Coreen Color Set dialog box REV String Factory Softkey 56 Select Screen Color Set dialog box Softkey 56 Select String User Selftest Softkey 56 SEM Select Limit Line dialog box Seturn String Factory Select Screen Color Set dialog box Select Limit Line dialog box Seturn String Factory Select Screen Color Set dialog box Seturn String Factory Select Screen Color Set dialog box Seturn String Factory Select Screen Color Set dialog box Settings Select Screen Color Set dialog box Revalls Select Screen Color Set dialog box Settings Settings REV String Line Metal Settings Sequential commands Settings Settings	Reset values			Search Mode	
Result Frequency Start softkey (B17) softkey (B17) Result Frequency Stop select Limit Line dialog box select Screen Color Set dialog box REV String Factory softkey Selflest Softkey 56 Selflest REV String User Softkey Self test Softkey 56 RE Results REV String User Softkey Self test Sether String User Self test Self test Sether String User Active probes 302 APD measurement 264, 265, 270, CCDF measurement 264, 265, 270, GCDF measurement	remote		472	Softkey	170
Result Frequency Stop Select Limit Line dialog box Select Screen Color Set dialog box Self we select Screen Color Sel dialog box Self we select Screen Color Self we select Screen Color Self we select Screen Color Self we select Sc	Resolution bandwidth	109,	146	Search Settings	
Result Frequency Stop Select Limit Line dialog box Select Screen Color Set dialog box Self we select Screen Color Sel dialog box Self we select Screen Color Self we select Screen Color Self we select Screen Color Self we select Sc	Result Frequency Start			softkey (B17)	329
Result Frequency Stop tracking generator 347, 351 Select Screen Color Set dialog box REV String Factory Softkey 56 Selftest REV String Iser Softkey 56 Self test Softkey 56 RESM User Softkey Self test RF Input Active probes 302 APD measurement 264, 265, 270, CCDF measurement 264, 265, 270, CCDF measurement 264, 265, 270, CCDF measurement 264, 265, 270, GCDF measurement 264, 265, 2		347.	350		
Tracking generator 347, 351 Selftest remote Softkey Self test remote Self test Self		ŕ			
REV String Factory		347	351		
Softkey			001		47:
SEM			56		
Softkey	•		00		
RF Input Active probes 302 APD measurement 264, 265, 270, CCDF measurement 264, 265, 270, CCD	•		56		22.
Active probes 302			50		
RF Overrange			202		264 265 270 27
External Mixer (B21, remote control) 673 External Mixer (B21) 389 Service request (SRQ) 452, 8F Power trigger 141, 325 RF Power trigger 141, 325 RF Preamplifier (B22) 99, 315 remote 682 Service request enable register (SRE) 788 Service request enable register (SRE) 789, 315 Settings 788 Service request enable register (SRE) 789, 315 Settings 389, 389, 389, 389, 389, 389, 389, 389,			302		
External Mixer (B21)	J .		070		
RF Power trigger 141, 325 Service request enable RF Preamplifier (B22) 99, 315 remote RMS Service request enable register (SRE) 4 VBW 110, 138 Setting commands 4 RMS detector 137 Settings 8 RMS value 255 Recalling Saving RSIB Saving 8 interface functions 431 general 8 RUN CONT key 305 SETUP key 8 RUN SINGLE key 305 SETUP key 8 RX Settings shutdown remote control 160, 3 Signal count 160, 3 3 Sample detector 137 Softkey 3 Sample number 261, 267 Signal source 3 Sample rate 1/Q Analyzer 299, 313, 372 3 Maximum 334 Remote control 5 Signal tracking Softkey 299, 313, 372 Maximum 34 Remote control 5 Sample Rate 1/Q Analyzer 316 Search ban					
RF Preamplifier (B22) 99, 315 remote RMS Service request enable register (SRE) 4 VBW 110, 138 Setting commands 4 RMS detector 137 Settings 8 RMS value 255 Recalling Saving RSIB Saving setup 9eneral 9enera					452, 46
RMS Service request enable register (SRE) 4 VBW 110, 138 Setting commands 4 RMS detector 137 Setting commands 4 RMS value 255 Recalling 8 RSIB Recalling 8 protocol 431 general 8 RUN CONT key 305 SETUP key 9 RUN SINGLE key 305 Setup menu 8 RX Settings shutdown 9 9 RX Settings shutdown 10 10 10 Sample detector 137 Signal ID 10					47
VBW 110, 138 Setting commands 4 RMS detector 137 Settings RMS value 255 Recalling RSIB Saving Saving interface functions 431 setup protocol 431 general RUN CONT key 305 SETUP key RUN SINGLE key 305 Setup menu RX Settings shutdown remote control softkey 300, 314, 374 remote control signal count 160, 3 S Signal ID External Mixer (B21, remote control) 6 Sample detector 137 Softkey 305/tkey Sample rate 1/Q Analyzer 299, 313, 372 Softkey 299, 313, 372 Definition 334 Remote control 6 Digital I/Q Interface (remote control) 615 Softkey 299, 313, 372 Maximum 334 Search bandwidth Search bandwidth Sample Rate 501*Demod BW (K7) 0.1*Demod BW (K7) 0.1*RBW	• • •	99,	315		
RMS detector 137 Settings RMS value 255 Recalling RSIB saving setup interface functions 431 general protocol 431 general RUN CONT key 305 SETUP key RUN SINGLE key 305 SETUP key RX Settings shutdown remote control softkey 300, 314, 374 remote control signal count S Signal ID External Mixer (B21, remote control) 5 Sample detector 137 Softkey Signal Source Sample rate I/Q Analyzer 299, 313, 372 Signal Source Definition 334 Remote control 9 Digital I/Q Interface (remote control) 615 Softkey 299, 313, 372 Maximum 334 Search bandwidth Search bandwidth Sample Rate Softkey 203, 203, 203, 203, 203, 203, 203, 203,	_				
RMS value 255 Recalling RSIB Saving interface functions 431 setup protocol 431 general RUN CONT key 305 SETUP key RUN SINGLE key 305 Setup menu RX Settings shutdown shutdown softkey 300, 314, 374 remote control 8 Signal count 160, 3 Signal count 160, 3 Sample detector 137 Softkey Softkey 3 Sample number 261, 267 Signal Source Signal Source 1/Q Analyzer 299, 313, 372 Remote control Softkey 299, 313, 372 Softkey 299, 313, 372 Signal tracking Search bandwidth Search bandwidth Softkey 203, 2 0.1*Demod BW (K7) 203, 2 0.1*Demod BW (K7) 0.1* RBW 0.1* RBW (remote control) 656, 6 656, 6 656, 6 656, 6 656, 6 656, 6 656, 6 656, 6 656, 6 656, 6 656, 6 656, 6 656, 6 656, 6 656, 6 </td <td></td> <td></td> <td></td> <td> -</td> <td> 429</td>				-	429
Saving Saving Setup				Settings	
interface functions	RMS value		255	Recalling	7
protocol 431 general RUN CONT key 305 SETUP key RUN SINGLE key 305 Setup menu RX Settings shutdown softkey 300, 314, 374 remote control S signal count 160, 3 Signal ID External Mixer (B21, remote control) 6 Sample number 261, 267 Signal Source Sample rate I/Q Analyzer 299, 313, 372 Definition 334 Remote control 6 Digital I/Q Interface (remote control) 615 Softkey 299, 313, 372 Maximum 334 Remote control 6 Sample Rate search bandwidth 5earch bandwidth I/Q Analyzer 316 0.1*Demod BW (K7) 0.1*Demod BW (K7) Samples 0.1*RBW 0.1*RBW (remote control) 656,6	RSIB			Saving	74
RUN CONT key 305 SETUP key RUN SINGLE key 305 Setup menu RX Settings shutdown softkey 300, 314, 374 remote control S signal count 160, 3 Signal ID External Mixer (B21, remote control) 6 Sample detector 137 Softkey 3 Sample number 261, 267 Signal Source Sample rate I/Q Analyzer 299, 313, 372 Definition 334 Remote control 299, 313, 372 Digital I/Q Interface (remote control) 615 Softkey 299, 313, 372 Maximum 334 Search bandwidth Search bandwidth Sample Rate 1/Q Analyzer 316 0.1*Demod BW (K7) 0.1*RBW Samples 0.1 * RBW 0.1 * RBW (remote control) 656, 6	interface functions		431	setup	
RUN SINGLE key 305 Setup menu shutdown RX Settings shutdown signal count 160, 3 S Signal ID External Mixer (B21, remote control) 6 Sample detector 137 Softkey 5 Sample number 261, 267 Signal Source Signal Source 1/Q Analyzer 299, 313, 32 Sample rate 1/Q Analyzer 299, 313, 372 Remote control 6 5 Digital I/Q Interface (remote control) 615 Softkey 299, 313, 372 Signal tracking Search bandwidth Sample Rate 1/Q Analyzer 334 Search bandwidth 36 Softkey 203, 2 1/Q Analyzer 316 0.1*Demod BW (K7) 0.1*RBW 0.1*RBW (remote control) 656, 6	protocol		431	general	5 ¹
Sample detector	RUN CONT key		305	SETUP key	4:
Sample detector	RUN SINGLE key		305	Setup menu	4
softkey 300, 314, 374 remote control 8 signal count 160, 3 160, 3 Sample detector 137 Signal ID External Mixer (B21, remote control) 6 sample number 261, 267 Signal Source Signal Source I/Q Analyzer 299, 313, 312 Sample rate 1/Q Analyzer 299, 313, 372 Softkey 299, 313, 372 Digital I/Q Interface (remote control) 615 Softkey 299, 313, 372 Maximum 334 Signal tracking Search bandwidth Sample Rate Softkey 203, 2 I/Q Analyzer 316 0.1*Demod BW (K7) Samples 0.1 * RBW Statistics 257 0.1 * RBW (remote control) 656, 6				shutdown	
S signal count 160, 3 Sample detector 137 External Mixer (B21, remote control) 6 sample number 261, 267 Signal Source Sample rate I/Q Analyzer 299, 313, 3 Definition 334 Remote control 6 Digital I/Q Interface (remote control) 615 Softkey 299, 313, 3 Digital IQ 299, 313, 372 Signal tracking 299, 313, 3 Maximum 334 Search bandwidth Search bandwidth Sample Rate softkey 203, 2 I/Q Analyzer 316 0.1*Demod BW (K7) 0.1* Pemod BW (K7) Samples 0.1* RBW 0.1* RBW (remote control) 656, 6		300. 314.	374	remote control	81
Sample detector 137 External Mixer (B21, remote control) 6 Sample number 261, 267 Signal Source Sample rate I/Q Analyzer 299, 313, 372 Definition 334 Remote control 299, 313, 372 Digital I/Q Interface (remote control) 615 Softkey 299, 313, 372 Maximum 334 Signal racking 299, 313, 372 Maximum 334 Search bandwidth Sample Rate softkey 203, 2 I/Q Analyzer 316 0.1*Demod BW (K7) Samples 0.1* RBW Statistics 257 0.1 * RBW (remote control) 656, 6	,	, ,			
Sample detector 137 Softkey Softkey sample number 261, 267 Signal Source Sample rate I/Q Analyzer 299, 313, 372 Digital I/Q Interface (remote control) 615 Softkey 299, 313, 372 Maximum 334 Search bandwidth Search bandwidth Sample Rate softkey 203, 2 I/Q Analyzer 316 0.1*Demod BW (K7) Samples 0.1 * RBW Statistics 257 0.1 * RBW (remote control) 656, 6	S				,,
Sample detector 137 Softkey 334 Sample rate 1/Q Analyzer 299, 313, 312 Digital I/Q Interface (remote control) 615 Softkey 299, 313, 372 Maximum 334 Search bandwidth Sample Rate softkey 203, 2 I/Q Analyzer 316 0.1*Demod BW (K7) Samples 0.1 * RBW Statistics 257 0.1 * RBW (remote control) 656, 6					67
sample number 261, 267 Signal Source Sample rate I/Q Analyzer 299, 313, 313, 313, 313, 313, 313, 313, 3	Sample detector		137		
Sample rate I/Q Analyzer 299, 313, 3 Definition 334 Remote control 6 Digital I/Q Interface (remote control) 615 Softkey 299, 313, 3 Digital IQ 299, 313, 372 Signal tracking Search bandwidth Maximum 334 Search bandwidth Search bandwidth Sample Rate softkey 203, 2 I/Q Analyzer 316 0.1*Demod BW (K7) Samples 0.1 * RBW Statistics 257 0.1 * RBW (remote control) 656, 6	•				
Definition	•	3.,	-	<u> </u>	200 212 27
Digital I/Q Interface (remote control) 615 Softkey 299, 313, 372 Digital IQ 299, 313, 372 Signal tracking Search bandwidth Maximum 334 Search bandwidth Search bandwidth Sample Rate softkey 203, 2 I/Q Analyzer 316 0.1*Demod BW (K7) Samples 0.1 * RBW Statistics 257 0.1 * RBW (remote control) 656, 6	•		334		
Digital IQ 299, 313, 372 Signal tracking Maximum 334 Search bandwidth Sample Rate softkey 203, 2 I/Q Analyzer 316 0.1*Demod BW (K7) Samples 0.1 * RBW Statistics 257 0.1 * RBW (remote control) 656, 6					
Maximum 334 Search bandwidth Sample Rate softkey 203, 2 I/Q Analyzer 316 0.1*Demod BW (K7) Samples 0.1 * RBW Statistics 257 0.1 * RBW (remote control) 656, 6					
Sample Rate softkey 203, 2 I/Q Analyzer 316 0.1*Demod BW (K7) Samples 0.1 * RBW Statistics 257 0.1 * RBW (remote control) 656, 6				•	
I/Q Analyzer 316 0.1*Demod BW (K7) Samples 0.1 * RBW Statistics 257 0.1 * RBW (remote control) 656,6			JJ-		
Samples 0.1 * RBW Statistics 257 0.1 * RBW (remote control) 656,6			216	•	
Statistics			310	, ,	
0.1 1\DV \(\text{\tin}\text{\tinte\tint{\text{\tint{\text{\tett{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin\tint{\text{\text{\text{\text{\text{\tin\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin\tin\tint{\text{\text{\tin\text{\text{\text{\text{\ti}\text{\tin\tint{\text{\tin\text{\text{\text{\text{\text{\text{\texi}\titt{\text{\text{\text{\texi}\texitet{\text{\texit{\text{\tet{\text{\tin\tintet{\text{\text{\tinte\tint{\text{\tinte\tint{\ti	·		257		
SAVE/PCL key				0.1 * RBW (remote control)	656, 65

0.1 * Span		90	Color (On/Off)	84
0.1 * Span (remote control)	656,	657	Color On/Off (remote control)	774
0.5*Demod BW (K7)		91	Colors	83
0.5 * RBW		91	Comment	84
0.5 * RBW (remote control)	656,	657	Cont Demod (remote control)	538
0.5 * Span		90	Continue Single Sweep (remote control)	609,
0.5 * Span (remote control)	656,	657		610
# of Adj Chan		197		
# of Adj Chan (remote control)		690	Cont Meas (remote control)	609
# of Samples	261,	267	Copy	73
# of Samples (remote control)				781
# of TX Chan				
# of TX Chan (remote control)		697	1,7	
% Power Bandwidth		214	Copy Trace (remote control)	732
% Power Bandwidth (remote control)		698	Corr Data On/Off (remote control)	758, 759
(remote control)	708,	712	Coupling (FSx/HP)(remote control)	805
	264, 265, 270,	271		
= Center		91		
= Marker			•	197
ACLR Abs/Rel				
ACLR Abs/Rel (remote control)			` ,	73
ACLR Ref Setting (remote control)				
ACLR Ref Spacing (remote control)				73
Active On/Off (remote control)	792,	793	β dBμA	99, 322
Adjust Ref Level			·	99, 322
Adjust Ref Level (remote control)				,
Adjust Ref Lvl				99, 322
Adjust Settings (remote control)				
All Functions off	,			
All Functions off (remote control)				
All Marker Off				
AM (remote control)				
Ampere				
APD (remote control)				
Application Setup Recovery(remote c				
ASCII File Export				
ASCII File Export (remote control)				
ASCII Trace Export				
ASCII Trace Export (remote control)				
Auto (remote control)			·	
Auto All			,	
Auto Max Peak			,	
Auto Max Peak (remote control)				
Auto Min Peak				
Auto Min Peak (remote control)				
Average Mode (remote control)				
Band Power			, , , , , , , , , , , , , , , , , , , ,	
Band Power On/Off				801, 802
C/N (remote control)				
C/No (remote control)				
Calibrate Reflection Open				
Calibrate Reflection Short				
Calibration Franciscon			, , , , ,	493, 494
Calibration Frequency MW				
Calibration Frequency RF				
CCDF (remote control)				, 521, 791
Center =Mkr Freq				
Center = Mkr Freq (remote control)				, 506, 507
CF Stepsize (remote control)				
Channel Bandwidth (remote control)				
Channel Settings			,	
Channel Spacing (remote control)				
Channel Spacing (remote control) Chan Pwr/Hz				
Chan Pwr/Hz (remote control)				
Clear/Write				
Clear All Messages (remote control)				655
Sicai Ali Micosayco (Iciliole collilol) .		JU-	r	000

Edit Unit (remote control)		793	Limits On/Off (remote control)	!	532
Edit Values (remote control)		791	Lin		
El Atten Mode (Auto/Man)		101	Link AF Spectrum Marker (remote control)		525
Enable all Items		70	Link Mkr1 and Delta1		
Enable all Items (remote control)			Link Mrk1 and Delta1 (remote control)	4	482
Exclude LO (remote control)		525	Link Time Marker (remote control)		525
Export		71	List Evaluation		
Extension		73	List Evaluation On/Off		
External			List Evaluation On/Off (remote control)		
External AM			Load Standard		
External AM (remote control)			Local		
External FM			Log		
External FM (remote control)			Manual		
External I/Q			Manual (remote control)		
External IQ (remote control)			Map Network Drive (remete central)		
Fast ACLR On/Off (remete central)			Map Network Drive (remote control)		
Fast ACLR On/Off (remote control)			Margin Margin (remote control)		
File Lists (1/2)File Manager			Marker 1, Marker 216		
Filter Type			Marker 1 (remote control)		
Filter Type (remote control)			Marker 1-16		
Firmware Update (remote control)			Marker 1 to 4 (remote control) 4		
FM (remote control)			warker i to 4 (remote control)		532
Free Run			Marker 2 (remote control)		
Freg Axis (Lin/Log) (remote control)			Marker 3 (remote control)		
Frequency Line 1 (remote control)			Marker 4 (remote control)		
Frequency Line 2 (remote control)			Marker List (remote control)		
Frequency Offset			Marker Norm/Delta		
Full Span (remote control)			Marker Norm/Delta (remote control)		476
Gate Delay (remote control)			Marker Stepsize	<i>'</i>	154
Gated Trigger (On/Off)			Marker Stepsize (remote control)	!	534
Gated Trigger (remote control)	700,	701	Marker Table (Off/On/Aut) (remote control)	!	599
Gate Length (remote control)			Marker Table (On/Off)		
Gate Mode Lvl/Edge (remote control)			Marker to Trace (remote control)		
Gate Ranges			Marker Wizard		
Gate Ranges (remote control)			Marker Zoom (remote control)		
GPIB Address (remote control)			Max Hold		
GPIB Language (remote control)			Mean (remote control)		
GPIB Terminator LFEOI/EOI (remote contro	ol)		Meas Start/Stop		
Grid Abs/Rel	400	801	Meas Start/Stop (remote control)		
			Meas Time Auto		
Grid Abs/Rel (remote control)			Meas Time Manual		
Hardware Info (remote control)			Meas to Ref (remote control, K9)		
Hold/ContID String Factory (remote control)			Min (remote control)		
ID String User (remote control)			Mkr Demod On/Off (remote control)		
IF Gain (Norm/Puls)(remote control)		806	Mkr List On/Off (remote control)		540
IF Output IF/Video (remote control)			Mkr Stop Time (remote control)		
Import			Modulation		
Info			Modulation OFF		
Input 50 W/75 W (remote control)			More Markers		152
Input RF/Cal/TG (remote control)			Name		73
Insert after Range			Name (remote control)		499
Insert after Range (remote control)			n dB down	164, 3	330
Insert before Range	221,	251	n dB down (remote control)	546, 547, 5	548
Insert before Range (remote control)		651	Network Drive		
Installed Options (remote control)		759	New (remote control) 497, 500, 5	509, 511, 5	19,
Install Printer				520, 9	
Interpolation Lin/Log (remote control)			New Folder		
LAN Reset			New Folder (remote control)		
Last Span			Next Min		
Left Limit 1			Next Min (remote control)		
Left Limit (remote control)			Next Mode		
Limit Chk On/Off (remote control) 5			Next Peak		
Limit Line Select dialog box (remote control))		Next Peak (remote control) 483, 4		
		521	Noise Correction	529, 5	
			110196 COLLECTIOLL	1∪∠, ₄	205

Noise Meas On/Off			160	0 Reference Position (remote control)		60
Noise Meas On/Off (remote control)			549	9 Reference Value		33
Noise Source			298	8 Reference Value (remote control, K9)		58
Noise Src On/Off (remote control)			761			
Normalize						
NORMALIZE						
OBW (remote control)				,		
Password						
Password (remote control)						
Paste						
Peak				,		
Peak (remote control)						
Peak Excursion	165	, 178	, 332			
Peak Excursion (remote control)			530	0 Ref Point Frequency	161	1, 16
Peak Search		. 161	, 162	2 Ref Point Frequency (remote control)		47
Peak Search (remote control)	479	540,	541,	Ref Point Level	161	1, 16
,			543	Ref Point Level (remote control)		
Percent Marker		266	592	2 Ref Point Time (remote control)		
Percent Marker (remote control)				· · · · · · · · · · · · · · · · · · ·		
Phase Noise						
Phase Noise Auto Peak Search				,		
Phase Noise On/Off				,		
Ph Noise/Ref Fixed (remote control)						
Ph Noise On/Off (remote control)				,		
Power	129	, 131	, 167	7 Res BW Auto (remote control)	634	4, 63
Power Mode			202	2 Res BW Manual (remote control)		63
Power Mode (remote control)			555	5 Restore Standard Files		22
Power Sensor					5, 175	5, 33
Power Sensor Assign						
Power Sensor Assignment						
Power Sensor Config				,		
Power Sensor On/Off (K9)						
Power Sensor On/Off (remote control, h						
Power Sweep						
Power Sweep (On /Off)						
Power Sweep (On/Off) (remote control)						
Power Sweep Start		. 341	, 715	5 Save File		6
Power Sweep Start (remote control)			716	6 Save File (remote control)		78
Power Sweep Stop			342	2 Scaling	261	1, 26
Power Sweep Stop (remote control)						
Predefined Colors				,		
Predefined Colors (remote control)						
Print Screen						
Print Screen (remote control)						
,						
R&S Support						,
Range						
Range Lin. Unit 9				2 Select Dataset		
Range Lin. Unit (remote control)		. 602	, 603	3 Select Directory (remote control)		79
Range Linear % 9						6
Range Linear % (remote control)		. 602	603	3 Select Items		6
Range Log (remote control)					6, 787	7, 78
Range Log 100 dB				,		
Range Log 10 dB						
Range Log 1 dB				•		
Range Log 50 dB						
Range Log 5 dB						
Range Log Manual 9						
RBW/VBW Manual			113	3 Select Trace (remote control)	569	9, 69
RBW/VBW Noise [10]			112	2 Select Traces to check (remote control)		. 499
RBW/VBW Pulse [.1]						50
RBW/VBW Sine [1/3]						
Recall						
Recall (remote control)				,		
Recall File						
Recall File (remote control)						
Reference Fixed On/Off						
Reference Int/Ext (remote control)	/13	, 794	, 796	6 Set to Default		8

Set to Default (remote control)		772	Trace Math Off		131
Shift X Limit Line (remote control)			Trace Math Position		131
Shift Y Limit Line (remote control)			Trace Mode (remote control) 572, 5		
Show Align Results (remote control)			576, 578, 579, 5		
Show Peaks					
			Track BW (remote control)		
Show Peaks (remote control)			Tracking Generator		
Sig Count			Track On/Off (remote control)		
Sig Count On/Off (remote control)	523,	, 524	Track Threshold (remote control)		
Signal Track (remote control)		570	Trg/Gate Level		143
Single Meas (remote control)			Trg/Gate Level (remote control)		
Single Sweep (remote control)			Trg/Gate Polarity Pos/Neg		
Size			Trg/Gate Polarity Pos/Neg (remote control)		
Soft Frontpanel (remote control)					752
Sort Mode			Trg/Gate Source (remote control) 7	'01, 751,	, 752
Sort Mode Freq/Lvl (remote control)	542.	, 543	Trigger Holdoff (remote control)		750
Source Cal		338	Trigger Out (Low/High)(remote control)		790
Source Config			Trigger Polarity		
Source Power			Unit		
Source Power (remote control)			Unit/Scale (remote control, K9)		
Source RF (On/ Off)			Unit (remote control)		
Source RF (On/Off) (remote control)			Update Path (remote control)		804
Span		167	User Defined Colors		84
Span/RBW Auto [50]		113	User Defined Colors (remote control)		772
Span/RBW Manual			User Pref Setup		
Span Manual			Use Zoom Limits		
Chan Manual (remate control)		93			
Span Manual (remote control)			Use Zoom Limits (remote control)		
Start			Value (remote control) 5		
Start (remote control)		658	Versions+Options (remote control)		803
Start Frequency (remote control)		658	Versions + Options (remote control)		763
Startup Recall			Video		
Startup Recall (On/Off)			Video BW Auto (remote control)		
. ,					
Startup Recall On/Off(remote control)			Video BW Manual (remote control)		
Std Dev (remote control)			Video Output		
Stepsize Standard			Volt		
Stepsize Standard (remote control)		534	Watt	99,	, 322
Stepsize Sweep Points		154	Weight ADJ (On/Off) (remote control)		692
Stepsize Sweep Points (remote control)			Weighting Filter (remote control)	691	692
Stop			Weight TX (On/Off) (remote control)		
Stop (remote control)			x*Demod BW (K7)		
			` ,		
Stop Frequency (remote control)			X * RBW		
Sweep Count			X * RBW (remote control)		
Sweep List (remote control) 647,	648, 649,	650,	X * Span		91
651, 652, 653, 654, 664, 665, 666, 667, 6	668, 669,	670.	X * Span (remote control)	656,	657
		671	x-Axis Range		
Sweep Points			x-Axis Range (remote control)		
Sweep Points (remote control)			x-Axis Ref Level		
Sweep Rep (On/Off)(remote control)			x-Axis Ref Level (remote control)		
Sweep Time			x Offset (remote control)		
Sweeptime Auto (remote control)			y-Axis Max Value		
System Messages (remote control)		804	y-Axis Max Value (remote control)		596
T1-T2 ->T1			y-Axis Min Value		
T1-T3 ->T1			y Offset (remote control)		
T1-T4 ->T1			y-Unit %/Abs		
T1-T5 ->T1			y-Unit %/Abs (remote control)		
T1-T6 ->T1			Zero (remote control, K9)		598
THD Unit %/DB (remote control)		755	Zero Span		
Threshold	166, 175	332	Zero Span (remote control)		658
Threshold (remote control)			Softkey		
Time+Date (remote control)			*IDN Format Legacy		56
Time Domain Power (remote control)			= Marker (remote control)		
Time Line 1 (remote control)			Active (On/Off)		
Time Line 2 (remote control)		597	Adjust Settings	211,	, 285
Trace 1 2 3 4 5 6 (remote control)		601	Adjust X-Axis	251,	, 253
Trace Math			Alignment		
Trace Math (remote control)			AM		
Trace Math Mode			AM Mod Depth		
Trace Math Mode (remote control)		504	AM Mod Depth (remote control)	544,	, ນ45

Annotation (On/Off)			Display lines		
Annotation On/Off (remote control)	765,	767,	Display Pwr Save		
		768	Display Pwr Save (remote control)		
APD	184,	260	Display Setup		
Application Setup Recovery			Display Update (On/Off)		
ASCII File Export			Edit		
AUTO 1	07, 111,	120	Edit (remote control)	516,	518
Auto Freq		105	Edit Comment		287
Auto Level		106	Edit Margin		288
Auto select Reference		47	Edit Name	. 48,	287
Average	125,	135	Edit Unit		48
Average Mode		128	Edit Value		288
Band Power (remote control)	478,	537	Edit Values		48
BB Power	141,	325	EL Atten (remote control)		
BB Power Retrigger Holdoff (remote control))		EL Atten Mode (Auto/Man) (remote control)		616
		750	El Atten On/Off		
3lank	125,	135	Exclude LO		176
C/N			EX-IQ-BOX 300,	314,	373
C/N, C/No	183,	211	Export (remote control)	622,	623
C/N (remote control)		561	FFT 107,		
C/No			FFT Filter Mode 107,		
C/No (remote control)			Firmware Update		
Calibrate Reflection Open (remote control) .			FM		
(642	Frequency Line 1		
Calibrate Reflection Short (remote control) .		642	Frequency Line 2		
Calibrate Transmission (remote control)			Frequency Offset (remote control)		
Calibration Frequency MW			Full Span		
Calibration Frequency RF			Gate Delay		
CCDF			Gated Trigger		
Center					
			Gate Length		
Center (remote control)			Gate Mode Lvl/Edge		
CF Stepsize			Gate Settings		
Channel Bandwidth			General Setup		
Ch Power ACLR			GPIB		
Clear All Messages			GPIB Address		
Clear Write			GPIB Language		
Close Sweep List			GPIB Terminator LFEOI/EOI		56
Color (On/Off)			Handle missing Ext. Ref		
Color Mapping		418	Hardware Info		
Colors			Harmonic Distortion	,	
Compatibility Mode			Harmonic RBW Auto		
Computer Name		51	Harmonic Sweep Time		285
Configure Monitor		57	I/O Logging (On/Off)		57
Cont Demod		163	ID String Factory		53
Continue Single Sweep		118	ID String User		53
Continuous Sweep			IF Gain (Norm/Puls)		55
Continuous Sweep (remote control)		610	IF Power		
Cont Meas (remote control)		610	IF Power Retrigger Holdoff (remote control)		750
Copy to			IF Power Retrigger Hysteresis (remote control) .		
Coupling (FSx/HP)			30: January (751
CP, ACP, MC-ACLR (remote control)			Import (remote control)		
CP/ACLR Standard (remote control)			Info (LXI)		
Decim Sep (remote control)			Input (AC/DC)		
Default Colors 1 (remote control)			Input (AC/DC)(remote control)		
,			Input 50 Ω/75 Ω		
Default Colors 2 (remote control) Delete			Input Source		
Delete (ACLR User Standard)					
,			Insert Value		
Delete Value			Install Option		
Density (remote control) 4			Install Option by XML		
Description			Interpolation Lin/Log		
Deselect all			IP Address		
Details On/Off			IQ Export		
OHCP (On/Off)			IQ Import		
DiglConf 3			LAN Reset		
Digital IQ			Left Limit		
Display Line 1		289	Limits On/Off		255
Display Line 2			List Evaluation		251

List Evaluation On/Off	252	Save (ACLR User Standard)	
Load (ACLR User Standard)	205	Save (remote control)	624
Log	129	Save As Trd Factor (remote control)	643
Logo (On/Off)		Save Evaluation List	252
Logo On/Off (remote control)	766	Save Factor	
LXĬ		Save Limit Line	288
Margin		Screen Colors (remote control)	
Marker 1 to 4 (remote control)		Screen Title	
Marker Demod	·	Screen Title (remote control)	
Marker Number		Search Signals	
Marker Number (remote control)		Select 1 2 3 4 (remote control)	
` ,		Select Color Set	
Marker Peak List	· · · · · · · · · · · · · · · · · · ·		
Marker to Trace		Select Directory	
Marker to Trace (remote control)		Select Object	
Marker Zoom		Select Trace	
Max Hold	·	Select Traces to check	
Max Peak Count		Self Alignment	
May Peak Size (remote control)		Selftest	
Mean		Selftest Results	
Meas Start/Stop		Service	
Mech Atten Auto	100	Service Function	66
Mech Atten Auto (remote control)	613	Set to Default	61
Mech Atten Manual	100	Set to Default (remote control)	765
Mech Atten Manual (remote control)	612	Shift Y Limit Line (remote control)	517
Min Hold	125, 135	Show Align Results	50
Mkr Demod On/Off	162	Show Error Flag	47
Mkr Stop Time	163	Show Peaks	
Mode Default		Signal Track	
Mode R&S FSP		Single Meas (remote control)	
Mode R&S FSU		Single Sweep	
Network Address		Single Sweep (remote control)	
New		Soft Frontpanel	
New (remote control)		Sort Mode Freg/LvI	
New Spectrum (remote control)		Spectrum Emission Mask	
No. of Harmonics		Spurious Emissions	
Normalize (remote control)		Squelch	
OBW		Squelch (remote control)	
OBW (remote control)		Squelch Level	
,		Std Dev	
Option Licenses			
Other LAN Settings		Subnet Mask	
Password	•	Sweep	
Peak		Sweep Count (remote control)	
Peak List (remote control)		Sweep List	
Peak List On/Off	•	Sweep Repeat (On/Off)	
Peaks per Range		Sweep Time (remote control)	
Power (remote control)		Sweeptime Auto	,
Preamp On/Off		Sweeptime Manual	,
Preamp On/Off (remote control)		Sweeptime Manual (remote control)	
Predefined Colors		Sweep Type	
Predefined Colors (remote control)		System Info	
Print Colors		System Messages	
Recall (remote control)	643	Theme Selection	59
Reference Int/Ext	46	Time+Date	57
Ref Level	- ,	Time+Date (On/Off)	59
Ref Level (remote control)	604	Time+Date Format	59
Ref Level Adjust (Man/Auto)	50	Time+Date Format (remote control)	
Res BW Auto	109	Time+Date On/Off (remote control)	769
Res BW Manual	109, 146	Time Domain Power	184, 255
Reset Password	65	Time Line 1	290
RF	65	Time Line 2	290
RF Atten Auto		TOI	
RF Atten Auto (remote control)		TOI (remote control)	,
RF Atten Manual		Tool Bar State (On/Off)	•
RF Atten Manual (remote control)		Tool Bar State On/Off (remote control)	
RF Power		Touch Screen Alignment	
Right Limit	·	Trace 1	
RMS		Trace 2	

Trace 3	124	Spectrum Emission Mask	
Trace 4		Measurements	
Trace 5		Power Classes	225
Trace 6	124	Softkey	183, 217
Trace Mode (remote control)	601	Spectrum mode	306
Track BW	93	SPLIT/MAXIMIZE	
Track On/Off	92	Key	600
Track Threshold	93	Spurious Emissions	
Transducer	47	Limit lines	245
Trg/Gate Source	140, 324	Measurements	
Trg/Gate Source (remote control)	751, 752, 753	Results	244
Trigger Holdoff		Softkey	184
Trigger Hysteresis		Squelch	
Trigger Offset		Remote control	644
Trigger Out		Softkey	
User Defined Colors		Squelch Level	
User Standard		Softkey	163
Versions+Options		SRE	
Video BW Auto		SRE (service request enable register)	
Video BW Manual		SRQ (service request)	
View		start frequency	
	,		91
X Offset		statistic measurements	271
Y Offset		gated trigger	2/1
y Offset (remote control)	517	Status	400
Softkeys	400	Queries	463
Autoselect		Status byte	
Continuous Value Update		remote	•
Detector Auto Peak		Status registers	
Detector Average		CONDition	
Detector CISPR Average		ENABle	
Detector Manual Select	126	EVENt	450
Detector Negative Peak		model	450
Detector Positive Peak	127	NTRansition	450
Detector Quasi Peak	127	parts	450
Detector RMS	127	PTRansition	450
Detector RMS Average	128	STATus:OPERation	453
Detector Sample	127	STATus:QUEStionable	454
Lower Level Hysteresis		STATus:QUEStionable:ACPLimit	455
Marker Search Area	178	STATus:QUEStionable:FREQuency	457
Marker Search Type	177	STATus:QUEStionable:LIMit	
Next Mode X		STATus:QUEStionable:LMARgin	
Next Mode Y		STATus:QUEStionable:POWer	
Power Sensor		STATus:QUEStionable:SYNC	
Probe Config	•	Status reporting system	
Search Mode		Application	
Upper Level Hysteresis		Common commands	
Source Power	100	STB	
	247 240		449
tracking generator	347, 349	Step size	00
Span	107	Center frequency	
softkey		stop frequency	
SPAN key		storing	
Span menu	95	Suffixes	
SPD		supply voltage, external noise source	298
SPE	435	sweep	
Speaker		count	120
remote control	731	Free Run	140, 324
Special characters	468	gated	147
SCPI	440	Sweep	
Spectrogram		Continue single sweep	118
color curve	420	Continuous	
Color mapping		Gated	
Color scheme		Single	
Displaying		Time	
Menu		SWEEP key	,
Spectrogram mode (K14)		sweep list	117
opooliogiam mode (ICI+)	+10	•	646
		Fast SEM (remote control)	040

Sweep List		power sweep	
Symmetrical	221	reverse sweep	34
Sweep menu	117	selecting	346, 34
Sweep status		TTL Synchronization (remote control)	72
Status register	453	Tracking Generator	
Sweep time		Denominator (remote control)	71
Coupling	111 119	Frequency Offset (remote control)	
Statistics	,	Numerator (remote control)	
	231	,	1 1
Syntax elements	442	Tracking Generators	00
SCPI		remote control	
System Messages dialog box	63	transducer	4
_		Transducer	
T		Activating	4
		transmission measurement	
TCP/IP		calibration	35
tracking generator	351	tracking generator	
TCP/IP address		trigger	
tracking generator	351	external	140 32
TDS BTS mode		level	•
TDS UE mode		slope	
Test		•	143, 32
Self test	65	Trigger	
	05	External gate	
threshold	100 175 000	Gated sweep	
line	166, 175, 332	Holdoff	144, 32
Threshold		Hysteresis	144, 32
Signal tracking	93	Level	32
Time	59	Offset	144. 32
softkey	142, 327	Status register	, -
Time Domain Power	•	Trigger event	
Restricting range	254	remote	17
Results			
time line		Trigger menu	·
		trigger mode	
Time line	290	External	140, 32
timestamp		Free Run	140, 32
instrument (remote control)	731	Video	140, 32
Time trigger		Trigger mode	
Repetition interval	144, 328	BB power	141. 32
Title		Digital IQ	
Diagram	59	IF power	
TOI		RF power	
Measurement	274		141, 32
Results		Triggers	
		Power Sensor	
TOI (marker functions)	157	TRIG key	
Touch screen		TRK (marker functions)	15
Alignment	51	TTL synchronization	
TPIS		tracking generator	35
I/Q data	748	TX Settings	
trace		EX-IQ-BOX	300 314 37
power measurement	203	LX-1Q-DOX	500, 514, 57
Trace		U	
Clear Write	124 134	U	
		Liltra high procinion reference	4
Signal tracking		Ultra high precision reference	
TRACe:IQ subsystem		Units	
TRACE key	122	UP	
Trace menu	123	Upper-case (commands)	46
Trace mode	124	Upper Level Hysteresis	
Average	125, 135	Softkey	10
Blank		Usable I/Q bandwidth	
Clear Write	·	Definition	22
		user-defined menu	
Max Hold			
Min Hold	-,	USER key	
View	125, 135	Remote	78
tracking generator		User ports	
configuration (remote control)	728, 731	Remote control	62
display		User sample rate	
error messages		Definition	33
Power Offset (remote control)			

R&S® FSV Index

٧

VBW	
RMS detector	
Vector Signal Analysis mode (K70)	308
Versions/Options dialog box	62
Video bandwidth	109
video triggering	140, 325
View Filter	293
View trace mode	125, 135
VISA	428, 430
Libraries	429
Resource string	429, 430
Volume	
remote control	731
VXI protocol	431
w	
Wait	
remote	473
Waiting for trigger	
Status register	453
weighting filter	200
White space	
WiMAX mode (K92/92)	309
WLAN mode (K91)	
Υ	
Y-Axis Max	
I/Q Analyzer	323
Z	
zeroing (K9)	404
zero span	
zoom	
area (remote control)	605
remote control	
Zoom	
Amplitude	